BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ CHÍNH THỨC ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2009 Môn thi: TOÁN; Khối: A Thời gian làm bài: 180 phút, không kể thời gian phát đề. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm): Câu I (2,0 điểm) Cho hàm số 2 23 x y x + = + (1). 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1). 2. Viết phương trình tiếp tuyến của đồ thị hàm số (1), biết tiếp tuyến đó cắt trục hoành, trục tung lần lượt tại hai điểm phân biệt A , B và tam giác OAB cân tại gốc toạ độ .O Câu II (2,0 điểm) 1. Giải phương trình ( ) ()() 12sin cos 3 12sin 1sin xx xx − = +− . 2. Giải phương trình ( ) 3 23 2 36 5 8 0 .xxx−+ − −= ∈\ Câu III (1,0 điểm) Tính tích phân () 2 32 0 cos 1 cosIx π =− ∫ xdx . Câu IV (1,0 điểm) Cho hình chóp có đáy .SABCD A BCD là hình thang vuông tại A và ;D 2 A BAD a== , ;CD a = góc giữa hai mặt phẳng và () SBC ( ) A BCD bằng Gọi là trung điểm của cạnh 60 . D I A D . Biết hai mặt phẳng ( ) SBI và ( cùng vuông góc với mặt phẳng ) SCI ( ) A BCD , tính thể tích khối chóp theo .SABCD .a Câu V (1,0 điểm) Chứng minh rằng với mọi số thực dương ,, x yz thoả mãn ( ) 3, x xyz yz++ = ta có: ()()()()()() 33 35 3 . x yxz xyxzyz yz+++++ + +≤ + PHẦN RIÊNG (3,0 điểm): Thí sinh chỉ được làm một trong hai phần (phần A hoặc B) A. Theo chương trình Chuẩn Câu VI.a (2,0 điểm) 1. Trong mặt phẳng với hệ toạ độ cho hình chữ nhật ,Oxy A BCD có điểm là giao điểm của hai đường chéo (6;2)I A C và B D . Điểm ( ) 1; 5M thuộc đường thẳng A B và trung điểm E của cạnh thuộc đường thẳng . Viết phương trình đường thẳng CD :50xyΔ+−= A B . 2. Trong không gian với hệ toạ độ cho mặt phẳng ,Oxyz ( ) :2 2 4 0Pxyz−−−= và mặt cầu ( ) 222 : 2 4 6 11 0.Sx y z x y z++−−−−= Chứng minh rằng mặt phẳng ( ) P cắt mặt cầu ( ) S theo một đường tròn. Xác định toạ độ tâm và tính bán kính của đường tròn đó. Câu VII.a (1,0 điểm) Gọi và là hai nghiệm phức của phương trình 1 z 2 z 2 210zz 0 + +=. Tính giá trị của biểu thức 22 12 .Az z=+ B. Theo chương trình Nâng cao Câu VI.b (2,0 điểm) 1. Trong mặt phẳng với hệ toạ độ cho đường tròn ,Oxy ( ) 22 :446Cx y x y 0 + +++= và đường thẳng với m là tham số thực. Gọi là tâm của đường tròn ( Tìm để :23xmy mΔ+ − +=0, I ) .C m Δ cắt ( ) C tại hai điểm phân biệt A và B sao cho diện tích tam giác lớn nhất. IAB 2. Trong không gian với hệ toạ độ cho mặt phẳng ,Oxyz ( ) :221Px y z 0 − +−= và hai đường thẳng 1 19 : 116 xyz++ Δ== , 2 13 : 21 1 2 x yz−−+ Δ== − . Xác định toạ độ điểm M thuộc đường thẳng 1 Δ sao cho khoảng cách từ M đến đường thẳng 2 Δ và khoảng cách từ M đến mặt phẳng ( ) P bằng nhau. Câu VII.b (1,0 điểm) Giải hệ phương trình ( ) () () 22 22 22 log 1 log ,. 381 xxyy xy xy xy −+ ⎧ +=+ ⎪ ∈ ⎨ = ⎪ ⎩ \ Hết Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm. Họ và tên thí sinh: ; Số báo danh . DỤC VÀ ĐÀO TẠO ĐỀ CHÍNH THỨC ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2009 Môn thi: TOÁN; Khối: A Thời gian làm bài: 180 phút, không kể thời gian phát đề. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm):. có đáy .SABCD A BCD là hình thang vuông tại A và ;D 2 A BAD a= = , ;CD a = góc gi a hai mặt phẳng và () SBC ( ) A BCD bằng Gọi là trung điểm c a cạnh 60 . D I A D . Biết hai mặt phẳng. Thí sinh chỉ được làm một trong hai phần (phần A hoặc B) A. Theo chương trình Chuẩn Câu VI .a (2,0 điểm) 1. Trong mặt phẳng với hệ toạ độ cho hình chữ nhật ,Oxy A BCD có điểm là giao điểm của