Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 51 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
51
Dung lượng
3,53 MB
Nội dung
Trang 1 GV: Đoàn Văn Lượng - Email: doanvluong@gmail.com ; doanvluong@yahoo.com TRƯỜNG ĐH SP HÀ NỘI TRƯỜNG THPT CHUYÊN ĐỀ THI THỬ ĐẠI HỌC LẦN 6 (2014) MÔN: VẬT LÍ Thời gian làm bài: 90 phút. GV GIẢI ĐỀ: Đoàn Văn Lượng Mã đề thi 164 Câu 1: - vân sáng th vân sáng th 8 cùng m phía vân sáng trung tâm là ó giá tr: A.0,6mm B.0,4mm C.4,0mm D.6,0mm Giải:Câu 1: 6i =3,6mm => i=3,6/6=0,6mm.Chọn A Giải:Câu 2: sóng ng nh khi t M v K: 22 1 13,6 13,6 13,6.8 ( ) ( ) 1 3 9 hc eV sóng dài nh khi t M v L: 22 2 13,6 13,6 13,6.5 ( ) ( ) 2 3 36 hc eV => 2 1 36 288 32 5 9 34 5 8 Chọn A Giải:Câu 3: hc = E M - E L = E M - E K - (E L - E K ) = MK hc - LK hc = 122 102 9 125538 657 267 122 102 9 191 LK MK LK MK *, , nm , . Chọn D Cách nhập máy nhanh: 1 1 1 ML MK MK 11 1 102 9 122 ML , = nhấn Ans -1 = kết quả:657,2670157 Trang 2 GV: Đoàn Văn Lượng - Email: doanvluong@gmail.com ; doanvluong@yahoo.com Giải:Câu 4: Ni R = R 1 và R = R 2 thì công sut trong m ca Rm công sut trong mch ci là: 12 30 20 92 5 20 75 m R r (R r )(R r ) ( )*( , ) =>Rm = 75-20Chọn D Giải:Câu 5: Chọn B Giải:Câu 6: Tìm số đường dao động cực đại và cực tiểu giữa hai điểm M, N bất kỳ: 1M , d 2M , d 1N , d 2N . d M = d 1M - d 2M ; d N = d 1N - d 2N d M < d N . * Cực đại: d M < k < d N => d 1M - d 2M < k < d 1N - d 2N =>15-20< 2k<32-24,5 => -2,5< k <3,75 => k= -2;-1;0;1;2;3 : có 6 cực đại gi m M,N * Cực tiểu: d M < (k+0,5) < d N => d 1M - d 2M < (k+0,5) < d 1N - d 2N =>15-20< 2k+1 <32-24,5=> -3< k <4,25 => k= -2;-1;0;1;2;3;4: có 7 cực tiểu gi m M,N Chọn C Câu 7: 0 và cc 0 0 / A.q 0 . 2 1 1 n B. 2 0 1 1 n q . C. q 0 / 2 2 1 n D. 2 0 12q / n Giải:Câu 7: Giải 1 0 I i n . q u C và 00 IQ thay vào và Ta có : 2 2 2 2 2 2 00 22 2 2 2 2 0 00 22 1 1 1 2 2 2 1 1 CL q W W W LI Cu Li I i LC Q Q q q Q nn Chọn A Giải 2: Khi: 22 22 0 00 2 2 2 2 1 1 1 1 L C L I W (n ) (n ) i W W W W W q q q q n n n n n .Chọn A Câu 8: mt khg mà l à A. 4,8 m/s. B. 5,6 m/s. C. 3,2 m/s. D. 2,4 m/s. Giải:Câu 8: Giải 1: cmAB 72.4 . Trang 3 GV: Đoàn Văn Lượng - Email: doanvluong@gmail.com ; doanvluong@yahoo.com P 32 ; 6 5 72 1218 22 MBBM d . B và a M = a B cos 3 = a B /2 2 ; B MBB v vAv t =4. sT TT 3,01,0 312 smscm T /4,2/240 3,0 72 Giải 2: cm7218 4 aadaA M 6. 72 2 sin2 2 sin2 aV M max 22 2 2 Ax V B B aV B 2 3 234 22 2 22 aaxax a Ta suy ra sT T 3,01,0 12 4 óng smscm T v /4,2/240 3,0 72 Giải 3: 4 = 18cm, = 4.18 = 72cm 6 + Trong 1T (2 = 6 = 3 B = 2a; A M = 2acos 3 = a Mmax = a 3 2 smscm T vsT T /4,2/240 3,0 72 )(3,01,0. 2 3 2 : Chọn D Giải 4: - cm7216 4 - t T v AMTv cmBMABAM 1212 . 12 6 - Trong 12 T 2 A x 2 B M A A scmvsT T t A x v Avv T B B MaxB MMB /240 3.0 72 )(3.01.0 12 4 2 3 2 max -2a -a 3 O a 3 2a 12 T 12 T Trang 4 GV: Đoàn Văn Lượng - Email: doanvluong@gmail.com ; doanvluong@yahoo.com 2 2 cos( d AA BM B A là biên 2 ) 2 2 cos( B BM Ad AA Giải 5 : * AB = /4 => = 72 cm B = 2A ; a M = 2Acos(2 BM ) = 2Acos(2 72 12 ) = A 0M = v 0B /2 v 0 /2 v B v 0 /2 là : t = 2.T/6 = 0,1s => T = 0,3s * v = /T = 240cm/s Giải 6: 4 = 18cm, = 4.18 = 72cm 2 2 |sin | M M d Aa M = x m * 18 – 12 = 6 cm M = 2a sin ( 2x M /) = 2a sin ( 2 max = a B =2a 2 cos( ) B u A t 2 cos( ) 2 B v A t B B v |<v =a là 0,1s - a < B v <a là 0,1s n 2 3 20 3t T=0,3s v=240cm/s = 2,4m/s Đáp án D. Giải:Câu 9: 12 0 64 1 08 0 86 22 max ,, , .Chọn D A B M v B V 0 /2 0 T/6 V 0 -V 0 -V 0 /2 V B +2 a +2 a a - a B trên B M A O Trang 5 GV: Đoàn Văn Lượng - Email: doanvluong@gmail.com ; doanvluong@yahoo.com Giải:Câu 10: 22 31 7 2 19 9,1.10 .(8,0.10 ) / / 18200 18,2 2 2 2.1,6.10 ee AK AK m v m v e U U V kV e .Chọn B (Dư dữ kiện ) Giải:Câu 11: 21 21 8,4 8,4 2,5 2,5 ll k k k => k= ±8;±7;±6;±5;±4;±3;±2;±1;0: Có 17 Tng t: 11 22 ll k 21 21 0,5 0,5 8,9 7,9 2,5 2,5 kk => k= -8;±7;±6;±5;±4;±3;±2;±1;0: Có 16 . Chọn A Câu 12: , R 0 ; 4 0 10 3 CF , 200 2 100 4 MN u cos( t )(V ) . và u MD . X có các : A.R= 300 ; 3 L ( H ) B. 100 3R ; 3 L ( H ) C. 3 10 3 L ( H ) D. 100 3R ; 4 10 3 L ( H ) Giải:Câu 12: : 0 100 3 C Z ; Z MD Amper k max=> cộng hưởng. T gi vect: X ch L và R=> Z L = 0 100 3 C Z => 100 3 3 100 L Z L ( H ) Theo s li 0 . Do góc i M => EMN =30 0 Nên Ta Có: 3 100 3 3 300 6 LL XL ZZ tan tan R Z RR Chọn A Giải:Câu 13: Chọn D C 0 D X M R 0 N A E C 0 D X M R 0 N A E Hình câu 12 U L U R M D N X U X U R0C0 U C U R0 E /3 Trang 6 GV: Đoàn Văn Lượng - Email: doanvluong@gmail.com ; doanvluong@yahoo.com Giải:Câu 14: 1 1 1 1 2 1 2 2 2 2 2 2 2 1 2 2 2 2 2 13 0 3 90 90 1 3 90 0 3 90 300 U N U N U U , U ; U N U , U N N N N , N N , N N . Chọn C Giải:Câu 15: 0 0 0 0 2 2 1 0 25 2 4 4 22 tT TT m m m m m , g .Chọn C Câu 16: t vào 1 = 50 3 10 5 F. 2 )V)( 12 7 t100cos(250u AM và )(100cos150 Vtu MB A. 0,73. B. 0,84. C. 0,86. D. 0,95. Giải:Câu 16: Gỉai cách 1 : (Truyền thống) + Ta có Z C = 50 ; tan AM = 4 1 1 AM C R Z MB = 3 tan MB = 33 2 2 RZ R Z L L 50 2 2 50 2 AM AM U I Z A 22 2 2 2 150 2 75 75 3 MB MB L L U Z R Z R R ;Z I = 12 22 22 12 50 75 0 842565653 125 75 3 50 LC RR , ( R R ) (Z Z ) () 0,84 Giải:Gỉải cách 2 : Dùng máyFx570ES. ( ) (1 ) AB AM MB MB AB AM AM AM AM u u u u Z Z Z i u u C máy: MODE 2 CMPLX SHIFT MODE 4 (R) Nhập máy : 150 (1 )*(50 50 ) 7 50 2 12 i A a bi (Ta a+bi : SHIFT 2 3 = Kết quả: 148,3563916 0,5687670898 ( A ) ) hiển thị : SHIFT 2 1 Hiển thị : arg( ,Bấm = Hiển thị : 0,5687670898 (Đây là giá trị của ) n tính cos: Bấm tiếp: cos = cos(Ans 0,842565653 = 0,84 là Chọn B I U AM U MB 7/12 /4 /3 Trang 7 GV: Đoàn Văn Lượng - Email: doanvluong@gmail.com ; doanvluong@yahoo.com Giải:Câu 17: Giải 1: 2 . ( 2.4,0015 7,0144 1,0073).931,5 17,41905( )E mc MeV 23 13 10 1 . . . . .6,023.10 .17.41905.1,6.10 23,9806.10 ( ) 7 AA m Q n N E N E J A 22 10 5 21 3 21 23,9806.10 . ( ) 5,723.10 ( ) ( ) 4,19.10 .(100 0) H O H O Q Q m c t t m kg c t t . Chọn A Giải 2: W pu 0 0 100 1 . .W 1 7 .W . .W . . . . 0 7 .100 A pu pu A pu dunnuocsoi soi C N Q N N Q C m t C m t m C . Chọn A Giải:Câu 18: =1vòng/s -> 50=np (1) và 60 =(n+1)p (2) => 61 15 5 n vong / s n => p=10. E t l v -> E ~ f => 40 60 40 6 1 200 50 5 E EV EE Khi tip t tng n t 6 lên 7 vòng/s: 70 200 7 7 1 80 50 200 5 200 5 E X X X XV E Vy E+X= 200+80= 280V .Chọn B Giải:Câu 19: ω=10 Rad/s . 2 2 22 2 4 1 1 0,3 0,5 10 4 2 v A x A m m . Chọn B A. 3 73 B. 4 67 C. 2 21 D. 2 13 Giải:Câu 20: Giải: 22 os 1 () RR c Z RL C H s công sut vi hai giá tr ca tn s và bng nhau, Trang 8 GV: Đoàn Văn Lượng - Email: doanvluong@gmail.com ; doanvluong@yahoo.com nên Z 1 = Z 2 hay: 22 12 12 11 ( ) ( )LL CC 1 2 nên 12 1 2 1 2 1 2 1 2 1 2 1 1 1 1 ( ) ( ) L L L LC C C C hay Z L1 = Z C2 . 2 2 2 2 2 2 2 2 12 1 2 2 2 2 1 2 1 2 1 12 os 1 1 1 1 1 1 () 1 ( ) ( ) ( ) R R R R c R L R R R C C C C C => 2 12 12 1 1 3 73 3 73 64 73 1 1 9 cos () * .Chọn A Giải:Câu 21: Chọn D Giải:Câu 22: 2 0 64 0 64 2 d d D i , . , mm a ;vị trí trùng thỏa: 3 3 1 1 kk 11 3 3 3 3 3 0 64 1 92 k . , , k k k 3 < m). Chọn B. Giải:Câu 23: P 2 : 22 2 1 2 1 21 2 2 2 2 1 2 200 30 4 8 500 P U U P P * , % P U U . Chọn B. Giải:Câu 24: Chọn D. Câu 25: ch ch ch AB 0AB u U cos( t ) 2 =1, 120 2 240 2 AN MB U V,U V AN MB góc 60 0 0 là: A. 120 7V B. 120 34 V L, A B N M C X Trang 9 GV: Đoàn Văn Lượng - Email: doanvluong@gmail.com ; doanvluong@yahoo.com C. 120 14 V D. 60 17 V Giải:Câu 25: Giải 1: v 2 =1 => U C =U L . 1 2 MB KB U ; 1 2 AN KN U => NK=AN/2; BK =MB/2 Theo cho: 1 2 AN MB UU và góc BKN = 60 0 => T: 2 2 2 2 120 2 60 2 60 6 L U NB KB KN ( ) ( ) V Xét tam giác vuông A: 2 2 2 2 120 2 60 6 60 14U AB AN NB ( ) ( ) V => 0 2 60 14 2 60 28 120 7U U . V .Chọn A. Giải 2: Đoạn mạch: A C M X N L B Ta có: 2 1LC LC CL Z UZ U u AN MB là 60 0 và U MB >U AN X chứa r và L X Theo cho: 1 2 AN MB UU và góc BKN = 60 0 => T: Theo gi: 120 2 RX AN U U V (Hay: U AN *U MB *Sin 60 = U R *(U AN 2 +U MB 2 -2U AN U MB Cos 60) ½ => 120 2 RX UV ) Theo gió: 2 2 2 2 240 2 120 2 120 6 LX L MB RX (U U ) U U ( ) ( ) V Ta có: U RX = U AN => U LX =U L =U C = U L,LX /2= 60 6 V 2 2 2 2 120 2 60 6 60 14 AN L U U U ( ) ( ) V 0 2 60 14 2 120 7U U * V . A. Giải:Câu 26: Thời điểm Wd=3Wt khì x= 1 2 xA . Thời gian đó là: t= 3T/4= 3/2s (ứng góc quay là 3π/2). Quãng đường đi được: 3 7 3 2 35 5 3 2 2 2 2 A S A A A A( ) ( )cm Tôc độ trung bình: 35 5 3 17 5598 3 2 tb S v , cm t Chọn C. C U L U U X U A 0 60 N B M K Hình v Q A O -A a A/2 30 P N o M A 3 2 -A/2 2 -A/2 U MB AN U U = U X I K C U L U U X U A N B M LX U U RX U AN = U RX X Trang 10 GV: Đoàn Văn Lượng - Email: doanvluong@gmail.com ; doanvluong@yahoo.com Giải:Câu 27: k=4 2 2 2 100 100 2 2 4 v l * l k k v f m / s fk Chọn C. Giải:Câu 28: 2 0 2 1 2 2 2 0 2 200 100 m, T , s k => T/4= 0,05s -> t=0,01+0,05=0,06s. Chọn D. Giải:Câu 29: 15 0 64 0 64 15 D, i , . , mm a, ; n= L/2i=22/0,64*2= 17 . Số vân sáng: 2n+1 = 35. Số vân tối: 2n = 34. Chọn A. Giải:Câu 30: Còn 25% = ¼ hay N=N0/4 => t=2T =15*2 =30 phút Chọn B. Giải:Câu 31: Chọn C. Câu 32: 0 A. 0,0146 m. B. 0,292 cm. C. 0,0146 cm. D. 0,146 cm. Giải:Câu 32: Giải: a = e (tanr tanr t ) (cm) r i sin sin = n => sinr = sini/n = r i sin sin = n2 3 tanr = r r cos sin = r r 2 sin1 sin = 2 4 3 1 2 3 n n = 34 3 2 n tanr t = 3732,1.4 3 2 = 0,5774; tanr = 37,.1.4 3 2 = 0,592 a = e (tanr tanr t ) = 2(0,592 0,5774) = 0,0292 (cm) => h = asin(90 0 i) = asin30 0 = a/2 = 0,0146 cm.Chọn C. h i I i H [...]... 30 0J Vận tốc góc của vật có giá trị: A 10 2 rad/s B 20 2 rad/s C 10 rad/s D 20 rad/s Hết ĐÁP ÁN ĐỀ THI THỬ ĐẠI HỌC MÔN VẬT LÝ Lần 7 – 2014 (ngày 15-06 -2014) 1 C 26 A 2 B 27 A 3 C 28 C 4 C 29 D 5 D 30 D 6 A 31 A 7 C 32 A 8 A 33 A 9 D 34 A 10 B 35 D 11 C 36 C 12 A 37 B 13 B 38 D 14 D 39 A 15 A 40 D 16 D 41 C 17 B 42 A 18 C 43 C 19 D 44 D 20 A 45 C 21 B 46 B 22 D 47 C 23 B 48 D 24 C 49 D... lần 20 13 vật qua vị trí x= -2cm theo chi u âm (điểm M1trên vòng tròn ) và lần 2014 vật qua vị trí x= -2cm theo chi u dương (điểm M2 trên vòng tròn ) ứng góc quay : π+ π /3= 4π /3 hay về thời gian là : 2T /3 Vậy tổng thời gian là t= 1006T +2T /3= 1006 *3 +2 *3/ 3 =30 18+2 =30 20s Cách 2 : t= (n-2)T/2 + Δt = (2014- 2)T/2 + T/2 +T/6=1006T +2T /3= 1006 *3+ 2 *3/ 3= 30 20s.Chọn B Câu 14: ZC 30 ; Z 2 R2 ZC 402 30 2 ... Gọi P là động lượng của một vật; P = mv; K = mv 2 P2 = 2 2m α P12 = 2m1K1 = 2uK1; P22 = 2m2K2 = 8uK2 ; P32 = 2m3K3 = 40uK3 P1 = P2 + P3 Cos PP Hay: Pp P PX ;P12 = P22 + P32 – 2P2P3cosα P22 P32 P 2 8K 2 40 K 3 2 K1 1 2 P2 P3 2 8K 2 * 40 K 3 8* 6, 6 40* 2, 64 2* 5,58 0,985 931 8415 2 8* 6,6* 40* 2,64 Giải: Câu 34 : Vẽ hình sẽ thấy vật đi từ Giải: Câu 35 : : R1 + R2 = Pα => =... đỏ a = e (tanrđ – tanrt) (cm) i I sin i sin i 3 = n => sinr = sini/n = = sin r sin r 2n 3 T a Đ 3 sin r sin r h 2n H tanr = = = = iT 2 2 cos r 3 1 sin r 4n 3 1 2 4n 3 3 3 3 tanrd 0,74467 ; tanrt 0, 616 63 2 2 2 4nd 3 4* 1, 45 3 4nt 3 4* 1,652 3 a = e (tanrđ – tanrt) = 10(0,74467 – 0,616 63) = 1,28 (cm) => h = asin(900 – i) = asin300 = a/2 = 0,64 cm Chọn D Cách 2 : Định luật khúc... ĐH SP HÀ NỘI ĐỀ THI THỬ ĐẠI HỌC LẦN 7 (2014) TRƯỜNG THPT CHUYÊN MÔN: VẬT LÍ- Mã đề 711 Thời gian làm bài: 90 phút Cho hằng số Plăng h = 6,625 10 -34 Js, tốc độ ánh sáng trong chân không là 3. 108 m/s; độ lớn điện tích nguyên tố e= 1,6.10-19C; 1uc2 = 931 ,5 MeV, số Avôgađrô là 6,0 23. 1023mol-1 I PHẦN CHUNG: Câu 1 Mạch dao động gồm một cuộn dây có độ tự cảm L=28H, một tụ điện có điện dung C =30 00pF Điện trở... có li độ x 3 3 cm và đang chuyển động ra xa vị trí cân bằng thì khoảng cách giữa hai chất điểm là Trang 31 GV: Đoàn Văn Lượng - Email: doanvluong@gmail.com ; doanvluong@yahoo.com A 15 cm B 39 cm C 3 3 cm D 8cm Giải 2: Dựa vào hình vẽ khi x 3 3 cm thì y = 0 thỉ khoảng cách giữa 2 chất điểm: d x 2 y 2 ( 3 3 )2 y 0 x 3 3cm đoạn thẳng màu hồng OX1 Chọn C y 2 5 3 cm 6 6 cm... U 1 Z Z 2 C 2 L U 1 1 3 U 3 3 200 244,95V Chọn B 2 2 Giải: Câu 39 : Vẽ vòng tròn lượng giác.A=5cm; S=12,5cm = 2A +A/2 => t1= T/2+ T/6 =2T /3 => T=3t1 /2=1s Hay : Góc quét M0OM1 sau t1 =2 /3 s là: π+ π /3 =4π /3 => Chu kì T 2 t1 2 2 1s 4 3 3 (C) 29 5 Ta có : 4T T Hay vật quay 4 vòng và 5/6 vòng đến M2, 6T 6 -A -A A 2 O ứng với quãng đường S’= 4.4A +3A +A/2=19,5A Hay S’=19,5*5=97,5cm... tiêm vào máu: n0 102.10 3 105 mol GV: Đoàn Văn Lượng - Email: doanvluong@gmail.com ; doanvluong@yahoo.com Số mol 24 11 t T 5 Na còn lại sau 6h: n n0 2 10 2 Theo đề: 10cm3 ứng với: 1,5.10-8 mol 24 11 6 15 7 ,578582 833 .106 mol Na V (cm3) ứng với: n 7,5785 83. 106 mol => v 7 ,5785 83. 106 mol* 10cm3 5052 ,38 cm3 5,02dm3 5,02lit Chọn A 8 1,510 mol Câu 35 : Theo đề P1 =P2 => Do R không... =60 ( n=1) -> k1 5;k2 4;k1 10;k2 8 => có 2 vân trùng của λ1 và λ2 (n12=2) -> 5k2 6k3 30 n 23 ->k2=6; k3=5 => n 23 = 1 + 4k1 6k3 12n 13 60n n 13 1; 2; 3; 4 => n 13 = 4 Vậy Trong khoảng giữa hai vân sáng gần nhau nhất cùng màu với vân trung tâm ta có số vân sáng quan sát được : N1+N2+N3-(N12+N 23, N 13 )= 14+11+9 –(2+1+4) =27 vân sáng quan sát được.Chọn D Trang 29 GV: Đoàn Văn Lượng - Email:... M0 2 2 ) 4 ,5 2 ( 3 ) 2 2 13, 5 2 4,5 17 ,34 cm / s 15 15 15 56 56 56 (C) A( 3 Chọn D -A O A 2 A M 2 Hình câu 50 Giải: Câu 51: Chọn C Giải: Câu 52: Chọn D Giải: Câu 53: Chọn C Giải: Câu 54: Chọn C Giải: Câu 55: Chọn C Trang 15 GV: Đoàn Văn Lượng - Email: doanvluong@gmail.com ; doanvluong@yahoo.com x Giải: Câu 56: Chọn A Giải: Câu 57: Chọn D Giải: Câu 58: Chọn A Giải: Câu 59: Chọn D Câu 60: Chọn . 22 1 13, 6 13, 6 13, 6.8 ( ) ( ) 1 3 9 hc eV sóng dài nh khi t M v L: 22 2 13, 6 13, 6 13, 6.5 ( ) ( ) 2 3 36 hc eV => 2 1 36 288 32 5 9 34 5 8 Chọn A Giải: Câu 3: . TRƯỜNG ĐH SP HÀ NỘI TRƯỜNG THPT CHUYÊN ĐỀ THI THỬ ĐẠI HỌC LẦN 6 (2014) MÔN: VẬT LÍ Thời gian làm bài: 90 phút. GV GIẢI ĐỀ: Đoàn Văn Lượng Mã đề thi 164 Câu 1: -. 8uK 2 ; P 3 2 = 2m 3 K 3 = 40uK 3 P 1 = P 2 + P 3 Hay: pX P P P ;P 1 2 = P 2 2 + P 3 2 2P 2 P 3 cos 2 2 2 2 3 1 2 3 1 23 23 8 40 2 2 2 8 40 8 6 6 40 2 64 2 5 58 0 985 931 8415 2