1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề thi học sinh giỏi lớp 12 THPT tỉnh Ninh Bình năm 2012 - 2013 (Lần 2) môn toán

12 577 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 12
Dung lượng 648 KB

Nội dung

SỞ GD&ĐT NINH BÌNH ĐỀ THI CHỌN HỌC SINH GIỎI LỚP 12 THPT Kỳ thi thứ hai - Năm học 2012 – 2013 MÔN: TOÁN Ngày thi 18/12/2012 (Thời gian làm bài 180 phút, không kể thời gian giao đề) Đề thi gồm 05 câu, trong 01 trang Câu 1 (3,0 điểm). Cho hàm số y = x 3 + 2mx 2 + (m + 3)x + 4 (m là tham số) có đồ thị là (C m ), đường thẳng d có phương trình y = x + 4 và điểm K(1; 3). Tìm các giá trị của tham số m để d cắt (C m ) tại ba điểm phân biệt A(0; 4), B, C sao cho tam giác KBC có diện tích bằng 8 2 . Câu 2 (6,0 điểm). 1. Cho phương trình 2cos2x – mcosx = 4 1 sin4x + msinx, m là tham số (1). a) Giải phương trình (1) khi m = 2. b) Tìm m để phương trình (1) có nghiệm trong đoạn [0, 4 π ]. 2. Giải phương trình 3 2 3 3 5 2 3 10 26 0, + − − − + + − = ∈¡x x x x x x . Câu 3 (4,0 điểm). 1. Tìm hệ số của x 18 trong khai triển của (2 – x 2 ) 3n biết * ∈¥n thoả mãn đẳng thức sau: 0 2 4 2 2 2 2 2 512+ + + + = n n n n n C C C C . 2. Cho dãy số (u n ) với u n + 1 = a.u n + b, 1n ≥ , a, b là 2 số thực dương cho trước. Với 2,n ≥ tìm u n theo u 1 , a, b và n. Câu 4 (5,0 điểm). 1. Cho khối lăng trụ tam giác ABC.A’B’C’. Gọi I, J, K lần lượt là trung điểm của các cạnh AB, AA’ và B’C’. Mặt phẳng (IJK) chia khối lăng trụ thành hai phần. Tính tỉ số thể tích của hai phần đó. 2. Cho khối tứ diện ABCD có cạnh AB > 1, các cạnh còn lại có độ dài không lớn hơn 1. Gọi V là thể tích của khối tứ diện. Tìm giá trị lớn nhất của V. Câu 5 (2,0 điểm). Cho ba số thực dương a, b, c thoả mãn a + b + c = 3. Chứng minh rằng: 2 2 2 2 2 2 1 2 2 2 + + ≥ + + + a b c a b b c c a . Dấu đẳng thức xảy ra khi nào? HẾT Họ và tên thí sinh : Số báo danh Họ và tên, chữ ký: Giám thị 1: Họ và tên, chữ ký: Giám thị 2: ĐỀ THI CHÍNH THỨC S GD&T NINH BèNH HDC THI CHN HSG LP 12 THPT K thi th hai - Nm hc 2012 2013 MễN: TON Ngy thi: 18/12/2012 (Hng dn chm gm 04 trang) A) Hng dn chung: 1) Hc sinh lm ỳng n õu thỡ giỏm kho chm n ú. Hc sinh trỡnh by theo cỏch khỏc m ỳng thỡ giỏm kho chm tng ng biu im ca HDC. 2) Vic chi tit húa thang im phi m bo khụng lm sai lch biu im cua HDC v phi c thng nht trong ton hi ng chm thi. 3) im ca bi thi khụng lm trũn. B) Hng dn c th: Cõu ỏp ỏn im 1 (3,0 im ) Xột phng trỡnh honh giao im ca (C) v d: x 3 + 2mx 2 + (m + 3)x + 4 = x + 4 x(x 2 + 2mx + m + 2) = 0 ( ) =+++ = *022 0 2 mmxx x 0,5 d ct (C) ti 3 im phõn bit PT (*) cú 2 nghim phõn bit khỏc 0 ( ) ( ) ( ) + + >= ;21;22; 02 02 2' m m mm 0,5 Khi ú B = (x 1 ; x 1 + 4), C = (x 2 ; x 2 + 4) vi x 1 , x 2 l hai nghim ca (*) . Theo Vi-ột ta cú += =+ 2 2 21 21 mxx mxx 0,5 ( ) ( ) ( ) 2 2 2 1 2 1 2 1 2 2 2 8 2 2 2= - = + - = - -ị BC x x x x x x m m 0,5 Ta cú khong cỏch t K n d l h = 2 . Do ú din tớch KBC l: ( ) 2 2 1 1 . . 2.2 2 2 2 2 2 2 = = - - = - -S h BC m m m m 0,5 2 1 137 8 2 2 2 8 2 ( ) 2 = - - = = S m m m TM . Vy 1 137 2 =m . 0,5 2 (6,0 im ) 1a. (2,5 im) 2cos2x mcosx = 4 1 sin4x + msinx 4cos2x - sin2x.cos2x 2m(sinx + cosx) = 0 cos2x(4 - sin2x) 2m(sinx + cosx) = 0 (cos 2 x sin 2 x)(4 - sin2x) - 2m(sinx + cosx) = 0 (sinx + cosx)[(cosx sinx)(4 - sin2x) - 2m] = 0 sin cos 0 (2) (cos sin )(4 sin 2 ) 2 0 (3) ộ + = ờ ờ - - - = ở x x x x x m 1,0 *Gii (2): sin cos 0 sin 0 , . 4 4 ổ ử p p ữ ỗ + = + = =- + pẻ ữ ỗ ữ ỗ ố ứ Âx x x x k k 0,5 *Gii (3): (cos sin )(4 sin 2 ) 2 0- - - =x x x m . t t = cosx - sinx, 2 2 sin 2 2sin cos 1= = -Ê ịt x x x t PT (3) tr thnh: ( ) 2 3 3 2 0 3 2 0+ - = + - =t t m t t m (4) 0,5 Vi m = 2, PT (4) tr thnh: ( ) ( ) 3 2 3 4 0 1 4 0 1+ - = - + + = = t t t t t t Vi t = 1, ta cú: 2 cos sin 1 cos 2 , 4 2 4 4 2 , 2 , . 2 ổ ử p p p ữ ỗ - = + = + = + pẻ ữ ỗ ữ ỗ ố ứ ộ = pẻ ờ ờ p ờ =- + pẻ ờ ở Â Â Â x x x x k k x k k x k k Vy vi m = 2, PT ó cho cú nghim: 4 p =- + px k , 2 , 2 ( ). 2 p = =- +p pẻ Âx k x k k 0,5 1b. (1,5 im) Nghim ca (2) khụng thuc on [0, 4 ] nờn PT ó cho cú nghim thuc on [0, 4 ] thỡ PT (3) phi cú nghim thuc on [0, 4 ] hay PT (4) cú nghim thuc on [0, 1]. 0,5 Ta cú: 3 3 3 2 0 3 2+ - = + =t t m t t m (5). Xột hm s f(t) = t 3 + 3t liờn tc trờn Ă cú f '(t) = 3t 2 + 3 > 0 " ẻ Ăt . Suy ra: [ ] [ ] 0,1 0,1 min ( ) (0) 0, max ( ) (1) 4= = = =f t f f t f . 0,5 PT (5) cú nghim trờn on [0, 1] [ ] [ ] 0,1 0,1 min ( ) 2 max ( ) 0 2 4 0 2.Ê Ê Ê Ê Ê Êf t m f t m m Vy [ ] 0,2ẻm l giỏ tr cn tỡm ca m. 0,5 2. (2,0 im) iu kin: 5 1; 2 x . 0,25 ( ) ( ) 3 2 PT 3 3 3 5 2 1 3 10 24 0+ - - - - - + + - = x x x x x 0,5 ( ) ( ) ( ) ( ) 2 3 2 2 2 2 12 0 3 3 3 5 2 1 - - + - - - - = + + - + x x x x x x x ( ) 2 3 2 2 12 0 3 3 3 5 2 1 ộ ự ờ ỳ - + - + + = ờ ỳ + + - + ở ỷ x x x x x 2 2 3 2 12 0 3 3 3 5 2 1 ộ = ờ ờ ờ + - + + = ờ + + - + ở x x x x x 0,5 Xột hm s 2 5 ( ) 12, 1; 2 ộ ự ờ ỳ =- + + -ẻ ờ ỳ ở ỷ f x x x x . Ta cú f(x) liờn tc trờn 5 1; 2 ộ ự ờ ỳ - ờ ỳ ở ỷ . Ta cú f'(x) = -2x + 1, f'(x) = 0 x = 1 2 . 0,5 Do ú 5 1; 2 5 1 33 49 33 min ( ) min ( 1); ( ); ( ) min 10, , 0 2 2 4 4 4 ộ ự ờ ỳ - ờ ỳ ở ỷ ỡ ỹ ỡ ỹ ù ù ù ù ù ù ù ù = - = = > ớ ý ớ ý ù ù ù ù ù ù ù ù ợ ỵ ợ ỵ f x f f f . 2 3 2 5 12 0 1; 2 3 3 3 5 2 1 ộ ự ờ ỳ + - + + > " -ị ẻ ờ ỳ + + - + ở ỷ x x x x x . Vy PT ó cho cú nghim duy nht x = 2. 0,25 1. (2,0 im) Ta cú: ( ) 2 0 1 2 3 2 1 2 2 2 2 2 2 2 1 1 n n n n n n n n n C C C C C C + = + + + + + + (1) Ta cú: ( ) 2 0 1 2 3 2 1 2 2 2 2 2 2 2 1 1 n n n n n n n n n C C C C C C = + + + (2) 0,5 Cng tng v (1) v (2) ta c: ( ) 2 0 2 4 2 0 2 4 2 2 1 2 2 2 2 2 2 2 2 2 2 2 n n n n n n n n n n n n C C C C C C C C = + + + + + + + + = 0,5 Theo bi ra ta cú: 2 1 2 512 2 1 9 5 - = - = = n n n T ú (2 x 2 ) 3n = (2 x 2 ) 15 = = 15 0 215 15 )1()2( i iiii xC 0,5 ị H s ca x 18 l s iii C )1(2 15 15 sao cho 2i = 18 i = 9. Vy h s ca x 18 l: - 69 15 2C = -320.320 0,5 2. (2,0 im) 1," n 1 1 1 ( ), 2. + + - = + - = - "ị n n n n n n u au b u u a u u n 0,5 t 1 1 , 1 , 2 ( ) + - = - =ị ị n n n n n n v u u n v av n v l mt cp s nhõn cú cụng bi bng a. 0,5 Ta cú: 1 1 1, . - " = n n n v v a ; 1 1 ( 1)= - +v a u b . 0,5 Vy ta cú: 1 1 2 2 1 1 2, ( ) ( ) ( ) - - - " = - + - + + - + n n n n n n u u u u u u u u 2 3 1 2 3 1 1 1 ( 1) . ( 1) - - - - - = + + + + = + + + + n n n n n v a a u u a b a a 0,5 4 (5,0 1. (3,0 im) Dng ỳng thit din 0,5 Chng minh EI = IJ = JF. T ú suy ra ' 1 ' ' 3 = = = EB EM FA EB EK FB . Li t ú suy ra 1 2 = FN FK . 0,5 Ta cú: d(K, A'B') = (1/2)d(C', A'B'), FB' = (3/2)A'B'. Suy ra S KFB = (3/4)S ABC . Mt khỏc vỡ 1 ' 3 = EB EB nờn suy ra d(E, (KFB)) = (3/2)h (h l chiu cao lng tr). Do ú V EKFB = (3/8)V (V l th tớch lng tr) . 0,5 ' 1 1 1 1 . . . . ' 3 3 3 27 = = = EBIM EB FK V EI EM EB V EF EK EB nờn V EBIM = 1 3 1 . 27 8 72 =V V . 0,5 ' ' ' 1 1 1 1 . . . . ' 3 3 2 18 = = = FA JN FB EK V FJ FA FN V FE FB FK nờn V FAJN = 1 3 1 . 18 8 48 =V V . 0,5 Mt phng (IJK) chia khi lng tr thnh hai phn. Gi V 1 l th tớch phn cha im B' v V 2 l th tớch phn cha im C. Ta cú V 1 = (3/8 1/72 1/48)V = (49/144)V nờn V 2 = (95/144)V. Do ú V 1 /V 2 = 49/95. 0,5 2. (2,0 im) N F M E K J I B' C' A' C BA điểm ) Theo giả thiết DACD và DBCD có tất cả các cạnh không lớn hơn 1. Đặt CD = a ( 0 1< £a ). 0,25 Gọi AM, BN lần lượt là chiều cao của ACD ∆ và BCD ∆ . Ta có 4 1 2 a AM −≤ ; 4 1 2 a BN −≤ . Gọi AH là chiều cao của tứ diện, ta có 4 1 2 a AMAH −≤≤ . Thể tích của tứ diện ABCD: ) 4 1( 6 6 1 3 1 2 aa AHCDBNAHSV BCD −≤== ∆ 0,75 Xét )4()( 2 aaaf −= trên (0, 1]. Ta có f(a) liên tục trên (0, 1]. ' 2 ' ( ) 4 3 , ( ) 0= - = Ûf a a f a ( ] 2 0;1 3 = ± Ïa . Vậy ( ] 0,1 max ( ) (1) 3= =f a f . 0,5 Suy ra 1 max 8 =V khi DACD và BCD ∆ là hai tam giác đều cạnh bằng 1, hai mặt phẳng (ACD) và (BCD) vuông góc với nhau. Khi đó tính được 6 1 2 = >AB . 0,5 5 (2,0 Ta có ( ) 2 2 2 2/3 2 2 3 4 2 2 2 2 2 3 3 a ab ab a a a ab a b a b ab = − ≥ − = − + + (Theo BĐT Cô - si) Tương tự: ( ) 2 2/3 2 2 2 3 b b bc b c ≥ − + , ( ) 2 2/ 3 2 2 2 3 c c ca c a ≥ − + 0,5 Khi đó ( ) ( ) ( ) 2 2 2 2/3 2/3 2/3 2 2 2 2 2 2 2 3 a b c a b c ab bc ca a b b c c a   + + ≥ + + − + +   + + + ( ) ( ) ( ) 2/3 2/3 2/3 2 3 (1) 3 ab bc ca   = − + +   Ta đi chứng minh ( ) ( ) ( ) 2/ 3 2/3 2/ 3 3 3 32 2 2 2 2 2 3 3ab bc ca a b b c c a+ + ≤ ⇔ + + ≤ (2) 0,5 Thật vậy theo Cô - si ta có 3 2 2 3a b ab a b+ + ≥ Thật vậy theo Cô - si ta có 3 2 2 3c b bc c b+ + ≥ 0,5 M N H C D B A 3 0 + 1 0 f(a) f'(a) a điểm ) Thật vậy theo Cô - si ta có 3 2 2 3a c ac a c+ + ≥ ( ) ( ) 3 3 32 2 2 2 2 2 2 3a b c ab bc ca a b b c c a⇒ + + + + + ≥ + + Mặt khác ta có: ( ) ( ) ( ) ( ) ( ) ( ) 2 2 2 2 2 2 2 2 0 1 3 3 3 a b b c c a a b c ab bc ca a b c ab bc ca ab bc ca a b c − + − + − ≥ ⇔ + + ≥ + + ⇔ + + ≥ + + ⇔ + + ≤ + + = Khi đó ta có: ( ) 3 3 32 2 2 2 2 2 3 2.3 3 9a b b c c a+ + ≤ + = 3 3 32 2 2 2 2 2 3a b b c c a⇒ + + ≤ . Vậy (2) đúng, thay vào (1) ⇒ ĐPCM. Dấu đẳng thức xảy ra khi a = b = c = 1. 0,5 Hết SỞ GD&ĐT NINH BÌNH ĐỀ THI CHỌN HỌC VIÊN GIỎI LỚP 12 BT THPT Năm học 2012 – 2013 MÔN: TOÁN Ngày thi 18/12/2012 (Thời gian làm bài 180 phút, không kể thời gian giao đề) Đề thi gồm 05 câu, trong 01 trang Câu 1 (5,0 điểm). Cho hàm số y = x 3 – 3x 2 + m 2 x + m, m là tham số (1). 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1) khi m = 0. 2. Tìm tất cả các giá trị của tham số m để hàm số (1) luôn đồng biến trên ¡ . Câu 2 (5,0 điểm). Giải phương trình: 1. cosx + cos2x + cos3x + cos4x = 0. 2. 3 2 3− + + =x x . Câu 3 (4,0 điểm). 1. Từ các chữ số 1, 2, 3, 4, 5, 6, 7 có thể tạo ra bao nhiêu số tự nhiên gồm 5 chữ số đôi một khác nhau trong đó các chữ số 1 và 2 luôn đứng cạnh nhau? 2. Cho đường tròn (I) có phương trình x 2 + y 2 - 4x + 8y + 15 = 0. Viết phương trình tiếp tuyến với (I) biết tiếp tuyến đi qua điểm A(-1 ; 0). Câu 4 (4,0 điểm). Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh a, các cạnh bên SA = SB = SC = SD = a. 1. Tính thể tích khối chóp S.ABCD theo a. 2. Gọi M, N, P theo thứ tự là trung điểm của các cạnh AB, AD và SC. Chứng tỏ rằng mặt phẳng (MNP) chia khối chóp thành 2 phần có thể tích bằng nhau. Câu 5 (2,0 điểm). Giải phương trình 221682 22 +=−+++ xxxx . HẾT Họ và tên thí sinh : Số báo danh ĐỀ THI CHÍNH THỨC Họ và tên, chữ ký: Giám thị 1: Họ và tên, chữ ký: Giám thị 2: SỞ GD&ĐT NINH BÌNH HDC ĐỀ THI HỌC VIÊN GIỎI LỚP 12 BTTHPT Năm học: 2012 – 2013 MÔN: TOÁN Ngày thi: 18/12/2012 (Hướng dẫn chấm này gồm 04 trang) A) Hướng dẫn chung: 1) Học sinh làm đúng đến đâu thì giám khảo chấm đến đó. Học sinh trình bày theo cách khác mà đúng thì giám khảo chấm tương ứng biểu điểm của HDC. 2) Việc chi tiết hóa thang điểm phải đảm bảo không làm sai lệch biểu điểm của HDC và phải được thống nhất trong toàn hội đồng chấm thi. 3) Điểm của bài thi không làm tròn. B) Hướng dẫn cụ thể: Câu Đáp án Điểm 1 (5 điểm) 1) 3 điểm Khi m = 0 ta có 3 2 3y x x= − a) TXĐ: D = ¡ 0,5 b) Sự biến thiên: +) Chiều biến thiên: • 2 ' 3 6 3 ( 2)y x x x x = − = − • ' 0 3 ( 2) 0 0; 2y x x x x = ⇔ − = ⇔ = = ' 0 (0;2)y x < ∀ ∈ nên hàm số nghịch biến trên khoảng (0; 2) ' 0 ( ;0) (2; )y x > ∀ ∈−∞ ∪ +∞ nên hàm số đồng biến trên mỗi khoảng ( ;0) −∞ và (2; ) +∞ . 0,75 +) Cực trị: Hàm số đạt cực đại tại x CĐ = 0, y CĐ = 0. Hàm số đạt cực tiểu tại x CT = 2, y CT = - 4. 0,5 +) Các giới hạn: 3 2 lim( 3 ) x x x →−∞ − = −∞ ; 3 2 lim( 3 ) x x x →+∞ − = +∞ 0,25 +) Bảng biến thiên: 0,5 c) Đồ thị: Đồ thị cắt Ox tại hai điểm (0, 0) và (3,0). 0,5 f(x)=x^3-3x^2 x(t)=2 , y(t)=t f(x)=-4 x y O 32 -4 2) 2 điểm + Ta có : y’ = 3x 2 – 6x + m 2 0,25 + Hàm số luôn đồng biến trên ¡ ' 0 y x⇔ ≥ ∀ ∈¡ 0,5 ' 0 0 a >  ⇔  ∆ ≤  2 3 0 9 3 0m >  ⇔  − ≤  0,5 ⇔ m ∈ (- ∞ ; 3− ] ∪ [ );3 +∞ 0,5 Vậy với m ∈ (- ∞ ; 3− ] ∪ [ );3 +∞ thì hàm số luôn đồng biến trên ¡ . 0,25 2 5 điểm 1) 3 điểm cosx + cos2x + cos3x + cos4x = 0 ⇔ 2cos 2 3x cos 2 x + 2 cos 2 7x cos 2 x = 0 0,5 ⇔ 4cos 2 x cos 2 5x cosx = 0 0,5 ⇔ 5 cos 0; cos 0; cos =0 2 2 x x x= = 0,5 2 , 2 , 5 5 , 2 x k k x k k x k k   = π+ π ∈  π π  ⇔ = + ∈   π  = + π ∈  ¢ ¢ ¢ 1,25 Vậy PT đã cho có nghiệm: ( ) 2 2 ; ; 5 5 2 x k x k x k k π π π = π+ π = + = + π ∈¢ 0,25 2) 2 điểm Đặt U = x−3 , V = 2+x (Điều kiện U ≥ 0; V ≥ 0) ta có hệ: 0,5    =+ =+ 5 3 22 VU VU 0,25 Giải hệ ta có : 1 2 U V =   =  hoặc 2 1 U V =   =  0,5 2 2 1 =⇒    = = x V U ; 1 1 2 −=⇒    = = x V U 0,5 Vậy PT đã cho có nghiệm là x = 2 ; x = -1 0,25 3 4 điểm 1) 2 điểm Gọi số được lập là: 1 2 3 4 5 a a a a a 0,25 Xét trường hợp 2 chữ số 1, 2 nằm ở vị trí: 1 2 a a 0,25 [...]... hợp này có: 2.A 5 = 120 số thỏa mãn ĐK đề bài Tương tự với các trường hợp 2 chữ số 1, 2 nằm ở các vị trí: a2 a3 , a3a 4 , a4 a5 ta nhận được số các số thỏa mãn ĐK là: 4 .120 = 480 (số) 2) 2 điểm Đường tròn (I) có tâm là K(2; - 4), bán kính R = 5 Đường thẳng ∆ đi qua điểm A (-1 ; 0) có PT dạng: a(x + 1) + by = 0 ⇔ ax + by + a = 0 (a 2 + b 2 ≠ 0) Để ∆ là tiếp tuyến của đường tròn (I) thi : d(K, ∆ ) = R... cao của hình chóp Áp dụng định lý Pitago trong tam giác vuông HSA: AC 2 a2 ⇒ SH = a 2 = 4 2 2 SH2 = SA2 - AH2 = SA2 - 0,5 0,25 SABCD = a 2 1 3 Áp dụng công thức V = Bh ta có V = 1 a3 2 SH.SABCD = 3 6 2) 2 điểm Kéo dài MN cắt CB, CD lần lượt tại E và F PE cắt SB tại Q, PF cắt SD tại R Thi ́t diện của hình chóp cắt bởi (MNP) là ngũ giác MNRPQ Gọi phần thể tích không chứa đỉnh S là V1... 6)( x − 1) = 4x + 4 ⇔ 2 (2 x + 6)( x − 1) = x -1 ⇔ 2 (2 x + 6)( x − 1) = ( x − 1)( x − 1) Suy ra x – 1 = 0 ⇔ x = 1 Hoặc: 2 2 x + 6 = x − 1 ⇔ 8x + 24 = x - 1 ⇔ x = 0,25 −25 (loại) 7 Vậy phương trình đã cho có 2 nghiệm: x = -1 và x = 1 -Hết - 0,25 0,25 0,25 ... [−1; +∞)   + TH1: x = -1 thỏa mãn PT Vậy x = -1 là một nghiệm của PT + TH2: Với x ≥ 1 ta xét phương trình: 5 2 điểm 2 x 2 + 8x + 6 + x2 − 1 = 2 x + 2 ⇔ ( x + 1)(2 x + 6) + ( x + 1)( x − 1) = 2 ( x + 1)( x + 1) ⇔ 0,5 0,25 0,25 2x + 6 + x − 1 = 2 x + 1 ⇔ 2x + 6 + x – 1 + 2 (2 x + 6).( x − 1) = 4(x + 1) ⇔ 3x + 5 + 2 (2 x + 6)( x − 1) = 4x + 4 ⇔ 2 (2 x + 6)( x − 1) = x -1 ⇔ 2 (2 x + 6)( x − 1)... có PT dạng: a(x + 1) + by = 0 ⇔ ax + by + a = 0 (a 2 + b 2 ≠ 0) Để ∆ là tiếp tuyến của đường tròn (I) thi : d(K, ∆ ) = R ⇔ 4 2a − 4b + a a +b 2 2 = 5 ⇔ 4a 2 − 24ab + 11b 2 = 0 (*) Ta thấy nếu b = 0 thi từ (*) suy ra a = 0, không TMĐK a 1 11 Nếu b ≠ 0 , đặt t = , từ phương trình (*) ta có: t = hoặc t = b 2 2 Từ đó tìm được PT tiếp tuyến là: x + 2y + 1 = 0 hoặc 11x + 2y + 11 = 0 1) 2 điểm . GD&ĐT NINH BÌNH ĐỀ THI CHỌN HỌC SINH GIỎI LỚP 12 THPT Kỳ thi thứ hai - Năm học 2 012 – 2013 MÔN: TOÁN Ngày thi 18 /12/ 2 012 (Thời gian làm bài 180 phút, không kể thời gian giao đề) Đề thi gồm. (2) đúng, thay vào (1) ⇒ ĐPCM. Dấu đẳng thức xảy ra khi a = b = c = 1. 0,5 Hết SỞ GD&ĐT NINH BÌNH ĐỀ THI CHỌN HỌC VIÊN GIỎI LỚP 12 BT THPT Năm học 2 012 – 2013 MÔN: TOÁN Ngày thi 18 /12/ 2 012 (Thời. 10 24 0+ - - - - - + + - = x x x x x 0,5 ( ) ( ) ( ) ( ) 2 3 2 2 2 2 12 0 3 3 3 5 2 1 - - + - - - - = + + - + x x x x x x x ( ) 2 3 2 2 12 0 3 3 3 5 2 1 ộ ự ờ ỳ - + - + + = ờ ỳ + + - + ở ỷ x

Ngày đăng: 24/07/2015, 10:12

TỪ KHÓA LIÊN QUAN

w