KỲ THI TỐT NGHIỆP TRUNG HỌC PHỔ THÔNG Môn thi: TOÁN − Giáo dục trung học phổ thông Thời gian làm bài: 150 phút, không kể thời gian giao đề I. PHẦN CHUNG DÀNH CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm) Câu I (3,0 điểm): Cho hàm số: 3 2 ( ) 2 3 3 x y f x x x= = - + - 1) Khảo sát sự biến thiên và vẽ đồ thị ( )C của hàm số. 2) Viết phương trình tiếp tuyến của ( )C tại điểm trên ( )C có hoành độ 0 x , với 0 ( ) 6f x ¢¢ = . 3) Tìm tham số m để phương trình 3 2 6 9 3 0x x x m- + + = có đúng 2 nghiệm phân biệt. Câu II (3,0 điểm): 1) Giải phương trình: 4 4 2 4 2 17.2 1 0 x x- - - + = 2) Tính tích phân: 0 (2 1)sinI x xdx p = - ò 3) Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số 2 4ln(1 )y x x= - - trên đoạn [– 2;0] Câu III (1,0 điểm): Cho hình lăng trụ đứng .ABC A B C ¢ ¢ ¢ có đáy ABC là tam giác vuông tại B, BC = a, mặt ( )A BC ¢ tạo với đáy một góc 0 30 và tam giác A B C ¢ có diện tích bằng 2 3a . Tính thể tích khối lăng trụ .ABC A B C ¢ ¢ ¢ . II. PHẦN RIÊNG (3,0 điểm) Thí sinh chỉ được chọn một trong hai phần dưới đây 1. Theo chương trình chuẩn Câu IVa (2,0 điểm): Trong không gian với hệ toạ độ Oxyz, cho hai điểm (7;2;1), ( 5; 4; 3)A B - - - và mặt phẳng ( ) : 3 2 6 38 0P x y z- - + = 1) Viết phương trình tham số của đường thẳng AB. Chứng minh rằng, AB || ( )P . 2) Viết phương trình mặt cầu ( )S có đường kính AB. 3) Chứng minh ( )P là tiếp diện của mặt cầu ( )S . Tìm toạ độ tiếp điểm của ( )P và ( )S Câu Va (1,0 điểm): Cho số phức 1 3z i= + . Tìm số nghịch đảo của số phức: 2 .z z zw = + 2. Theo chương trình nâng cao Câu IVb (2,0 điểm): Trong không gian với hệ toạ độ Oxyz, cho cho điểm (1;3; 2)I - và đường thẳng 4 4 3 : 1 2 1 x y z- - + D = = - 1) Viết phương trình mặt phẳng (P) đi qua điểm I và chứa đường thẳng D . 2) Tính khoảng cách từ điểm I đến đường thẳng D . 3) Viết phương trình mặt cầu (S) có tâm là điểm I và cắt D tại hai điểm phân biệt A,B sao cho đoạn thẳng AB có độ dài bằng 4. Câu Vb (1,0 điểm): Gọi 1 2 ,z z là hai nghiệm của phương trình: 2 2 2 2 2 0z z i- + + = . Hãy lập một phương trình bậc hai nhận 1 2 ,z z làm nghiệm. Hết Thí sinh không được sử dụng tài liệu. Giám thị coi thi không giải thích gì thêm. Họ và tên thí sinh: Số báo danh: 1 TRƯỜNG THPT LONG MỸ ĐỀ THI THỬ 15 GV Bùi Văn Nhạn Chữ ký của giám thị 1: Chữ ký của giám thị 2: 2 BI GII CHI TIT . Cõu I: Hm s: 3 2 ( ) 2 3 3 x y f x x x= = - + - Tp xỏc nh: D = Ă o hm: 2 4 3y x x  = - + - Cho 2 0 4 3 1; 3y x x x x  = - + - = = Gii hn: ; lim lim x x y y đ- Ơ đ+Ơ = +Ơ = - Ơ Bng bin thiờn x 1 3 + y  0 + 0 y + 0 4 3 - Hm s B trờn khong (1;3), NB trờn cỏc khong (;1), (3;+) Hm s t cc i Cẹ 0y = ti Cẹ 3x = , t cc tiu CT 4 3 y = - ti CT 1x = im un: 2 2 4 0 2 3 y x x y  = - + = = ị = - . im un ca th l: 2 2; 3 I ổ ử ữ ỗ ữ - ỗ ữ ỗ ố ứ Giao im vi trc honh: cho 0 0; 3y x x= = = Giao im vi trc tung: cho 0 0x y= ị = Bng giỏ tr: x 0 1 2 3 4 y 0 4/3 2/3 0 4/3 th hm s nh hỡnh v: 0 0 0 0 16 ( ) 6 2 4 6 1 3 f x x x y  = - + = = - ị = 2 0 ( ) ( 1) ( 1) 4( 1) 3 8f x f   = - = - - + - - = - Phng trỡnh tip tuyn cn tỡm: 16 8 8( 1) 8 3 3 y x y x- = - + = - - 3 2 3 2 3 2 1 6 9 3 0 6 9 3 2 3 3 x x x m x x x m x x x m- + + = - + = - - + - = (*) S nghim phng trỡnh (*) bng s giao im ca ( )C v :d y m= Da vo th ta thy phng trỡnh (*) cú ỳng 2 nghim phõn bit 0 4 3 m m ộ = ờ ờ ờ = - ờ ở Cõu II: 4 4 2 4 2 16 4 2 17.2 1 0 17. 1 0 4 17.4 16 0 16 16 x x x x x x- - - + = - + = - + = (*) t 4 x t = (K: t > 0) phng trỡnh (*) tr thnh (nhan) (nhan) 2 1 4 1 0 17 16 0 16 2 4 16 x x t x t t t x ộ ộ ộ = = = ờ ờ ờ - + = ờ ờ ờ = = = ờ ờ ờ ở ở ở Vy, phng trỡnh ó cho cú hai nghim: x = 0 v x = 2. 3 0 (2 1)sinI x xdx p = - ũ t 2 1 2. sin cos u x dx dx dv xdx v x ỡ ỡ ù ù = - = ù ù ị ớ ớ ù ù = = - ù ù ợ ợ . Thay vo cụng thc tớch phõn tng phn ta c: 0 0 0 (2 1)cos ( 2cos ) (2 1) 1 2sin (2 1) 1 2.0 2 2I x x x dx x p p p p p p= - - - - = - - + = - - + = - ũ Hm s 2 4ln(1 )y x x= - - liờn tc trờn on [2;0] 2 4 2 2 4 2 1 1 x x y x x x - + +  = + = - - Cho (nhan) (loai) 2 1 [ 2;0] 0 2 2 4 0 2 [ 2;0] x y x x x ộ = - ẻ - ờ  = - + + = ờ = ẽ - ờ ở ; ; ( 1) 1 4ln2 ( 2) 4 4ln3 (0) 0 f- = - - = - = Trong cỏc kt qu trờn, s nh nht l: 1 4ln2- , s ln nht nht l: 0 Vy, khi [ 2;0] [ 2;0] min 1 4ln2 1 ; max 0y x y - - = - = - = khi x = 0 Cõu III Do BC AB B C A B BC AA ỡ ù ^ ù  ị ^ ớ  ù ^ ù ợ (hn na, ( )B C ABB A   ^ ) V ã ( ) ( ) ( ) ( ) BC AB ABC BC AB A BC ABA BC ABC A BC ỡ ù ^ è ù ù ù   ^ è ị ớ ù ù  = ầ ù ù ợ l gúc gia ( )ABC v ( )A BC  Ta cú, 2 2. 1 2. 3 . 2 3 2 A BC A BC S a S A B BC A B a B C a  D  D   = ị = = = ã ã 0 0 .cos 2 3.cos30 3 .sin 2 3.sin30 3 AB A B ABA a a AA A B ABA a a   = = =    = = = Vy, l.truù 3 1 1 3 3 . . 3 3 2 2 2 ABC a V B h S AA AB BC AA a a a   = = = ì ì ì = ì ì ì = (vtt) THEO CHNG TRèNH CHUN Cõu IVa: (7;2;1), ( 5; 4; 3)A B - - - ng thng AB i qua im (7;2;1)A , cú vtcp ( 12; 6; 4)u AB= = - - - uuur r nờn cú ptts 7 12 : 2 6 1 4 x t AB y t z t ỡ ù = - ù ù ù = - ớ ù ù = - ù ù ợ (1) Thay (1) vo phng trỡnh mp(P) ta c: 3(7 12 ) 2(2 6 ) 6(1 4 ) 38 0 0. 49 0 0 49t t t t t- - - - - + = + = = - : vụ lý Vy, ||( )AB P Tõm ca mt cu ( )S : (1; 1; 1)I - - (l trung im on thng AB) Bỏn kớnh ca ( )S : 2 2 2 (1 7) ( 1 2) ( 1 1) 7R IA= = - + - - + - - = Phng trỡnh mc 2 2 2 ( ) : ( 1) ( 1) ( 1) 49S x y z- + + + + = Ta cú, 2 2 2 3.1 2.( 1) 6.( 1) 38 ( ,( )) 7 3 ( 2) ( 6) d I P R - - - - + = = = ị + - + - ( )P tip xỳc vi ( )S . Gi d l ng thng i qua im I v vuụng gúc vi mp(P). 4 Khi đó PTTS của d: 1 3 1 2 1 6 x t y t z t ì ï = + ï ï ï = - - í ï ï = - - ï ï î . Thay vào ptmp(P) ta được : 3(1 3 ) 2( 1 2 ) 6( 1 6 ) 38 0 49. 49 0 1t t t t t+ - - - - - - + = Û + = Û = - Tiếp điểm cần tìm là giao điểm của d và (P), đó là điểm ( 2;1;5)H - Câu Va: Với 1 3z i= + , ta có 2 2 2 2 2 . (1 3 ) (1 3 )(1 3 ) 1 6 9 1 9 2 6z z z i i i i i i iw = + = + + + - = + + + - = + 2 2 1 1 2 6 2 6 2 6 1 3 2 6 (2 6 )(2 6 ) 40 10 10 2 36 i i i i i i i i w - - - = = = = = - + + - - THEO CHƯƠNG TRÌNH NÂNG CAO Câu IVb: Đường thẳng D đi qua điểm (4;4; 3)M - , có vtcp (1;2; 1)u = - r Mặt phẳng ( )P đi qua điểm (1;3; 2)I - Hai véctơ: (3;1; 1)IM = - uuur (1;2; 1)u = - r Vtpt của mp(P): 1 1 1 3 3 1 [ , ] ; ; (1;2;5) 2 1 1 1 1 2 n IM u æ ö - - ÷ ç ÷ ç = = = ÷ ç ÷ ç - - ÷ ÷ ç è ø uuur r r PTTQ của mp ( ) : 1( 1) 2( 3) 5( 2) 0P x y z- + - + + = 2 5 3 0x y zÛ + + + = Khoảng cách từ đểm A đến D : 2 2 2 2 2 2 [ , ] 1 2 5 30 ( , ) 5 6 1 2 ( 1) IM u d d I u + + = D = = = = + + - uuur r r Giả sử mặt cầu ( )S cắt D tại 2 điểm A,B sao cho AB = 4 ( )SÞ có bán kính R = IA Gọi H là trung điểm đoạn AB, khi đó: IH AB IHA^ Þ D vuông tại H Ta có, 2 ; ( , ) 5HA IH d I= = D = 2 2 2 2 2 2 ( 5) 2 9R IA IH HA= = + = + = Vậy phương trình mặt cầu cần tìm là: 2 2 2 ( ) :( 1) ( 3) ( 2) 9S x y z- + - + + = Câu Vb: Với 1 2 ,z z là 2 nghiệm của phương trình 2 2 2 2 2 0z z i- + + = thì 1 2 1 2 1 2 1 2 2 2 . 2 2 2 . 2 2 2 b z z z z a c z z i z z i a ì ï ï ì + = - = ï ï + = ï ï ï ï Þ í í ï ï = - ï ï = = + ï î ï ï ï î Do đó, 1 2 ,z z là 2 nghiệm của phương trình 2 2 2 2 2 0z z i- + - = 5 . KỲ THI TỐT NGHIỆP TRUNG HỌC PHỔ THÔNG Môn thi: TOÁN − Giáo dục trung học phổ thông Thời gian làm bài: 150 phút, không kể thời gian giao đề I. PHẦN CHUNG DÀNH CHO. Thí sinh không được sử dụng tài liệu. Giám thị coi thi không giải thích gì thêm. Họ và tên thí sinh: Số báo danh: 1 TRƯỜNG THPT LONG MỸ ĐỀ THI THỬ 15 GV Bùi Văn Nhạn Chữ ký của giám thị 1: Chữ. x x x x x- - - + = - + = - + = (*) t 4 x t = (K: t > 0) phng trỡnh (*) tr thnh (nhan) (nhan) 2 1 4 1 0 17 16 0 16 2 4 16 x x t x t t t x ộ ộ ộ = = = ờ ờ ờ - + = ờ ờ ờ = = = ờ ờ ờ ở