1. Trang chủ
  2. » Đề thi

Đề thi thử đại học môn Toán số 28

1 227 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 1
Dung lượng 48 KB

Nội dung

ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG Môn thi : TOÁN ( ĐỀ 28 ) I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2 điểm). Cho hàm số 4 2 5 4,= − +y x x có đồ thị (C) 1) Khảo sát sự biến thiên và vẽ đồ thị (C). 2) Tìm m để phương trình 4 2 2 | 5 4 | log− + =x x m có 6 nghiệm. Câu II (2 điểm). 1) Giải phương trình: 1 1 sin 2 sin 2cot 2 2sin sin 2 + − − =x x x x x 2) Tìm m để phương trình: ( ) 2 2 2 1 (2 ) 0− + + + − ≤m x x x x có nghiệm x 0; 1 3   ∈ +   Câu III (1 điểm). Tính tích phân: 4 0 2 1 1 2 1 + = + + ∫ x I dx x Câu IV (1 điểm). Cho lăng trụ đứng ABCA 1 B 1 C 1 có AB = a, AC = 2a, AA 1 2 5= a và · 120= o BAC . Gọi M là trung điểm của cạnh CC 1 . Tính khoảng cách d từ điểm A tới mặt phẳng (A 1 BM). Câu V (1 điểm) Cho x, y, z là các số dương. Chứng minh: 3 2 4 3 5+ + ≥ + +x y z xy yz zx II. PHẦN RIÊNG (3.0 điểm) A. Theo chương trình chuẩn Câu VI.a. (2 điểm). 1) Trong không gian với hệ toạ độ Oxyz, cho hai điểm A(–1; 3; –2), B(–3; 7; –18) và mặt phẳng (P): 2x – y + z + 1 = 0. Tìm tọa độ điểm M ∈ (P) sao cho MA + MB nhỏ nhất. 2) Trong mặt phẳng với hệ toạ độ Oxy, viết phương trình đường thẳng ∆ đi qua điểm M(3;1) và cắt các trục Ox, Oy lần lượt tại B và C sao cho tam giác ABC cân tại A với A(2;–2). Câu VII.a (1 điểm). Giải phương trình: ( ) 2 2 3 3 log 1 log 2+ + − = −x x x x x B. Theo chương trình nâng cao Câu VI.b. (2 điểm). 1) Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;5;0), B(3;3;6) và đường thẳng ∆ có phương trình tham số 1 2 1 2 = − +   = −   =  x t y t z t . Một điểm M thay đổi trên đường thẳng ∆. Xác định vị trí của điểm M để chu vi tam giác MAB đạt giá trị nhỏ nhất. 2) Trong mặt phẳng với hệ toạ độ Oxy, viết phương trình đường thẳng ∆ đi qua điểm M(4;1) và cắt các tia Ox, Oy lần lượt tại A và B sao cho giá trị của tồng +OA OB nhỏ nhất. Câu VII.b (1 điểm) Giải bất phương trình: 2 4 2 (log 8 log )log 2 0+ ≥ x x x . ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG Môn thi : TOÁN ( ĐỀ 28 ) I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2 điểm). Cho hàm số 4 2 5 4,= − +y x x có đồ thị (C) 1) Khảo sát sự biến thi n. cạnh CC 1 . Tính khoảng cách d từ điểm A tới mặt phẳng (A 1 BM). Câu V (1 điểm) Cho x, y, z là các số dương. Chứng minh: 3 2 4 3 5+ + ≥ + +x y z xy yz zx II. PHẦN RIÊNG (3.0 điểm) A. Theo chương. gian với hệ tọa độ Oxyz, cho hai điểm A(1;5;0), B(3;3;6) và đường thẳng ∆ có phương trình tham số 1 2 1 2 = − +   = −   =  x t y t z t . Một điểm M thay đổi trên đường thẳng ∆. Xác định

Ngày đăng: 26/07/2015, 08:22

TỪ KHÓA LIÊN QUAN

w