SỞ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI TUYỂN SINH LỚP 10 THPT BẮC GIANG NĂM HỌC 2012-2013 Môn thi : Toán Thời gian : 120 phút không kể thời gian giao đề Ngày thi 30 tháng 6 năm 2012 Câu 1. (2 điểm) 1.Tính 1 2 2 1 - - 2 .Xác định giá trị của a,biết đồ thị hàm số y = ax - 1 đi qua điểm M(1;5) Câu 2: (3 điểm) 1.Rút gọn biểu thức: 1 2 3 2 ( ).( 1) 2 2 2 a a A a a a a - + = - + - - - với a>0,a 4¹ 2.Giải hệ pt: 2 5 9 3 5 x y x y ì - = ï ï í ï + = ï î 3. Chứng minh rằng pt: 2 1 0x mx m+ + - = luôn có nghiệm với mọi giá trị của m. Giả sử x 1 ,x 2 là 2 nghiệm của pt đã cho,tìm giá trị nhỏ nhất của biểu thức 2 2 1 2 1 2 4.( )B x x x x= + - + Câu 3: (1,5 điểm) Một ôtô tải đi từ A đến B với vận tốc 40km/h. Sau 2 giờ 30 phút thì một ôtô taxi cũng xuất phát đi từ A đến B với vận tốc 60 km/h và đến B cùng lúc với xe ôtô tải.Tính độ dài quãng đường AB. Câu 4: (3 điểm) Cho đường tròn (O) và một điểm A sao cho OA=3R. Qua A kẻ 2 tiếp tuyến AP và AQ của đường tròn (O),với P và Q là 2 tiếp điểm.Lấy M thuộc đường tròn (O) sao cho PM song song với AQ.Gọi N là giao điểm thứ 2 của đường thẳng AM và đường tròn (O).Tia PN cắt đường thẳng AQ tại K. 1.Chứng minh APOQ là tứ giác nội tiếp. 2.Chứng minh KA 2 =KN.KP 3.Kẻ đường kính QS của đường tròn (O).Chứng minh tia NS là tia phân giác của góc · PNM . 4. Gọi G là giao điểm của 2 đường thẳng AO và PK .Tính độ dài đoạn thẳng AG theo bán kính R. Câu 5: (0,5điểm) Cho a,b,c là 3 số thực khác không và thoả mãn: 2 2 2 2013 2013 2013 ( ) ( ) ( ) 2 0 1 a b c b c a c a b abc a b c ì ï + + + + + + = ï í ï + + = ï î Hãy tính giá trị của biểu thức 2013 2013 2013 1 1 1 Q a b c = + + HƯỚNG DẪN CHẤM (tham khảo) 1 ĐỀ CHÍNH THỨC Câu Ý Nội dung Điểm 1 1 2 1 2 1 2 1 2 2 2 2 1 2 1 2 1 ( 2 1).( 2 1) ( 2) 1) + + - = - = - = + - = - - + - KL: 1 2 Do đồ thị hàm số y = ax-1 đi qua M(1;5) nên ta có a.1-1=5 Û a=6 KL: 1 2 1 2 ( 1).( 2) ( ).( 1) ( 2) ( 2) 2 2 1 ( ).( 1 1) . 1 ( 2) a a a A a a a a a a a a a a a - - = - + = - - - - = - + = = - KL: 0,5 0,5 2 2 5 9 2 5 9 2 5 9 1 3 5 15 5 25 17 34 2 x y x y x y y x y x y x x ì ì ì ì - = - = - = =- ï ï ï ï ï ï ï ï Û Û Û í í í í ï ï ï ï + = + = = = ï ï ï ï î î î î KL: 1 3 Xét Pt: 2 1 0x mx m+ + - = 2 2 2 Δ 4( 1) 4 4 ( 2) 0m m m m m= - - = - + = - ³ Vậy pt luôn có nghiệm với mọi m Theo hệ thức Viet ta có 1 2 1 2 1 x x m x x m ì + = - ï ï í ï = - ï î Theo đề bài 2 2 2 1 2 1 2 1 2 1 2 1 2 2 2 2 2 4.( ) ( ) 2 4.( ) 2( 1) 4( ) 2 2 4 2 1 1 ( 1) 1 1 B x x x x x x x x x x m m m m m m m m m = + - + = + - - + = - - - - = - + + = + + + = + + ³ Vậy minB=1 khi và chỉ khi m = -1 KL: 0,25 0,25 0,5 3 Gọi độ dài quãmg đường AB là x (km) x>0 Thời gian xe tải đi từ A đến B là 40 x h Thời gian xe Taxi đi từ A đến B là : 60 x h Do xe tải xuất phát trước 2h30phút = 5 2 nên ta có pt 5 40 60 2 3 2 300 300 x x x x x - = - =Û =Û Giá trị x = 300 có thoả mãn ĐK 0,25 0,25 0,25 0,25 0,25 0,25 2 Vậy độ dài quãng đường AB là 300 km. 4 1 Xét tứ giác APOQ có · 0 90APO = (Do AP là tiếp tuyến của (O) ở P) · 0 90AQO = (Do AQ là tiếp tuyến của (O) ở Q) · · 0 180APO AQO+ =Þ ,mà hai góc này là 2 góc đối nên tứ giác APOQ là tứ giác nội tiếp 0,75 2 Xét Δ AKN và Δ PAK có · AKP là góc chung · · APN AMP= ( Góc nt……cùng chắn cung NP) Mà · · NAK AMP= (so le trong của PM //AQ Δ AKN ~ Δ PKA (gg) 2 . AK NK AK NK KP PK AK = =Þ Þ (đpcm) 0,75 3 Kẻ đường kính QS của đường tròn (O) Ta có AQ ^ QS (AQ là tt của (O) ở Q) Mà PM//AQ (gt) nên PM ^ QS Đường kính QS ^ PM nên QS đi qua điểm chính giữa của cung PM nhỏ » ¼ sd PS sdSM= · · PNS SNM=Þ (hai góc nt chắn 2 cung bằng nhau) Hay NS là tia phân giác của góc PNM 0,75 4 Chứng minh được Δ AQO vuông ở Q, có QG ^ AO(theo Tính chất 2 tiếp tuyến cắt nhau) Theo hệ thức lượng trong tam giác vuông ta có 2 2 2 1 . 3 3 1 8 3 3 3 OQ R OQ OI OA OI R OA R AI OA OI R R R = = = =Þ = - = - =Þ Do Δ KNQ ~ Δ KQP (gg) 2 .KQ KN KP=Þ mà 2 .AK NK KP= nên AK=KQ Vậy Δ APQ có các trung tuyến AI và PK cắt nhau ở G nên G là trọng tâm 2 2 8 16 . 3 3 3 9 AG AI R R= = =Þ 0,75 5 Ta có: 0,25 3 G K N S M I Q P A O 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ( ) ( ) ( ) 2 0 2 0 ( ) ( ) (2 ) 0 ( ) ( ) ( ) 0 ( )( ) 0 ( ).( ).( ) 0 a b c b c a c a b abc a b a c b c b a c a c b abc a b b a c a c b abc b c a c ab a b c a b c a b a b ab c ac bc a b a c b c + + + + + + = + + + + + + =Û + + + + + + =Û + + + + + =Û + + + + =Û + + + =Û *TH1: nếu a+ b=0 Ta có 2013 2013 2013 1 1 a b a b c a b c ì ì = - = - ï ï ï ï Û í í ï ï = + + = ï î ï î ta có 2013 2013 2013 1 1 1 1Q a b c = + + = Các trường hợp còn lại xét tương tự Vậy 2013 2013 2013 1 1 1 1Q a b c = + + = 0,25 4 . GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI TUYỂN SINH LỚP 10 THPT BẮC GIANG NĂM HỌC 2012- 2013 Môn thi : Toán Thời gian : 120 phút không kể thời gian giao đề Ngày thi 30 tháng 6 năm 2012 Câu 1. (2 điểm) . Hãy tính giá trị của biểu thức 2013 2013 2013 1 1 1 Q a b c = + + HƯỚNG DẪN CHẤM (tham khảo) 1 ĐỀ CHÍNH THỨC Câu Ý Nội dung Điểm 1 1 2 1 2 1 2 1 2 2 2 2 1 2 1 2 1 ( 2 1).( 2 1) ( 2) 1) + + -. có nghiệm với mọi m Theo hệ thức Viet ta có 1 2 1 2 1 x x m x x m ì + = - ï ï í ï = - ï î Theo đề bài 2 2 2 1 2 1 2 1 2 1 2 1 2 2 2 2 2 4.( ) ( ) 2 4.( ) 2( 1) 4( ) 2 2 4 2 1 1 ( 1) 1 1 B x