1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề thi và đáp án bồi dưỡng học sinh giỏi toán lớp 7 tham khảo (9)

47 353 1

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 47
Dung lượng 1,09 MB

Nội dung

Đề số 1: đề thi học sinh giỏi huyện Môn Toán Lớp 7 (Thời gian làm bài 120 phút) Bài 1. Tìm giá trị n nguyên dương: a) 1 .16 2 8 n n = ; b) 27 < 3 n < 243 Bài 2. Thực hiện phép tính: 1 1 1 1 1 3 5 7 49 ( ) 4.9 9.14 14.19 44.49 89 − − − − − + + + + Bài 3. a) Tìm x biết: 2x3x2 +=+ b) Tìm giá trị nhỏ nhất của A = x20072006x −+− Khi x thay đổi Bài 4. Hiện nay hai kim đồng hồ chỉ 10 giờ. Sau ít nhất bao lâu thì 2 kim đồng hồ nằm đối diện nhau trên một đường thẳng. Bài 5. Cho tam giác vuông ABC ( A = 1v), đường cao AH, trung tuyến AM. Trên tia đối tia MA lấy điểm D sao cho DM = MA. Trên tia đối tia CD lấy điểm I sao cho CI = CA, qua I vẽ đường thẳng song song với AC cắt đường thẳng AH tại E. Chứng minh: AE = BC Đề số 2: Đề thi học sinh giỏi huyện Môn Toán Lớp 7 (Thời gian làm bài 120 phút) Bài 1:(4 điểm) a) Thực hiện phép tính: ( ) ( ) 12 5 6 2 10 3 5 2 6 3 9 3 2 4 5 2 .3 4 .9 5 .7 25 .49 A 125.7 5 .14 2 .3 8 .3 − − = − + + b) Chứng minh rằng : Với mọi số nguyên dương n thì : 2 2 3 2 3 2 n n n n+ + − + − chia hết cho 10 Bài 2:(4 điểm) Tìm x biết: a. ( ) 1 4 2 3,2 3 5 5 x − + = − + b. ( ) ( ) 1 11 7 7 0 x x x x + + − − − = Bài 3: (4 điểm) a) Số A được chia thành 3 số tỉ lệ theo 2 3 1 : : 5 4 6 . Biết rằng tổng các bình phương của ba số đó bằng 24309. Tìm số A. b) Cho a c c b = . Chứng minh rằng: 2 2 2 2 a c a b c b + = + Bài 4: (4 điểm) Cho tam giác ABC, M là trung điểm của BC. Trên tia đối của của tia MA lấy điểm E sao cho ME = MA. Chứng minh rằng: a) AC = EB và AC // BE b) Gọi I là một điểm trên AC ; K là một điểm trên EB sao cho AI = EK . Chứng minh ba điểm I , M , K thẳng hàng c) Từ E kẻ EH BC ⊥ ( ) H BC∈ . Biết · HBE = 50 o ; · MEB =25 o . Tính · HEM và · BME Bài 5: (4 điểm) Cho tam giác ABC cân tại A có µ 0 A 20= , vẽ tam giác đều DBC (D nằm trong tam giác ABC). Tia phân giác của góc ABD cắt AC tại M. Chứng minh: a) Tia AD là phân giác của góc BAC b) AM = BC……………………………… Hết ……………………………… Đáp án đề 1toán 7 Bài 1. Tìm giá trị n nguyên dương: (4 điểm mỗi câu 2 điểm) a) 1 .16 2 8 n n = ; => 2 4n-3 = 2 n => 4n – 3 = n => n = 1 b) 27 < 3 n < 243 => 3 3 < 3 n < 3 5 => n = 4 Bài 2. Thực hiện phép tính: (4 điểm) 1 1 1 1 1 3 5 7 49 ( ) 4.9 9.14 14.19 44.49 89 − − − − − + + + + = 1 1 1 1 1 1 1 1 1 2 (1 3 5 7 49) ( ). 5 4 9 9 14 14 19 44 49 12 − + + + + + − + − + − + + − = 1 1 1 2 (12.50 25) 5.9.7.89 9 ( ). 5 4 49 89 5.4.7.7.89 28 − + − = − = − Bài 3. (4 điểm mỗi câu 2 điểm) a) Tìm x biết: 2x3x2 +=+ Ta có: x + 2 ≥ 0 => x ≥ - 2. + Nếu x ≥ - 2 3 thì 2x3x2 +=+ => 2x + 3 = x + 2 => x = - 1 (Thoả mãn) + Nếu - 2 ≤ x < - 2 3 Thì 2x3x2 +=+ => - 2x - 3 = x + 2 => x = - 3 5 (Thoả mãn) + Nếu - 2 > x Không có giá trị của x thoả mãn b) Tìm giá trị nhỏ nhất của A = x20072006x −+− Khi x thay đổi + Nếu x < 2006 thì: A = - x + 2006 + 2007 – x = - 2x + 4013 Khi đó: - x > -2006 => - 2x + 4013 > – 4012 + 4013 = 1 => A > 1 + Nếu 2006 ≤ x ≤ 2007 thì: A = x – 2006 + 2007 – x = 1 + Nếu x > 2007 thì A = x - 2006 - 2007 + x = 2x – 4013 Do x > 2007 => 2x – 4013 > 4014 – 4013 = 1 => A > 1. Vậy A đạt giá trị nhỏ nhất là 1 khi 2006 ≤ x ≤ 2007 Bài 4. Hiện nay hai kim đồng hồ chỉ 10 giờ. Sau ít nhất bao lâu thì 2 kim đồng hồ nằm đối diện nhau trên một đường thẳng. (4 điểm mỗi) Gọi x, y là số vòng quay của kim phút và kim giờ khi 10giờ đến lúc 2 kim đối nhau trên một đường thẳng, ta có: x – y = 3 1 (ứng với từ số 12 đến số 4 trên đông hồ) và x : y = 12 (Do kim phút quay nhanh gấp 12 lần kim giờ) Do đó: 33 1 11: 3 1 11 yx 1 y 12 x 1 12 y x == − ===>= => x = 11 4 x)vòng( 33 12 ==> (giờ) Vậy thời gian ít nhất để 2 kim đồng hồ từ khi 10 giờ đến lúc nằm đối diện nhau trên một đường thẳng là 11 4 giờ Bài 5. Cho tam giác vuông ABC ( A = 1v), đường cao AH, trung tuyến AM. Trên tia đối tia MA lấy điểm D sao cho DM = MA. Trên tia đối tia CD lấy điểm I sao cho CI = CA, qua I vẽ đường thẳng song song với AC cắt đường thẳng AH tại E. Chứng minh: AE = BC (4 điểm mỗi) Đường thẳng AB cắt EI tại F ∆ ABM = ∆ DCM vì: AM = DM (gt), MB = MC (gt), · AMB = DMC (đđ) => BAM = CDM =>FB // ID => ID ⊥ AC Và FAI = CIA (so le trong) (1) IE // AC (gt) => FIA = CAI (so le trong) (2) Từ (1) và (2) => ∆ CAI = ∆ FIA (AI chung) => IC = AC = AF (3) và E FA = 1v (4) Mặt khác EAF = BAH (đđ), D B A H C I F E M BAH = ACB ( cùng phụ ABC) => EAF = ACB (5) Từ (3), (4) và (5) => ∆ AFE = ∆ CAB =>AE = BC Đề số 2: đề thi học sinh giỏi huyện Môn Toán Lớp 7 (Thời gian làm bài 120 phút) Bài 1:(4 điểm) a) Thực hiện phép tính: ( ) ( ) 12 5 6 2 10 3 5 2 6 3 9 3 2 4 5 2 .3 4 .9 5 .7 25 .49 A 125.7 5 .14 2 .3 8 .3 − − = − + + b) Chứng minh rằng : Với mọi số nguyên dương n thì : 2 2 3 2 3 2 n n n n+ + − + − chia hết cho 10 Bài 2:(4 điểm) Tìm x biết: a. ( ) 1 4 2 3,2 3 5 5 x − + = − + b. ( ) ( ) 1 11 7 7 0 x x x x + + − − − = Bài 3: (4 điểm) c) Số A được chia thành 3 số tỉ lệ theo 2 3 1 : : 5 4 6 . Biết rằng tổng các bình phương của ba số đó bằng 24309. Tìm số A. d) Cho a c c b = . Chứng minh rằng: 2 2 2 2 a c a b c b + = + Bài 4: (4 điểm) Cho tam giác ABC, M là trung điểm của BC. Trên tia đối của của tia MA lấy điểm E sao cho ME = MA. Chứng minh rằng: a) AC = EB và AC // BE b) Gọi I là một điểm trên AC ; K là một điểm trên EB sao cho AI = EK . Chứng minh ba điểm I , M , K thẳng hàng c) Từ E kẻ EH BC ⊥ ( ) H BC∈ . Biết · HBE = 50 o ; · MEB =25 o . Tính · HEM và · BME Bài 5: (4 điểm) Cho tam giác ABC cân tại A có µ 0 A 20= , vẽ tam giác đều DBC (D nằm trong tam giác ABC). Tia phân giác của góc ABD cắt AC tại M. Chứng minh: c) Tia AD là phân giác của góc BAC d) AM = BC ……………………………… Hết ……………………………… ĐÁP ÁN ĐỀ 2 TOÁN 7 Bài 1:(4 điểm): a) (2 điểm) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 10 12 5 6 2 10 3 5 2 12 5 12 4 10 3 4 6 3 12 6 12 5 9 3 9 3 3 9 3 2 4 5 12 4 10 3 12 5 9 3 3 10 3 12 4 12 5 9 3 2 .3 4 .9 5 .7 25 .49 2 .3 2 .3 5 .7 5 .7 2 .3 2 .3 5 .7 5 .2 .7 125.7 5 .14 2 .3 8 .3 2 .3 . 3 1 5 .7 . 1 7 2 .3 . 3 1 5 .7 . 1 2 5 .7 . 6 2 .3 .2 2 .3 .4 5 .7 .9 1 10 7 6 3 2 A − − − − = − = − + + + + − − = − + + − = − − = − = b) (2 điểm) 2 2 3 2 3 2 n n n n+ + − + − = 2 2 3 3 2 2 n n n n+ + + − − = 2 2 3 (3 1) 2 (2 1) n n + − + = 1 3 10 2 5 3 10 2 10 n n n n− × − × = × − × = 10( 3 n -2 n ) Vậy 2 2 3 2 3 2 n n n n+ + − + − M 10 với mọi n là số nguyên dương. Bài 2:(4 điểm) a) (2 điểm) ( ) 1 2 3 1 2 3 1 7 2 3 3 1 5 2 3 3 1 4 2 1 4 16 2 3,2 3 5 5 3 5 5 5 1 4 14 3 5 5 1 2 3 x x x x x x x x − = − =− = + = − =− + = − − + = − + ⇔ − + = + ⇔ − + =   ⇔ − = ⇔         ⇔ b) (2 điểm) ( ) ( ) ( ) ( ) 1 11 1 10 7 7 0 7 1 7 0 x x x x x x x + + + − − − =   ⇔ − − − =   ( ) ( ) ( ) 1 10 1 10 7 0 1 ( 7) 0 7 0 7 ( 7) 1 8 7 1 7 0 10 x x x x x x x x x x +    ÷   + − = − − = − = ⇒ = − = ⇒ =   ⇔ − − − =     ⇔     ⇔   Bài 3: (4 điểm) a) (2,5 điểm) Gọi a, b, c là ba số được chia ra từ số A. Theo đề bài ta có: a : b : c = 2 3 1 : : 5 4 6 (1) và a 2 +b 2 +c 2 = 24309 (2) Từ (1) ⇒ 2 3 1 5 4 6 a b c = = = k ⇒ 2 3 ; ; 5 4 6 k a k b k c= = = Do đó (2) ⇔ 2 4 9 1 ( ) 24309 25 16 36 k + + = ⇒ k = 180 và k = 180− + Với k =180, ta được: a = 72; b = 135; c = 30. Khi đó ta có số A = a + b + c = 237. + Với k = 180− , ta được: a = 72− ; b = 135− ; c = 30− Khi đó ta có só A = 72− +( 135− ) + ( 30− ) = 237− . b) (1,5 điểm) Từ a c c b = suy ra 2 .c a b= khi đó 2 2 2 2 2 2 . . a c a a b b c b a b + + = + + = ( ) ( ) a a b a b a b b + = + Bài 4: (4 điểm) a/ (1điểm) Xét AMC∆ và EMB∆ có : AM = EM (gt ) · AMC = · EMB (đối đỉnh ) BM = MC (gt ) Nên : AMC∆ = EMB∆ (c.g.c ) 0,5 điểm ⇒ AC = EB Vì AMC ∆ = EMB∆ · MAC⇒ = · MEB (2 góc có vị trí so le trong được tạo bởi đường thẳng AC và EB cắt đường thẳng AE ) Suy ra AC // BE . 0,5 điểm b/ (1 điểm ) Xét AMI∆ và EMK∆ có : AM = EM (gt ) · MAI = · MEK ( vì AMC EMB ∆ = ∆ ) AI = EK (gt ) Nên AMI EMK∆ = ∆ ( c.g.c ) Suy ra · AMI = · EMK Mà · AMI + · IME = 180 o ( tính chất hai góc kề bù ) ⇒ · EMK + · IME = 180 o ⇒ Ba điểm I;M;K thẳng hàng c/ (1,5 điểm ) Trong tam giác vuông BHE ( µ H = 90 o ) có · HBE = 50 o · HBE⇒ = 90 o - · HBE = 90 o - 50 o =40 o · HEM⇒ = · HEB - · MEB = 40 o - 25 o = 15 o · BME là góc ngoài tại đỉnh M của HEM∆ Nên · BME = · HEM + · MHE = 15 o + 90 o = 105 o ( định lý góc ngoài của tam giác ) Bài 5: (4 điểm) a) Chứng minh ∆ ADB = ∆ ADC (c.c.c) suy ra · · DAB DAC= Do đó · 0 0 20 : 2 10DAB = = K H E M B A C I 20 0 M A B C D b) ∆ ABC cân tại A, mà µ 0 20A = (gt) nên · 0 0 0 (180 20 ) : 2 80ABC = − = ∆ ABC đều nên · 0 60DBC = Tia BD nằm giữa hai tia BA và BC suy ra · 0 0 0 80 60 20ABD = − = . Tia BM là phân giác của góc ABD nên · 0 10ABM = Xét tam giác ABM và BAD có: AB cạnh chung ; · · · · 0 0 20 ; 10BAM ABD ABM DAB= = = = Vậy: ∆ ABM = ∆ BAD (g.c.g) suy ra AM = BD, mà BD = BC (gt) nên AM = BC [...]...ĐỀ SỐ 3: ĐỀ THI HỌC SINH GIỎI MÔN TOÁN LỚP 7 (Thời gian làm bài 120 phút) Câu 1: Tìm tất cả các số nguyên a biết a ≤ 4 Câu 2: Tìm phân số có tử là 7 biết nó lớn hơn − Câu 3 Cho 2 đa thức 9 9 và nhỏ hơn − 10 11 P ( x ) = x 2 + 2mx + m 2 và Q ( x ) = x 2 + (2m+1)x + m 2 Tìm m biết P (1) = Q (-1) Câu 4: Tìm các cặp số (x; y) biết: x y a/ = ; xy=84 3 7 1+3y 1+5y 1+7y b/ = = 12 5x 4x... = 3 hoặc a = - 3 * a = 4 => a = 4 hoặc a = - 4 Câu 2: Tìm phân số có tử là 7 biết nó lớn hơn − Gọi mẫu phân số cần tìm là x Ta có: 9 9 và nhỏ hơn − 10 11 −9 7 −9 63 63 63 < < < < => => -77 < 9x < -70 Vì 9x M9 => 9x = -72 10 x 11 70 9 x 77 => x = 8 Vậy phân số cần tìm là − 7 8 Câu 3 Cho 2 đa thức P ( x ) = x 2 + 2mx + m 2 và Q ( x ) = x 2 + (2m+1)x + m 2 Tìm m biết P (1) = Q (-1) P(1) = 12 + 2m.1... số số hạng của tổng là n , ta có : 0,25 0,25 0,25 0,5 0,5 n(n + 1) = 111a = 3. 37. a Hay n(n+1) =2.3. 37. a 2 0,25 Vậy n(n+1) chia hết cho 37 , mà 37 là số nguyên tố và n+1 . BC Đề số 2: Đề thi học sinh giỏi huyện Môn Toán Lớp 7 (Thời gian làm bài 120 phút) Bài 1:(4 điểm) a) Thực hiện phép tính: ( ) ( ) 12 5 6 2 10 3 5 2 6 3 9 3 2 4 5 2 .3 4 .9 5 .7 25 .49 A 125 .7. 9 3 2 .3 4 .9 5 .7 25 .49 2 .3 2 .3 5 .7 5 .7 2 .3 2 .3 5 .7 5 .2 .7 125 .7 5 .14 2 .3 8 .3 2 .3 . 3 1 5 .7 . 1 7 2 .3 . 3 1 5 .7 . 1 2 5 .7 . 6 2 .3 .2 2 .3 .4 5 .7 .9 1 10 7 6 3 2 A − − − − =. AM = BC ĐỀ SỐ 3: ĐỀ THI HỌC SINH GIỎI MÔN TOÁN LỚP 7 (Thời gian làm bài 120 phút) Câu 1: Tìm tất cả các số nguyên a biết a 4≤ Câu 2: Tìm phân số có tử là 7 biết nó lớn hơn 9 10 − và nhỏ

Ngày đăng: 24/07/2015, 08:23

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w