1. Trang chủ
  2. » Giáo án - Bài giảng

Tuyen tap 200 de thi co dap an(Cuc Hay)

16 197 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 16
Dung lượng 624 KB

Nội dung

Hoàng Văn Ph ơng An Lạc Chí Linh Hải D ơng Nhơ cảm ơn: 0976 108 032 Tài liệu ôn thi vào bậc THPT năm học 2010 2011 Trang 1 Phần I: các dạng phơng trình cơ bản. Bài 1. Giải các phơng trình bậc nhất sau: 1/ 6 2 3 1 2 32 + = xxx 2/ 2(x-1) - 3 = 5x + 4 3/ 5(x-2) + 3 = 1 2(x-1) 4/ 5. 45 0x = 5/ 3 1 2 6 1 24 36 x x + = 6/ 1 2 3 20 5 4 6 3 x x x + = + Bài 2. Giải các phơng trình bậc hai khuyết b,c 1/ 2x 2 - 7x = 0 2/ 3 4 x 2 + 9 5 x = 0 3/ 5x - 3x 2 = 0 4/ 2 7 5 0 5 14 x x = 5/ -4x 2 + 18 = 0 6/ - 5x 2 - 7 = 0 7/ 4x 2 - 64 = 0 8/ 4x 2 + 25 = 0 9/ 9x 2 + 16 = 0 10/ 36 x 2 7 = 0 11/ 25x 2 - 1 = 0 12/ - 4+ 2 16 x = 0 Bài 3. Giải các phơng trình sau: 1. (x- 1)( x - 2) = 10 - x 2. x 2 + 2( 1 + 3 ) x + 2 3 = 0 3. (2x + 1) ( x+4) = (x-1) (x- 4) 4.a) x 2 + ( x + 2) 2 = 4 b) x( x + 2) - 5 = 0 5/ 5x 2 - 2x + 6 = 13 6/ x 2 - 2 3 x - 6 = 0 Bài 4. Giải các phơng trình chứa ẩn ở mẫu sau: Hoang Tài liệu ôn thi vào bậc THPT năm học 2010 - 2011 Hoàng Văn Ph ơng An Lạc Chí Linh Hải D ơng Nhơ cảm ơn: 0976 108 032 Tài liệu ôn thi vào bậc THPT năm học 2010 2011 Trang 2 1/ xxx 1 1 1 5 1 = + 2/ 2 1 11 = + + x x x x 3/ 4 1 4 1 3 1 = + + xx 4/ 1 1 1 6 4x x + = + 5/ 1 5 1 2 2 x x x + = 6/ 40 24 19 2 2 3x x = + + 7/ 2 2 3 1 4 24 2 2 4 x x x x x x x + + + = 8/ 1 7 1 2 1 3 2 2 = + x xx x x x x 9/ xxx x x + = + + 3 1 3 7 3 4 9 14 2 Bài 5. Giải các phơng trình sau: 1/ 3x 3 + 6x 2 - 4x = 0 3/ x 3 - 5x 2 - x + 5 = 0 2/ (x + 1) 3 - x + 1 = (x- 1)(x-2) 4/ ( 5x 2 + 3x+ 2) 2 = ( 4x 2 - 3x- 2) 2 Dạng 4. Đa về PT bậc hai bằng PP đặt ẩn phụ 1/ 36x 4 + 13x 2 + 1 = 0 2/ x 4 - 15x 2 - 16 = 0 3/ 3x 4 + 2x 3 - 40x 2 + 2x + 3 = 0 4/ 3 1 5 )1( 2 2 2 = + + x x x x 5/ x (x+1) (x +2 ) (x + 3 ) = 3 6/ ( 12x - 1 )(6x - 1)( 4x - 1)(3x-1) =330 7/ (x 2 - 3x + 4 ) ( x 2 - 3x +2 ) = 3 8/ 12 1 )1( 1 )2( 1 2 = + + x xx Bài 6. Phơng trình chứa dấu giá trị tuyệt đối và phơng trình vô tỉ 1/ 2002144 2 =+ xx 2/ 5050202 2 =+ yy 3/ 143 = xx 4/ x- 031 =x 5/ 2322 = xx 6/ 262 =+ xx 7/ 3x 2 - 14|x| - 5 = 0 8/ | x 2 - 3x + 2| = x - 2 9/ | x 2 - 3x - 4 | = |2x 2 - x - 1| 10/ x 2 - x - 6 = 0 Bài 7. Giải các hệ phơng trình sau: 1. 2 2 5 6 0 3 4 0 x x x x = = 5. 2 3 4 1 0 3 1 0 x x x + = = 2. 2 2 5 4 1 0 6 0 x x x x = = 6. 2 20 0 4 6 0 x x x = > 3. 2 2 5 4 1 0 2 0 x x x x + = 7. 15 20 0 4 6 0 x x > > 4. 25 5 0 3 6 0 x x > > 8. 20 15 0 2 5 0 x x > > Phần II: Rút gọn biểu thức. Dạng 1: Tìm điều kiện để các biểu thức xác định Dạng 2: Rút gọn biểu thức. Dạng 3: Tính giá trị của biểu thức tại một giá trị của biến Dạng 4: - Tính giá trị của biến khi biết giá trị của biểu thức. - Tìm x để giá trị của biểu thức thoả mãn một điều kiện nào đó. Dạng 5: Tìm x để biểu thức đạt GTLN; GTNN Dạng 6: Tìm x để biểu thức đạt giá trị nguyên Dạng 7: CM biểu thức thoã mãn 1 điều kiện với mọi x Kiến thức bổ trợ: 1. Phép tính trên căn thức và 4 phép biến đổi. 2. Các PP phân tích đa thức thành nhân tử ( Nhân tử chung, HĐT, Nhóm, tách ) 3. PP quy đồng mẫu thức các phân thức 4. Phép tính trên căn thức. 5. Các hằng đẳng thức đáng nhớ. Bài 1: Cho biểu thức: A = + +++ 1 1 1 2 xxxxx x : + 1 1 2 x x ; Với x 0 và x 1 a. Rút gọn biểu thức A b.Tính giá trị của biểu thức A tai x = 3 - 2 2 . Bài 2: Cho biểu thức: A = + + 1 1 1 1 x x x x : 2 1 2 2 x x ữ ữ ; Với x > 0 và x 1 1. Rút gọn biểu thức A 2. Tìm x để x A > 2. Hoang Hoàng Văn Ph ơng An Lạc Chí Linh Hải D ơng Nhơ cảm ơn: 0976 108 032 Tài liệu ôn thi vào bậc THPT năm học 2010 2011 Trang 3 Bài 3: Cho biểu thức: A = 1 1 1 1 1 2 ++ + + + xxx x xx x 1. Tìm x để A có nghĩa 2. Rút gọn. 3. CMR A< 3 1 4. Tính A tại x = 3- 2 2 Bài 4: Cho biểu thức: A = x x x x xx x + + + 3 12 2 3 65 92 1. Rút gọn. 2. Tìm số nguyên x để biểu thức A đạt giá trị nguyên. Bài 5: Cho biểu thức: M = 1212 1 . 1 1 2 + + + + x x xx x x xx xx xxxx a) Rút gọn. b) Với giá trị nào của x thì M đạt GTLN, tìm GTLN đó. Bài 6: Cho biểu thức: A = x xx xx xx + + + + 2 1 1 2 a) Rút gọn A. b) Tìm x để A = 6 c) Tìm giá trị nhỏ nhất của A Bài 7: Cho biểu thức: P = x x xx xx xx xx 111 + + + + , với x 1, x > 0 Bài 8: Cho biểu thức: A = ++ + + 1 2 : 1 1 1 2 xx x xxx xx ( 0 x 1) 1. Rút gọn A 2. Tính A khi x = 4 + 2 3 Bài 9: Cho biểu thức: A = xxxx x xx ++ + 1 : 1 2 1. Tìm x để A có nghĩa. 2. Rút gọn A Bài 10: Cho biểu thức: K = x xx x x xx x 3 13 1 42 :3 1 2 3 2 + + + + + 1. Rút gọn với x > 0 ; x 4 1 2. Tính giá trị của K tại x = 4 1 3. Tìm x để K < 0. 4. Tìm x để K có giá trị nguyên. Bài 11: Cho biểu thức: A = x x xx x xx x x x + + + 66 62 : 6 6 36 1. Tìm điều kiện của x để A xác định. 2. CMR: giá trị của A không phụ thuộc vào x, với mọi x thuộc TXĐ Bài 12: Cho biểu thức:P = ( ) 2 1 1 3 1 1 : 1 1 1 3 1 a a a a a a a a a a + + ữ ữ ữ + với a 0, 1a 1. Rút gọn. 2. Tìm a để P 1 đạt GTNN. Tìm GTNN đó. Bài 13. Cho biểu thức:A = ( ) ( ) 2 2 4 6 9 : 4 2 2 2 3 x x x x x x x x x x + + ữ ữ + , với x 0 và x 4, x 9 Hoang 1. Rút gọn P 2. Tìm x để P = 2 9 Hoàng Văn Ph ơng An Lạc Chí Linh Hải D ơng Nhơ cảm ơn: 0976 108 032 Tài liệu ôn thi vào bậc THPT năm học 2010 2011 Trang 4 1. Rút gọn. 2. Tính giá trị của A biết |x| = 9 1 3. Tìm x để A 1 4. Tìm x N / x > 4 để A là 1 số nguyên. Bài 14: Cho biểu thức:A = 6 1 4 6 3 2 x x x x x x + + + a) Tìm TXĐ b) Rút gọn c) Tính A khi x = 9 d) Tìm giá trị của x để A = 1 Bài 15: Cho biểu thức: Y = + + + + 1 1 1 1 x xx x xx , ( x > 0; x 1 ) 1. Rút gọn biểu thức Y 2.Coi y là hàm số và x là biến số hãy vẽ đồ thị của hàm số y. Bài 16: Cho biểu thức: A = xy xyyx + : yx yx , với x > 0, y > 0, x y. 1.Rút gọn biểu thức A 2.Tính giá trị của biểu thức A khi x = 625 , y = 625 + Bài 17: Cho biểu thức: A = 4 3 1 x x + ữ + : 2 1 x x x ữ ữ + với x 0 1. Rút gọn biểu thức A 2. Tìm giá trị của x để A > 1 Bài 18: Cho biểu thức:A = 3 1 4 4 4 2 2 a a a a a a + + + ( a 0, a 4 ) 1. Rút gọn biểu thức A 2. Tính giá trị của A khi a = 9. Bài 19: Cho biểu thức: A = + + + 2 1 1 1 1 1 1 x x xx ( x 0; x 1 ) 1. Rút gọn biểu thức A 2.Tìm những giá trị nguyên của x để biểu thức A nhận giá trị nguyên. Bài 20: Cho biểu thức: A = ( ) 2 1 : 1 1 1 1 x x x x x x x x + + ữ ữ + + với x 0; x 1 1. Rút gọn biểu thức A 2. Tính giá trị của A khi a = 3 - 2 2 . Bài 21: Rút gọn các biểu thức sau: A = 1 1 2 2 2 2 2 1 x x x x x + ( x 0; x 1 ) 1 1 1 2 : 1 1 1 1 1 x x x B x x x x x + = + ữ ữ ữ ữ + + với x 0, 1x C= 2 4 2 4 4 2 : 2 4 4 2 8 2 x x x x x x x x x x x + + ữ ữ + + D = 2 3 3 : . 3 2 x y x y x x y x y x xy y + + ữ ữ + + E = ( ) 1 1 1 1 x x x x x x x + ữ ữ + với 0, 1x x F = 7 1 9 3 3 b b b b b b ữ ữ + với b 0 và 9b . G = 4 1 1 1 2 2 a a a a a + ì ữ ữ ữ + với a > 0 và 4a . Hoang Hoàng Văn Ph ơng An Lạc Chí Linh Hải D ơng Nhơ cảm ơn: 0976 108 032 Tài liệu ôn thi vào bậc THPT năm học 2010 2011 Trang 5 H = 1 1 1 1 : 1 1 1 a a a a + ữ ữ + với a > 0 và 1a . I= x x x x x x + + + + + 4 51 2 2 2 1 với mọi x 4;0 x ) K =( ) 2 1 (:) 1 1 11 2 + ++ + + x xxx x xx x L= ( x 1 - 1 1 x ) : ( ) 2 1 1 2 + + x x x x M= 1 )1(22 1 2 + + ++ x x x xx xx xx Chú ý: - Tất cả các biểu thức trên coi nh đã xác định Phần III: hệ phơng trình hai ẩn và Hàm số y = ax + b 1. Vẽ đồ thị hàm số y = ax + b 2. Tìm điều kiện của tham số để hàm số đã cho là hàm số bậc nhất 3. Tìm điều kiện của tham số để hàm số đã cho là hàm số đồng biến hay nghịch biến. 4. Tìm điều kiện của tham số để đồ thị hàm số tạo với trục Ox một góc nhọn, góc tù. 5. Tìm điều kiện của tham số để đồ thị hàm số đi qua một điểm A ( x 0 ; y 0 ) cho trớc. 6. Tìm điều kiện của tham số để 2 đồ thị hàm số: cắt nhau, cắt nhau tại một điểm nằm trên trục tung, hoành; song song; trùng nhau; vuông góc; 7. Tìm điều kiện của tham số để đồ thị hàm số cắt hai trục tạo thành một tam giác có chu vi hay diện tích thoả mãn điều kiện cho trớc. 8. Tìm cố định của đồ thị hàm số 9. Giải hệ phơng trình thông thờng bằng PP cộng đại số; PP thế và PP đặt ẩn phụ. 10. Tìm điều kiện để hệ phơng trình nhận 1 cặp số cho trớc làm nghiệm: - Cặp số cho sẵn hoặc cặp số phải tìm. 11. Tìm điều kiện để hệ có nghiệm. 12. Tìm hệ thức liên hệ giữa x và y không phụ thuộc vào tham số. 13. Tìm điều kiện để hệ có nghiệm thoả mãn một hệ thức nào đó cho trớc. 14. Tìm điều kiện để hệ có nghiệm nguyên 15. Tìm điều kiện để hệ có nghiệm và tìm GTLN, GTNN của biểu thức chứa nghiệm. 16. Tìm giao điểm của đồ thị hàm số với 2 trục và của 2 đờng thẳng y = ax + b và y = ax + b. 17. Tìm điều kiện để 3 đờng thẳng đồng quy. 18. Lập phơng trình của một đờng thẳng: Đi qua 2 điểm A (x 1 ; y 1 ) và B(x 2 ; y 2 ) cho trớc. Đi qua điểm A (x 1 ; y 1 ) và vuông góc với đờng thẳng cho trớc. Đi qua điểm A (x 1 ; y 1 ) và song song với đờng thẳng cho trớc. Hàm số y = ax + b Bài 1: Với giá trị nào của m thì các hàm số sau là hàm số bậc nhất: a) y =( 2m + 1 )x - 3m + 2 b) y = m5 ( x - 1 ) c) y = 1 1 + m m x + 2 7 d) y = 4mx + 3x - 2 e) y = ( m 2 - 4m )x 2 + ( m- 4 )x + 3 Bài 2. Chứng minh các hàm số sau: a) y = (6 + 2 2 )x - 9x + 3 nghịch biến x R b) y = ( 11 - 3 ) x + 2x - 4 đồng biến x R Hoang ứ n g s d ụ n g c ủ a h ệ H à m s ố y = a x + b Hoàng Văn Ph ơng An Lạc Chí Linh Hải D ơng Nhơ cảm ơn: 0976 108 032 Tài liệu ôn thi vào bậc THPT năm học 2010 2011 Trang 6 Bài 3. Cho hàm số y = (m-1)x + 2m - 1 1. Tìm m để hàm số luôn nghịch biến. 2. Tìm m để hàm số đi qua điểm A(-1;3). Vẽ đồ thị với m vừa tìm đợc. 3. Tìm m để đồ thị hàm số tạo với chiều dơng trục hoành một góc tù. Bài 4. Cho hàm số y = (m-1)x + 2m - 1 1. Với giá trị nào của m thì đồ thị hàm số đi qua điểm ( 2 - 1; 2 ). 2. Tìm m để đồ thị hàm số tạo với chiều dơng trục hoành một góc nhọn. 3. Tìm m để đồ thị hàm số cắt hai trục toạ độ tạo thành một tam giác có diện tích = 2 1 4. Tìm điểm cố định của hàm số. Bài 5. Cho hàm số y = (m 2 - 2)x + m + 2 1. Tìm giá trị của m để đồ thị h/s song song với đồ thị hàm số y = - x + 1 2. Tìm m để đồ thị của hàm số cắt đờng thẳng x = 1 và cắt đồ thị của hàm số y = 3x - 1 tại một điểm. Bài 6. 1. Viết phơng trình đờng thẳng đi qua hai điểm A(2;1) và B(-1;5 ) 2. Tìm tọa độ giao điểm của đồ thị trên với hai trục toạ độ. 3. Tính diện tích hình phẳng giới hạn bởi hai trục toạ độ và đờng thẳng trên. Bài 7. 1. Viết phơng trình đờng thẳng đi qua điểm A(2;5) và vuông góc với đờng thẳng y = 3x - 2 2. Viết phơng trình đờng thẳng đi qua điểm A(4;1) và song song với đờng thẳng y = 2x + 3 Bài 8. Cho hàm số y = ( m-1)x + m + 3 1. Tìm giá trị của m để đồ thị hàm số song song với đồ thị y= -3x +1 2. Tìm m để đồ thị hàm số đi qua điểm ( 2; -3 ) 3. CMR đồ thị của hàm số luôn đi qua một điểm cố định giá trị của m. Tìm giá trị ấy. 4. Tìm giá trị của m để đồ thị của hàm số tạo với trục tung và trục hoành một tam giác có diện tích bằng 1 ( đơn vị diện tích ) Bài 9. Cho hàm số y = (m + 2)x + m-3 1. Tìm m để đồ thị hàm số luôn nghịch biến. 2. Tìm m để đồ thị của hàm số tạo với chiều dơng trục hoành một góc bằng 45 0 3. Tìm m để đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng -3 4. Tìm m để đồ thị của hàm số cắt trục tung tại điểm có tung độ bằng -2 5. Tìm m để đồ thị của các hàm số y = 2x-1, y = -3x + 4 và y=(m+2)x + m -3 đồng quy Bài 10. Cho 2 điểm A(1; 1) và B( 2; -1) 1. Viết phơng trình đờng thẳng đi qua 2 điểm A và B. 2. Tìm m để đờng thẳng y = (m 2 + 3m )x + m 2 2m + 2 song song với đờng thẳng AB đồng thời đi qua điểm C ( 0; 2 ). Bài 11. Cho hàm số y = (2m - 3)x + m- 1 1. Tìm m để đồ thị của hàm số đi qua điểm A(1;4) 2.Tìm m để đồ thị của hàm số đi qua điểm cố định với mọi giá trị của m, tìm điểm cố định ấy. 3. Tìm m để đồ thị của hàm số cắt trục hoành tại điểm có hoành độ x = 2 - 1 Bài 12. Cho hàm số y = 2x + m (d) 1. Tìm m để đồ thị của hàm số đi qua điểm B ( 2 ; -5 2 ) 2. Tìm m để đồ thị của hàm số (d) cắt đồ thị hàm số y = 3x+2 trong góc phần t thứ IV. Bài 13 Cho hàm số y = x + 2m - 1 (d). Tìm m để đồ thị của hàm số (d) cắt đờng thẳng y = 2x + 1 trong góc phần t thứ II. Bài 14. Tìm m để đồ thị hàm số y = (m-3)x+2m +1 và y = 4x - m +2 cắt nhau tại một điểm trên trục tung. Bài 15. Cho đt y = (1- 4m )x + m- 2 1. Tìm m để đồ thị của hàm số đi qua gốc toạ độ. 2. Tìm m để khoảng cách từ gốc toạ độ tới đồ thị hàm số bằng 1 3. Tìm m để đồ thị của hàm số song song với đt y = -x - 1 Bài 16. Hoang Hoàng Văn Ph ơng An Lạc Chí Linh Hải D ơng Nhơ cảm ơn: 0976 108 032 Tài liệu ôn thi vào bậc THPT năm học 2010 2011 Trang 7 Trên mặt phẳng toạ độ Oxy, cho đờng thẳng y = (2m+1)x - 4m 1 và điểm A( -2; 3 ). Tìm m để khoảng cách từ A đến đờng thẳng trên là lớn nhất. Bài 17. Trên mặt phẳng toạ độ Oxy, cho A(2; 3) và điểm B (1; -4) và điểm C nằm trên trục Ox. Tìm toạ độ điểm C để tam giác ABC có chu vi nhỏ nhất. Hệ phơng trình Bài 1. Giải các hệ phơng trình sau: 1. 3 3 4 2 x y x y = = 2. 4x + 3y = 2 7 x - 3y = 5 3. 3y - 7 = 8 x -2y = -3 4. 8 7 5 12 13 8 x y x y = + = 5. 4 2 3 2 4 0 x y x + = + = 6. x +y- 10 = 0 x 2 - = 0 y 3 7. x 3 2 3 5x- 8y = 3 y = 8. 1 1 1 3 4 5 x y x y = + = 9. 1 1 2 2 1 2 3 1 2 1 x y x y + = = 10. x 2 - y 3= 1 x + y 3 = 3 11. 2(x-2) + 3(1+y) = -2 3(x-2) - 2(1+y) = -3 12. 5( x + 2y) = 3x - 1 2x + 4 = 3(x-5y) - 12 13. 2 2 4x - 5 (2y - 1) = (2x - 3) 3(7x + 2) = 5 ( 2y -1) - 3x 14. 2 1 2 1 4 3 12 5 7 4 2 3 x y x y + = + + = 15. ( x+5)(y-2) = xy (x-5)(y+12) = xy 16. 3x + 5y = -1 3 x + y = 1 5 17. ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 3 1 3 3 1 1 3 x y x y x y x y + = + + = + + Bài 2. Tìm giá trị của a và b: a. Để hệ phơng trình 3ax - (b +1)y = 93 bx + 4ay = -3 có nghiệm (x,y)=(1;5) b. Để hệ phơng trình (a-2)x + 5by = 25 2ax - (b - 2)y = 5 có nghiệm là (x,y) = (3;-1) Bài 3 . Tìm giá trị của a và b để hai đờng thẳng (d 1 ): (3a-1)x + 2by = 56 và (d 2 ): 2 1 ax - (3b + 2 )y = 3 cắt nhau tại điểm M(2;5). Bài 4. Tìm a,b để đờng thẳng ax- 8y = b đi qua điểm M( 9;- 6) và đi qua giao điểm của 2 đờng thẳng (d 1 ): 2x + 5y = 17 và (d 2 ): 4x -10y = 14 Bài 5. Tìm m để. a. Hai đờng thẳng (d 1 ): 5x - 2y = 3, (d 2 ) y+x = m cắt nhau tại một điểm trên Ox . Vẽ hai đờng thẳng này trên cùng một mặt phẳng toạ độ. b. Hai đờng thẳng (d 1 ): 5x - 2y = 3, (d 2 ) y+x = m cắt nhau tại một điểm trên Oy . Bài 6. Tìm giá trị của m để nghiệm của hệ phơng trình 1 2 2( ) 3 4 5 3 3 2 4 3 x y x y x y y x + + = = cũng là nghiệm của pt: 3mx- 5y = 2m + 1. Bài 7. Cho hệ phơng trình: mx - y = 1 x + my = 2 1. Tìm m để hệ có nghiệm duy nhất . Giải hệ phơng trình theo tham số m. 2. Gọi nghiệm của hệ phơng trình là (x;y).Tìm các giá trị của m để x- y = -1 3. Tìm m để hệ có nghiệm dơng. Bài 8. Cho hệ phơng trình: x - 2y = 3- m 2x + y = 3 ( m+2) Hoang Hoàng Văn Ph ơng An Lạc Chí Linh Hải D ơng Nhơ cảm ơn: 0976 108 032 Tài liệu ôn thi vào bậc THPT năm học 2010 2011 Trang 8 1. Giải hệ với m = -1 2. Tìm m để hệ có nghiệm (x; y) a. Tìm hệ thức liên hệ giữa x và y không phụ thuộc vào m. b. Tìm m để biểu thức x 2 + y 2 đạt giá trị nhỏ nhất.Tìm giá trị ấy Bài 9 . Cho hệ phơng trình : (a- 1 )x + y = a x + (a-1) y = 2 1. Tìm a để hệ có nghiệm (x;y) 2. Giải hệ theo a. 3. Tìm đẳng thức liên hệ giữa x và y không phụ thuộc vào a. 4. Tìm giá trị của a thoả mãn điều kiện 6x 2 - 17 y = 5 5. Tìm các giá trị của a để biểu thức yx yx + 52 nhận giá trị nguyên. Bài 10. a. Giải hệ phơng trình 3x - 4y = -5 4x + y = 6 b. Tìm các giá trị của m để các đờng thẳng sau cắt nhau tại một điểm: y = 6 - 4x ; y = 4 53 +x và y = (m-1)x + 2m Bài 11. Tìm m để hệ mx - y = 2 3x + my = 5 có nghiệm (x;y) sao cho x > 0 y < 0 Bài 12 .Tìm giá trị nguyên của m để hệ mx - 2y = 3 3x + my = 4 có nghiệm (x;y) sao cho x < 0 y > 0 Bài 13. (bài1/25- TVHinh) Cho hệ phơng trình 4 4 0 ( 1) 1 x y x m + = + + = 1. Tìm m nguyên để hệ có nghiệm nguyên 2. Tìm các giá trị của m hệ có nghiệm thoả mãn hệ thức x - y = 1 3. Tìm các giá trị của m hệ có nghiệm thoả mãn hệ thức x 2 + y 2 = 65 Bài 14. Cho hệ phơng trình : 2x - ay = a x + y = a + 2 a. Giải hệ phơng trình khi a = -1 b. Gọi nghiệm duy nhất của hệ pt là (x; y). Tìm các giá trị của a để 3x - 2y = 2 Bài 15 . Cho hệ phơng trình 2x + y = 1 x + ay = 3 Bài 16. Cho hệ phơng trình x - my = 2m mx - 4y = m + 6 Gọi cặp (x;y ) là nghiệm duy nhất của hệ phơng trình. Tìm các giá trị của m để 3(3x + y - 7 ) = m Bài 17. Cho hệ phơng trình 2 2 2 3 4 x y m x y m = + = + Phần IV: Phơng trình bậc hai 1. Tìm m để phơng trình đã cho là phơng trình bậc hai 2. Tìm m để phơng trình nhận 1 số cho trớc làm nghiệm. Tìm nghiệm còn lại 3. CMR phơng trình đã cho luôn có nghiệm hoặc 2 nghiệm phân biệt với mọi m. 4. Tìm hệ thức liên hệ giữa hai nghiệm không phụ thuộc vào m 5. Tìm m để PT có nghiệm thoả mãn hệ thức cho trớc. 6. Tìm m để PT có nghiệm và tìm GTLN,GTNN của biểu thức chứa nghiệm. 7. Tìm m để phơng trình đã cho có hai nghiệm cùng dấu, khác dấu 8. Tính giá trị của biểu thức chứa nghiệm. Hoang 1. Giải hệ phơng trình khi a = 1 2. Tìm a để hệ phơng trình vô nghiệm. 1) Giải hệ phơng trình với m = 1. 2) Tìm m để hệ có nghiệm (x; y) thoả mãn: x 2 + y 2 = 10. Hoàng Văn Ph ơng An Lạc Chí Linh Hải D ơng Nhơ cảm ơn: 0976 108 032 Tài liệu ôn thi vào bậc THPT năm học 2010 2011 Trang 9 9. Lập PT bậc hai nhận 2 số cho trớc làm nghiệm. 10. Sự tơng giao giữa đờng thẳng y = ax + b và đồ thị hàm số y = ax 2 . Bài 1. Tìm m để các phơng trình sau là phơng trình bậc hai: a) (1-3m) x 2 + 2(m-1)x - 2m-3 = 0 b) ( m 2 -1) x 2 + 2x - 2m+5 = 0 Bài 2. 1.Với giá trị nào của m thì các PT sau có nghiệm kép. Tìm nghiệm kép ấy a) x 2 - (m + 2)x +m 2 - 4 = 0. b) (m + 3)x 2 - mx + m = 0. 2.Tìm m để phơng trình ( m 2 -9) x 2 + 2(m + 3)x +2 = 0 vô nghiệm 3. Tìm k để PT kx 2 + 2(k - 1)x + k + 1 = 0 có hai nghiệm phân biệt. Bài 2. Cho PT x 2 +2(m-1) - 2m-3 = 0 (1) 1. Giải PT với m = 1 2. CMR PT (1) luôn có 2 nghiệm phân biệt với mọi giá trị của m. 3. Gọi x 1 , x 2 là 2 nghiệm của PT (1) . Tìm m để 0 1 2 2 1 >+ x x x x ( Đ/S m < 2 3 ) Bài 3. Cho PT (m - 1) x 2 - 2(m+1)x + m- 2 = 0 1. Giải pt với m = -1 2. Tìm m để pt có 2 nghiệm phân biệt. 3. Tìm m để pt có nghiệm kép. Tìm nghiệm kép ấy. Bài 4. Cho pt x 2 - 2( k-1)x + 2k - 5 = 0 a. Giải pt với k = 1 b. CMR phơng trình luôn có 2 nghiệm phân biệt với mọi giá trị của k c. Tìm k để pt có 2 nghiệm cùng dấu khi đó 2 nghiệm cùng dấu gì ? d. Tìm k để pt có 2 nghiệm x 1 , x 2 thoả mãn hệ thức |x 1 |-|x 2 | = 14 Bài 5. Cho pt : x 2 - ( 2m - 1 ) + m 2 - m- 1 = 0 (1) 1. CMR phơng trình luôn có nghiệm với mọi giá trị của m 2. Giải phơng trình với m = 2 1 3. Gọi x 1 , x 2 là 2 nghiệm của pt (1) a. Tìm hệ thức lên hệ giữa x 1 , x 2 không phụ thuộc vào m b. Tìm m sao cho ( 2x 1 - x 2 ) ( 2x 2 - x 1 ) đạt GTNN Bài 6. Cho pt bặc 2 : x 2 - 2( m + 1 )x + m 2 + 3m + 2 = 0 (1) 1. Giải phơng trình (1) với m = -1 2. Tìm m để PT (1) luôn có 2 nghiệm phân biệt. 3. Gọi x 1 ,x 2 là 2 nghiệm của PT. Tìm m để x 1 2 + x 2 2 = 12 Bài 7.Cho phơng trình x 2 - 2mx + 2m - 3 = 0 1. Giải pt với m = 2 3 2. CMR PT luôn có nghiệm với mọi giá trị của m. 3. Gọi x 1 , x 2 là 2 nghiệm của phơng trình. a. Tìm hệ thức liên hệ giữa x 1, x 2 độc lập với m. b. Tìm GTNN của hệ thức A= x 1 2 + x 2 2 4. Tìm m để phơng trình có 2 nghiệm trái dấu. Bài 8. Cho PT : x 2 - 4x + m + 1 = 0 1. Giải phơng trình với m = -1 2. Tìm m để phơng trình có nghiệm. 3. Tìm m để phơng trình có 2 nghiệm trái dấu, khi đó 2 nghiệm này mang dấu gì ? 4. Tìm m sao cho PT có 2 nghiệm thoả mãn hệ thức x 1 2 + x 2 2 = 10 Bài 9. x 2 - 2(m - 1)x + m - 3 = 0 1. Giải phơng trình với m = 3 2. CMR phơng trình luôn có nghiệm m. 3. Xác định m để pt có 2 nghiệm bằng nhau về giá trị tuyệt đối và trái dấu nhau. 4. Tìm hệ thức liên hệ giữa 2 nghiệm không phụ thuộc vào m. 5. Tìm m để phơng trình có 1 nghiệm bằng 3. Tìm nghiệm còn lại của phơng trình. 6. Tìm m để PT có 2 nghiệm cùng dấu dơng . 7. Tìm m để PT có 2 nghiệm x 1 , x 2 thoả mãn hệ thức |x 1 |+|x 2 | = 1 Bài 10. Cho pt x 2 - 2(m +2)x + m +1 = 0 Hoang Hoàng Văn Ph ơng An Lạc Chí Linh Hải D ơng Nhơ cảm ơn: 0976 108 032 Tài liệu ôn thi vào bậc THPT năm học 2010 2011 Trang 10 1. Giải pt với m= -2 2. Tìm m để phơng trình có nghiệm. 3. Tìm hệ thức liên hệ giữa x 1 ,x 2 độc lập với m. 4. Tìm m để x 1 (1- 2x 2 ) + x 2 (1- 2x 1 ) = m 2 Bài 11. Tìm m để PT: x 2 - (m +3)x + 2(m+2)= 0 (1) có 2 nghiệm x 1 ,x 2 thoả mãn x 1 = 2x 2 Bài 12. Cho PT: x 2 - 2(m + 1)x + 2m - 15 = 0 1. Giải pt khi m =-1 2. Gọi 2 nghiệm của phơng trình là x 1 và x 2 .Tìm các giá trị của m thoả mãn x 2 +5x 1 = 4 3. Tìm m để pt có 2 nghiệm cùng dấu. 4. Tìm m để pt có nghiệm bằng -2. Tìm nghiệm còn lại của PT Bài 13. Cho phơng trình x 2 - (m + 4)x + 3m +3 = 0 1. Tìm m để phơng trình có 1 nghiệm bằng 2. Tìm nghiệm còn lại của phơng trình. 2. Xác định m để PT có hai nghiệm x 1 ,x 2 thoả mãn x 1 3 + x 2 3 0 Bài 14. Gọi x 1 , x 2 là hai nghiệm của phơng trình x 2 - 2(m-1)x 4 = 0.Tìm m để|x 1 |+|x 2 | = 5 Bài 14. Cho Parabol y = - 2 1 x 2 và điểm N(1;-2). 1. CMR phơng trình đờng thẳng đi qua M có hệ số góc là k luôn cắt Parabol tại 2 điểm phân biệt A,B với mọi giá trị của k. 2. Gọi x A , x B lần lợt là hoành độ của A và B. Tìm k để x 2 A + x 2 B - 2x A x B (x A + x B ) đạt GTLN. Tìm giá trị ấy. Bài 15. Cho h/s y= x 2 (P) và đờng thẳng y = 2mx - 2m + 3 (d) 1. Tìm giao điểm của Parabol (P) và đờng thẳng (d) khi m = 0. 2. CMR đt luôn cắt Parabol tại mọi giá trị của m. 3. Tìm m để đờng thẳng cắt Parabol 2 điểm có hoành độ trái dấu. 4. Gọi x 1 ,x 2 là hoành độ giao diểm giữa đt và Parabol. Tìm m để x 2 1 (1-x 2 2 ) + x 2 2 (1-x 2 1 ) = 4 Bài 16. Cho h/s y = f(x) = -2x 2 có đồ thị là ( P ) 1. Tính f(0); f( 2 ); f( 2 1 ); f(-1) 2. Tìm x để h/s lần lợt nhận các giá trị 0; -8; -18; 32 3. Các điểm A(3;-18), B( 3 ;-6); C(-2;8) có thuộc đồ thị (P) không ? Bài 16. Cho h/s y= 2 1 x 2 1. Gọi A,B là hai điểm trên đồ thị hàm số có hoành độ là 1 và -2. Viết phơng trình đờng thẳng đi qua A và B. 2. Đờng thẳng y = x + m - 2 cắt đồ thị trên tại 2 điểm phân biệt gọi x 1 và x 2 là hoành độ giao điểm ấy. Tìm m để x 1 2 + x 2 2 + 20 = x 1 2 x 2 2 Bài 17. Cho h/s y = ( m - 2)x 2 1. Tìm m để h/s đồng biến khi x < 0 và nghịch biến khi x > 0. 2. Tìm m để đồ thị h/s nằm phía trên trục hoành. 3. Tìm m để đồ thị h/s đi qua A(- 2 ; 2) 4.Tìm m để đồ thị h/s tiếm xúc với đt y = x - 3. Tìm toạ độ tiếp điểm. Bài 18. Cho hàm số y = f(x) = 2x 2 - x + 1. Tính f(0); f(- 1 2 ); f(- 3 ). Bài 19. Cho pt x 2 - 3x + 2 = 0, Gọi x 1 và x 2 là 2 nghiệm của pt. Không giải pt hãy tính. 1. x 1 2 + x 2 2 2. x 3 1 + x 3 2 3. x 4 1 + x 4 2 4. x 2 1 x 2 + x 2 2 x 1 5. 21 11 xx + 6. 1 2 2 1 x x x x + 7. 2 2 12 2 1 2 221 2 1 44 353 xxxx xxxx + ++ 8. )1()1( )( 2 2 2 2 1 2 2 1 2121 2 2 2 1 + +++ xxxx xxxxxx 9. x 1 -x 2 10. x 1 2 - x 2 2 11. |x 1 |-|x 2 | 12. 21 xx + 13. 1221 xxxx + 14. 2211 xxxx + 15. 1 2 2 1 x x x x + Hoang [...]...Tài liệu ôn thi vào bậc THPT năm học 2010 2011 16 (2 x1-1)( 2x2-1) 17 x12(x1- 1) + x22(x2- 1) 18 Trang 11 2 x1 -1 2 x 2 -1 + x2 x1 * Luyện với các pt 2x2 - 7x + 1 = 0 3x2 - 4x + 1= 0 Bài 20 Gọi x1, x2 là 2 nghiệm... đờng Hà Nội - Hải Dơng dài 60km Dạng 2 Tăng giảm Bài 1Một đoàn xe chở 480 tấn hàng Khi sắp khởi hành có thêm 3 xe nữa nên mỗi xe chở ít hơn 8 tấn Hỏi lúc đầu đoàn xe có bao nhiêu chiếc? Hoang Tài liệu ôn thi vào bậc THPT năm học 2010 2011 Trang 12 Bài 2 Lớp 8 B đợc phân công trồng 420 cây xanh Lớp dự định chia đều số cây cho mỗi bạn trong lớp Đến buổi lao động có 5 ngời đi làm việc khác, vì vậy mỗi bạn... ban đầu 5 Bài 2 Tìm số tự nhiên có 2 chữ số, biết rằng chữ số hàng chục lớn hơn chữ số hàng đơn vị là 2 và nếu đổi chỗ hai chữ số cho nhau thì ta nhận đợc số mới bằng Hoang 4 số ban đầu 7 Tài liệu ôn thi vào bậc THPT năm học 2010 2011 Trang 13 Bài 3 Cho một số có hai chữ số, tổng của hai chữ số bằng 11 Nếu thay đổi theo thứ tự ngợc lại đợc một số mới lớn hơn số lúc đầu 27 đơn vị Tìm số đã cho Bài... R), hai đờng cao AD và BE cắt nhau tại H ( D BC; E AC; AB < AC ) a) Chứng minh các tứ giác AEDB và CDHE là tứ giác nội tiếp b) Chứng minh CE.CA = CD CB và DB.DC = DH.DA c) Chứng minh OC vuông góc với DE ã d) Đờng phân giác trong AN của BAC cắt BC tại N và đờng tròng ( O ) tại K ( K khác A) Gọi I là tâm đờng tròn ngoại tiếp tam giác CAN Chứng minh rằng KO và CI cắt nhau tại một điểm thuộc đờng tròn... giác ( H trên cạnh QR ) Chứng minh HM vuông góc với cạnh PR 3 Xác định tâm của đờng tròn ngoại tiếp tam giác MHN 4 Gọi bán kính đờng tròn nội, ngoại tiếp tam giác vuông PQR là r và R Hoang Tài liệu ôn thi vào bậc THPT năm học 2010 2011 Chứng minh: r + R Trang 14 PQ.PR Bài 7: Cho tam giác vuông ABC vuông tại C O là trung điểm của AB và D là điểm trên cạnh AB ( D không trùng với A, O, B ) Gọi I và... thẳng hàng theo thứ tự đó Dựng đờng tròn đờng kính AB, BC, gọi D và E thứ tự là hai tiếp điểm của tiếp tuyến chung với đờng tròn đờng kính AB và BC, và M là giao điểm của AD với CE 1 Chứng minh tứ giác ADEC là tứ giác nội tiếp 2 Chứng minh MB là tiếp tuyến của hai đờng tròn đờng kính AB và BC 3 Kẻ đờng kính DK của đờng tròn đờng kính AB Chứng minh K, B, E thẳng hàng Hoàng Văn Ph ơng Bài 14: Cho tam giác... góc MNP = góc PNQ, và gọi I là trung điểm của PQ, MI cắt NP tại E 1.Chứng minh góc PMI và góc QNP bằng nhau 2 Chứng minh tam giác MNE là tam giác cân 3 Chứng minh MN.PQ = NP.ME Bài 15: Hoang Tài liệu ôn thi vào bậc THPT năm học 2010 2011 Trang 15 Cho nửa đờng tròn đờng kính AB Lấy điểm D tuỳ ý trên nửa đờng tròn (DA và DB) Dựng hình bình hành ABCD Từ D kẻ DM vuông góc với đờng thẳng AC tại M và từ B... cắt đờng thẳng BD tại I, đờng thẳng CD cắt cạnh MA và MB thứ tự tại P, Q 1 Chứng minh tam giác BCI là tam giác cân 2 Chứng minh tứ giác BCQI là tứ giác nội tiếp 3 Chứng minh QI = MP Hoang Tài liệu ôn thi vào bậc THPT năm học 2010 2011 Trang 16 4 Đờng thẳng MI cắt đờng tròn tại N, khi M chuyển động trên cung lớn AB thì trung điểm của MN chuyển động trên đờng nào ? Bài 23 Cho tam giác vuông cân ABC . chứa ẩn ở mẫu sau: Hoang Tài liệu ôn thi vào bậc THPT năm học 2010 - 2011 Hoàng Văn Ph ơng An Lạc Chí Linh Hải D ơng Nhơ cảm ơn: 0976 108 032 Tài liệu ôn thi vào bậc THPT năm học 2010 2011. Hoàng Văn Ph ơng An Lạc Chí Linh Hải D ơng Nhơ cảm ơn: 0976 108 032 Tài liệu ôn thi vào bậc THPT năm học 2010 2011 Trang 1 Phần I: các dạng phơng trình cơ bản. Bài 1. Giải các. 12 1 )1( 1 )2( 1 2 = + + x xx Bài 6. Phơng trình chứa dấu giá trị tuyệt đối và phơng trình vô tỉ 1/ 2002 144 2 =+ xx 2/ 5050202 2 =+ yy 3/ 143 = xx 4/ x- 031 =x 5/ 2322 = xx 6/ 262 =+ xx 7/ 3x 2

Ngày đăng: 03/07/2015, 21:00

TỪ KHÓA LIÊN QUAN

w