1. Trang chủ
  2. » Đề thi

đề thi thử thpt quốc gia môn toán trường THPT lạng giang số 1

8 3,8K 10

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 8
Dung lượng 541,29 KB

Nội dung

Khảo sát sự biến thiên và vẽ đồ thị C của hàm số 2.. Viết phương trình tiếp tuyến của đồ thị C biết tiếp tuyến song song với đường thẳng 3.. Biết rằng SH vuông góc với mặt phẳng đáy ABC

Trang 1

TRƯỜNG THPT LẠNG GIANG SỐ 1 ĐỀ THI THỬ KÌ THI THPT QUỐC GIA NĂM HỌC 2014 – 2015

Môn: Toán - Lớp 12

ĐỀ THI CHÍNH THỨC Thời gian làm bài: 150 phút (không kể thời gian giao đề)

Câu 1 (ID: 83435 ) (4 điểm) Cho hàm số có đồ thị là (C)

1 Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số

2 Viết phương trình tiếp tuyến của đồ thị (C) biết tiếp tuyến song song với đường thẳng

3 Tìm m để đường thẳng ( ) cắt đồ thị (C) tại ba điểm phân biệt có

hoành độ thỏa mãn

Câu 2 ( ID: 83436 ) (2 điểm) Giải phương trình:

1) √ √ √

2) ( ) ( √ )

Câu 3 ( ID: 83437 )(2 điểm) Tính: ∫( )

Câu 4 ( ID: 83438 ) (2 điểm)

1) Tìm hệ số của số hạng chứa trong khai triển ( √ )

biết ( )

2) Trong môn Toán thầy giáo có 30 câu hỏi khác nhau trong đó có 5 câu khó, 10 câu

trung bình, 15 câu dễ từ 30 câu này có thể lập ra bao nhiêu để kiểm tra có 5 câu hỏi

sao cho phải có đủ 3 loại khó, trung bình, dễ và số câu dễ không ít hơn 2

Câu 5 ( ID: 83439 ) (2 điểm) Cho hình chóp S.ABC có đáy là tam giác ABC vuông tại A,

̂ Gọi H là hình chiếu vuông góc của A trên BC Biết rằng SH vuông

góc với mặt phẳng đáy (ABC) và SA tạo với mặt phẳng đáy (ABC) một góc Tính thể

tích khối chóp S.ABC và khoảng cách từ điểm B đến mặt phẳng (SAC) theo a

Câu 6 ( ID: 83443 ) (2 điểm) Trong không gian với hệ tea độ Oxyz, cho 3 điểm

( ) ( ) ( )

1) Chứng minh rằng A, B, C là ba đỉnh của một tam giác Tìm tọa độ trọng tâm của tam

giác ABC

2) Tìm tọa độ điểm D sao cho ABCD là hình chữ nhật

Câu 7 ( ID: 83440) (2 điểm) Trong mặt phẳng với hệ tọa độ Oxy, cho hình thang cân ABCD

có diện tích bằng , đáy lớn CD nằm trên đường thẳng Biết hai đường chéo

AC, BD vuông góc với nhau tại ( ) Viết phương trình đường thẳng chứa cạnh BC, biết

điểm C có hoành độ dương

Câu 8 ( ID: 83441 )(2 điểm) Giải hệ phương trình {

Trang 2

Câu 9 ( ID: 83442 ) (2 điểm) Cho thỏa mãn Chứng minh rằng:

( ) ( ) ( )

ĐÁP ÁN Câu 1 (2đ)

1, Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số

+ Chiều biến thiên

( ) ( )

Đồ thị hàm số không có tiệm cận

-) *

-) Kết luận đúng sự biến thiên của hàm số (0,25đ)

-) Nhận xét tính đối xứng của đồ thị hàm số

-) Vẽ đúng dạng đồ thị hàm số

2, Viết phương trình tiếp tuyến của đồ thị (C) biết tiếp tuyến song song với đường thẳng (1đ)

+ Gọi ( ) ( ) Phương trình tiếp tuyến của (C) tại M là :

Theo giả thiết tiếp tuyến song song với đường thẳng , ta có:

[ (0,25đ)

+ Với , phương trình tiếp tuyến là: (0,25đ)

+ Với , phương trình tiếp tuyến là: (0,25đ)

Trang 3

3, Tìm m …

+ Xét phương trình hoành độ giao điểm

[ ( )

+ Đường thẳng ( ) cắt đồ thị (C) tại ba điểm phân biệt có hoành độ thỏa mãn

(1) có 3 nghiệm phân biệt thỏa mãn

(2) có 2 nghiệm phân biệt thỏa mãn

(2) có 2 nghiệm phân biệt (*) (0,25đ)

Theo định lý Viet, ta có: { (0,25đ)

Lại có: ( )

Vậy là giá trị cần tìm

Câu 2 (2 đ)

1, √ √ √ (1đ)

( √ )(√ )

[ √

√ [

+ Với √ [

+ Với

√ [

Vây…

Trang 4

2, ( ) ( √ ) (1đ)

( ) ( √ )

( )

( )

[ ( ) ( )

Câu 3: (2đ)

Ta có: ∫ ( ) ∫ ∫ (0,25đ)

*) Tính ∫

Đặt { {

Khi đó: ∫ ∫

*) Tính ∫ ∫ ( ) (0,75đ)

Vậy

Câu 4 (2đ)

1, (1đ)

Ta có: ( ) ( ) ( ) ( ) ( ) (0,25đ) Với ta có

( √ )

∑ ( )

(√ )

( đ)

Số hạng chứa ứng với (thỏa mãn) (0,25đ)

Trang 5

Vậy hệ số của trong khai triển là (0,25đ)

2, (1đ)

*) Trường hợp 1: 2 câu dễ, 1 câu trung bình, 2 câu khó (0,25đ)

Số cách chọn là:

*) Trường hợp 2: 2 câu dễ, 2 câu trung bình, 1 câu khó (0,25đ)

Số cách chọn là:

*) Trường hợp 3: 3 câu dễ, 1 câu trung bình, 1 câu khó (0,25đ)

Số cách chọn là:

Do đó số cách chọn là: cách (0,25đ)

Câu 5 (2đ)

Góc giữa SA và (SCA) là góc ̂

Từ đó √ √ (0,5đ)

Ta có ( √ ) Từ đó

( ( ))

( ( ))

( ( )) ( ( )) (0,25đ)

Hạ HE ⊥ AC, HK ⊥ SE Ta cosL HE⊥AC, HS ⊥AC => AC ⊥ (SHE) => AC ⊥ HK (0,25đ)

Từ đó { ⊥ ⊥ ⊥ ( ) Do đó ( ( )) ( ( ))

Ta có: Từ đó

( ) ( ) ( ) ( )

Câu 6: (2 đ)

1, (1đ)

Trang 6

+ Ta có: ⃗⃗⃗⃗⃗ ( ) ⃗⃗⃗⃗⃗ ( )

Dễ thấy 2 véc tơ ⃗⃗⃗⃗⃗ ( ) ⃗⃗⃗⃗⃗ ( ) không cùng phương, do đó A, B, C là

3 đỉnh của một tam giác

+ Gọi ( ) là trọng tâm tam giác ABC Ta có:

{

2, (1đ)

Ta có: ⃗⃗⃗⃗⃗ ( ) ⃗⃗⃗⃗⃗ ( ) ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ ( )

⃗⃗⃗⃗⃗ ⊥ ⃗⃗⃗⃗⃗

Do đó, ABCD là hình chữ nhật ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗

Gọi ( ), Khi đó: ⃗⃗⃗⃗⃗ ( ) ⃗⃗⃗⃗⃗ ( ) (0,25đ)

⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ {

{

( ) (0,25đ)

Câu 7 (2đ)

+ Do ABCD là hình thang cân với đáy CD và hai đường chéo AC, BD vuông góc với nhau nên tam giác ICD vuông cân tại I

Đường thẳng qua I vuông góc với CD: có phương trình:

Gọi K là trung điểm của CD, ta có tọa độ K là nghiệm của hệ:

{ { ( ) (0,25đ)

Mà KI = KC = KD nên C, D là giao điểm của đường thẳng CD và đường tròn tâm K bán kính √

Trang 7

Do đó tọa độ của chúng là nghiệm của hệ {( ) (0,25đ)

=> ( ) ( ) do C có hoành độ dương

Gọi H là trung điểm của AB, ta có:

( ) ( ) ( ) ( √ )

Mà ⃗⃗⃗⃗ ⃗⃗⃗⃗ ( ) ⃗⃗⃗⃗⃗ ( ) (0,25đ) Vậy đường thẳng BC: ( ) ( ) (0,25đ) Câu 8: (2đ) Ta có: {

{

( )

( )

Đặt {

{ Thay vào hệ phương trình ta có: (0,25đ) { ( ) ( )

( ) ( ) {

( )

( ) (0,5đ) Lấy (1) trừ (2) theo vế ta được ( )( ) [ ( )

(0,5đ) Với {

ta có { {

Vậy hệ phương trình có nghiệm { (0,25đ) Câu 9 (2đ) + Với Chứng minh: ( )

Ta có: ( ) (1đ) Áp dụng bất đẳng thức Cô si cho 3 số Ta có: √

Trang 8

+ Ta có:

( ) ( ) ( )

( ) ( ) ( )

( )

( )

( )

( )

( )

( )

Đẳng thức xảy ra khi và chỉ khi

Ngày đăng: 24/07/2015, 04:18

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w