Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 12 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
12
Dung lượng
864,25 KB
Nội dung
1/4 BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ CHÍNH THỨC ĐÁP ÁN - THANG ĐIỂM ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2007 Môn: TOÁN, khối A (Đáp án - Thang điểm gồm 04 trang) Câu Nội dung Điểm I 2,00 1 Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1,00 điểm) Khi m1=− ta có 2 x3 1 yx2 x2 x2 − ==−+ + + . • Tập xác định: D = \{ 2} − \ . • Sự biến thiên: 2 22 1x4x3 y' 1 (x 2) (x 2) + + =− = ++ , x3 y' 0 x1. = − ⎡ =⇔ ⎢ = − ⎣ 0,25 Bảng biến thiên: y CĐ = () ( ) CT y3 6,y y1 2.−=− = −=− 0,25 • Tiệm cận: Tiệm cận đứng x = − 2, tiệm cận xiên y = x − 2. 0,25 • Đồ thị: 0,25 2 Tìm m để hàm số có cực đại và cực tiểu và … (1,00 điểm) () 22 2 x4x4m y' x2 ++− = + . Hàm số (1) có cực đại và cực tiểu ⇔ ( ) 22 gx x 4x 4 m=++− có 2 nghiệm phân biệt x ≠ −2 () 2 2 '44m 0 g2 484m 0 ⎧ ∆= − + > ⎪ ⇔ ⎨ −=−+− ≠ ⎪ ⎩ ⇔ m ≠ 0. 0,50 x − ∞ − 3 − 2 − 1+ ∞ y ' + 0 − − 0+ y − 6 + ∞ + ∞ −∞ − ∞ − 2 x y − 3 − 6 − 2 O − 1 − 2 2/4 Gọi A, B là các điểm cực trị ⇒ ( ) A2m;2 − −−, ( ) B2m;4m2 − +−. Do ( ) OA m 2; 2 0=− − − ≠ JJJG G , ( ) OB m2;4m2 0 = −−≠ J JJG G nên ba điểm O, A, B tạo thành tam giác vuông tại O ⇔ 2 OA.OB 0 m 8m 8 0 = ⇔− − + = J JJG JJJG ⇔ m426=− ± (thỏa mãn m ≠ 0). Vậy giá trị m cần tìm là: m426=− ± . 0,50 II 2,00 1 Giải phương trình lượng giác (1,00 điểm) Phương trình đã cho ⇔ (sinx + cosx)(1 + sinxcosx) = (sinx + cosx) 2 ⇔ (sinx + cosx)(1−sinx)(1−cosx) = 0. 0,50 ⇔ ππ xkπ,x k2π,x k2π 42 =− + = + = (k ∈ Z ). 0,50 2 Tìm m để phương trình có nghiệm (1,00 điểm) Điều kiện: x1≥ . Phương trình đã cho ⇔ 4 x1 x1 32 m (1). x1 x1 −− −+ = ++ Đặt 4 x1 t x1 − = + , khi đó (1) trở thành 2 3t 2t m (2).−+= 0,50 Vì 44 x1 2 t1 x1 x1 − ==− + + và x1≥ nên 0t1. ≤ < Hàm số 2 f(t) 3t 2t, 0 t 1=− + ≤ < có bảng biến thiên: Phương trình đã cho có nghiệm ⇔ (2) có nghiệm t ∈ [0; 1) ⇔ 1 1m 3 −< ≤ . 0,50 III 2,00 1 Chứng minh d 1 và d 2 chéo nhau (1,00 điểm) +) d 1 qua M(0; 1; −2), có véctơ chỉ phương 1 u J JG = (2; −1; 1), d 2 qua N(−1; 1; 3), có véctơ chỉ phương 2 u J JG = (2; 1; 0). 0,25 +) 12 [u ,u ] JJGJJG = (−1; 2; 4) và MN J JJJG = (−1; 0; 5). 0,50 +) 12 [u ,u ] JJGJJG . MN J JJJG = 21 ≠ 0 ⇒ d 1 và d 2 chéo nhau. 0,25 2 Viết phương trình đường thẳng d (1,00 điểm) Giả sử d cắt d 1 và d 2 lần lượt tại A, B. Vì A ∈ d 1 , B ∈ d 2 nên A(2s;1 s; 2 s), B( 1 2t;1 t;3). − −+ −+ + ⇒ AB JJJG = (2t − 2s − 1; t + s; − s + 5). 0,25 (P) có véctơ pháp tuyến n G = (7; 1; − 4). AB ⊥ (P) ⇔ AB JJJG cùng phương với n G 0,25 ⇔ 2t 2s 1 t s s 5 714 −− + −+ == − ⇔ 5t 9s 1 0 4t 3s 5 0 + += ⎧ ⎨ + += ⎩ ⇔ s1 t2 = ⎧ ⎨ = − ⎩ ⇒ ()( ) A2;0; 1,B 5; 1;3.−−− 0,25 Phương trình của d là: x2 y z1 71 4 − + == − . 0,25 1 1/3 0 f(t) t 0 1/3 -1 3/4 IV 2,00 1 Tính diện tích hình phẳng (1,00 điểm) Phương trình hoành độ giao điểm của hai đường đã cho là: (e + 1)x = (1 + e x )x ⇔ (e x − e)x = 0 ⇔ x = 0 hoặc x = 1. 0,25 Diện tích của hình phẳng cần tìm là: S = 1 x 0 xe ex dx− ∫ = 11 x 00 e xdx xe dx.− ∫∫ 0,25 Ta có: 1 0 exdx ∫ = 2 1 ex 0 2 = e 2 , 11 xxx 00 1 xe dx xe e dx 0 =− ∫ ∫ = x 1 ee 1 0 − = . Vậy e S1 2 =− (đvdt). 0,50 2 Tìm giá trị nhỏ nhất của P (1,00 điểm) Ta có: 2 x(y z)+ 2x x≥ . Tương tự, 2 y(z x) + ≥ 2y y , 2 z(x y)+ ≥ 2z z . 0,25 ⇒ 2y y 2x x 2z z P yy 2zz zz 2xx xx 2yy ≥++ ++ + . Đặt a = xx 2yy+ , b = yy 2zz+ , c = zz 2xx+ . Suy ra: 4c a 2b xx 9 +− = , 4a b 2c yy 9 + − = , 4b c 2a zz 9 + − = . 0,25 Do đó 24ca2b 4ab2c 4bc2a P 9b c a +− +− +− ⎛⎞ ≥++ ⎜⎟ ⎝⎠ 2cab abc 46 9bca bca ⎡⎤ ⎛⎞⎛⎞ =+++++− ⎜⎟⎜⎟ ⎢⎥ ⎝⎠⎝⎠ ⎣⎦ ≥ () 2 4.3 3 6 2. 9 + −= (Do cab b ca ++ = ca b c ⎛⎞ + ⎜⎟ ⎝⎠ + b 1 a ⎛⎞ + ⎜⎟ ⎝⎠ − 1 ≥ 2 a b + 2 b a − 1 ≥ 4 − 1 = 3, hoặc cab b ca ++≥ 3 cab 3 b ca ⋅⋅ = 3. Tương tự, abc b ca + + ≥ 3). 0,25 Dấu "=" xảy ra ⇔ x = y = z = 1. Vậy giá trị nhỏ nhất của P là 2. 0,25 V.a 2,00 1 Viết phương trình đường tròn (1,00 điểm) Ta có M(−1; 0), N(1; −2), AC J JJG = (4; − 4). Giả sử H(x, y). Ta có: BH AC HAC ⎧ ⊥ ⎪ ⎨ ∈ ⎪ ⎩ JJJG JJJG ⇔ 4(x 2) 4(y 2) 0 4x 4(y 2) 0 + −+= ⎧ ⎨ +−= ⎩ ⇔ x1 y1 = ⎧ ⎨ = ⎩ ⇒ H(1; 1). 0,25 Giả sử phương trình đường tròn cần tìm là: 22 x y 2ax 2by c 0 + +++= (1). 0,25 Thay tọa độ của M, N, H vào (1) ta có hệ điều kiện: 2a c 1 2a 4b c 5 2a 2b c 2. −= ⎧ ⎪ −+=− ⎨ ⎪ ++=− ⎩ 0,25 1 a 2 1 b 2 c2. ⎧ =− ⎪ ⎪ ⎪ ⇔= ⎨ ⎪ =− ⎪ ⎪ ⎩ Vậy phương trình đường tròn cần tìm là: 22 xyxy20. + −+−= 0,25 4/4 2 Chứng minh công thức tổ hợp (1,00 điểm) Ta có: () 2n 0 1 2n 2n 2n 2n 2n 1 x C C x C x ,+=+ ++ ( ) 2n 0 1 2n 2n 2n 2n 2n 1 x C C x C x−=− ++ ()() ( ) 2n 2n 13355 2n12n1 2n 2n 2n 2n 1 x 1 x 2 C x C x C x C x . −− ⇒+ −− = + + ++ ()() () 11 2n 2n 13355 2n12n1 2n 2n 2n 2n 00 1x 1x dx Cx Cx Cx C x dx 2 −− +−− ⇒=++++ ∫∫ 0,50 • ()() () () () 1 2n 2n 2n 1 2n 1 0 1 1x 1x 1x 1x dx 0 222n1 ++ +−− + +− = + ∫ = 2n 21 2n 1 − + (1) • () 1 13355 2n12n1 2n 2n 2n 2n 0 Cx Cx Cx C x dx −− ++++ ∫ 1 246 2n 135 2n1 2n 2n 2n 2n 0 xxx x C. C. C. C . 246 2n − ⎛⎞ =++++ ⎜⎟ ⎝⎠ 135 2n1 2n 2n 2n 2n 111 1 C C C C 246 2n − =++ + (2). Từ (1) và (2) ta có điều phải chứng minh. 0,50 V.b 2,00 1 Giải bất phương trình logarit (1,00 điểm) Điều kiện: x > 3 4 . Bất phương trình đã cho ⇔ 2 3 (4x 3) log 2x 3 − + ≤ 2 0,25 ⇔ (4x − 3) 2 ≤ 9(2x + 3) 0,25 ⇔ 16x 2 − 42x −18 ≤ 0 ⇔ − 3 8 ≤ x ≤ 3. 0,25 Kết hợp điều kiện ta được nghiệm của bất phương trình là: 3 4 < x ≤ 3. 0,25 2 Chứng minh AM ⊥ BP và tính thể tích khối tứ diện CMNP (1,00 điểm) Gọi H là trung điểm của AD. Do SAD∆ đều nên SH AD.⊥ Do ()( ) SAD ABCD⊥ nên () SH ABCD⊥ () SH BP 1 .⇒⊥ Xét hình vuông ABCD ta có CDH BCP∆=∆⇒ ( ) CH BP 2 .⊥ Từ (1) và (2) suy ra () BP SHC .⊥ Vì MN // SC và AN // CH nên ()() AMN // SHC . Suy ra () BP AMN⊥ ⇒ BP AM.⊥ 0,50 Kẻ ( )( ) MK ABCD , K ABCD .⊥∈ Ta có: CMNP CNP 1 VMK.S. 3 = Vì 2 CNP 1a3 1 a MK SH , S CN.CP 24 2 8 == = = nên 3 CMNP 3a V 96 = (đvtt). 0,50 NÕu thÝ sinh lµm bµi kh«ng theo c¸ch nªu trong ®¸p ¸n mµ vÉn ®óng th× ®−îc ®ñ ®iÓm tõng phÇn nh− ®¸p ¸n quy ®Þnh. Hết A S D C B H M N P K 1/4 BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ CHÍNH THỨC ĐÁP ÁN - THANG ĐIỂM ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2007 Môn: TOÁN, khối B (Đáp án - Thang điểm gồm 04 trang) Câu Ý Nội dung Điểm I 2,00 1 Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1,00 điểm) Khi m =1 ta có 32 yx3x4=− + − . • Tập xác định: D = \ . • Sự biến thiên: 2 y' 3x 6x,=− + y' 0 = ⇔ x0 = hoặc x2. = 0,25 Bảng biến thiên: y CĐ = y(2) = 0, y CT = y(0) = − 4. 0,50 • Đồ thị: 0,25 2 Tìm m để hàm số (1) có cực đại, cực tiểu … (1,00 điểm) Ta có: 22 y' 3x 6x 3(m 1)=− + + − , y' = 0 ⇔ 22 x2xm10 − −+= (2). Hàm số (1) có cực trị ⇔ (2) có 2 nghiệm phân biệt ⇔ ∆' = m 2 > 0 ⇔ m ≠ 0. 0,50 Gọi A, B là 2 điểm cực trị ⇒ A(1 − m; −2 − 2m 3 ), B(1 + m; − 2 + 2m 3 ). O cách đều A và B ⇔ OA = OB ⇔ 8m 3 = 2m ⇔ m = 1 2 ± (vì m ≠ 0). 0,50 II 2,00 1 Giải phương trình lượng giác (1,00 điểm) Phương trình đã cho tương đương với: ( ) 2 sin 7x sin x 2sin 2x 1 0 cos 4x 2sin 3x 1 0.−+ −=⇔ −= 0,50 • () cos 4x 0 x k k . 84 ππ =⇔= + ∈Z • 12 sin 3x x k 2183 ππ =⇔= + hoặc () 52 xkk. 18 3 π π =+ ∈Z 0,50 x − ∞ 02+ ∞ y ' − 0+0 − y − 4 − ∞ + ∞ 0 O − 4 2 y x − 1 2/4 2 Chứng minh phương trình có hai nghiệm (1,00 điểm) Điều kiện: x2.≥ Phương trình đã cho tương đương với () () 32 x2x 6x 32m 0−+−−= 32 x2 x6x32m0. = ⎡ ⇔ ⎢ + −−= ⎣ Ta chứng minh phương trình: ( ) 32 x6x32m1+−= có một nghiệm trong khoảng () 2; + ∞ . 0,50 Xét hàm ( ) 32 fx x 6x 32=+ −với x2.> Ta có: ( ) 2 f' x 3x 12x 0, x 2. = +>∀> Bảng biến thiên: Từ bảng biến thiên ta thấy với mọi m0> , phương trình (1) luôn có một nghiệm trong khoảng () 2; + ∞ . Vậy với mọi m0> phương trình đã cho luôn có hai nghiệm thực phân biệt. 0,50 III 2,00 1 Viết phương trình mặt phẳng (Q) (1,00 điểm) ()( ) ( ) ( ) 222 S:x 1 y 2 z 1 9−++ ++= có tâm ( ) I1; 2; 1 − − và bán kính R3.= 0,25 Mặt phẳng (Q) cắt (S) theo đường tròn có bán kính R = 3 nên (Q) chứa I. 0,25 (Q) có cặp vectơ chỉ phương là: ( ) ( ) OI 1; 2; 1 , i 1;0;0=−− = J JG G . ⇒ Vectơ pháp tuyến của (Q) là: ( ) n0;1;2.=− G 0,25 Phương trình của (Q) là: ( ) ( ) ( ) 0. x 0 1. y 0 2 z 0 0 y 2z 0. − −−+−=⇔−= 0,25 2 Tìm tọa độ điểm M thuộc mặt cầu sao cho khoảng cách lớn nhất (1,00 điểm) Gọi d là đường thẳng đi qua I và vuông góc với (P). Đường thẳng d cắt (S) tại hai điểm A, B . Nhận xét: nếu ( ) ( ) ( ) ( ) dA;P dB;P≥ thì () ( ) dM;P lớn nhất khi MA.≡ 0,25 Phương trình đường thẳng d: x1 y2 z1 . 212 − ++ == − 0,25 Tọa độ giao điểm của d và (S) là nghiệm của hệ ()( )() 222 x1 y 2 z1 9 x1 y2 z1 . 212 ⎧ − ++ ++ = ⎪ ⎨ −++ == ⎪ ⎩− Giải hệ ta tìm được hai giao điểm ( ) ( ) A 1; 1; 3 , B 3; 3;1 .−−− − 0,25 Ta có: () () ( ) () dA;P 7 dB;P 1.=≥ = Vậy khoảng cách từ M đến (P) lớn nhất khi ( ) M1;1;3. − −− 0,25 IV 2,00 1 Tính thể tích vật thể tròn xoay (1, 00 điểm) Phương trình hoành độ giao điểm của các đường yxlnx = và y0= là: xlnx 0 x 1. = ⇔= 0,25 f(x) f '(x) + 0 x 2 + ∞ + ∞ 3/4 Thể tích khối tròn xoay tạo thành khi quay hình H quanh trục hoành là: () ee 2 2 11 V y dx x ln x dx.=π =π ∫∫ 0,25 Đặt 3 22 2lnx x u ln x, dv x dx du dx, v . x3 ==⇒= = Ta có: () e eee 33 2 22 2 111 1 x2 e2 x ln x dx ln x x ln xdx x ln xdx. 33 33 =− =− ∫∫∫ 0,25 Đặt 3 2 dx x ulnx,dvxdx du ,v . x3 ==⇒== Ta có: ee ee 3333 22 11 11 x1 ex2e1 x ln xdx ln x x dx . 33 399 + =−=−= ∫∫ Vậy ( ) 3 5e 2 V 27 π− = (đvtt). 0,25 2 Tìm giá trị nhỏ nhất của P (1,00 điểm) Ta có: 222222 xyzxyz P. 222 xyz ++ =+++ Do 22 22 22 222 xy yzzx xyz xyyzzx 222 +++ ++= + + ≥++ nên 222 x1 y1 z1 P. 2x 2y 2z ⎛⎞⎛⎞⎛⎞ ≥+++++ ⎜⎟⎜⎟⎜⎟ ⎜⎟⎜⎟⎜⎟ ⎝⎠⎝⎠⎝⎠ 0,50 Xét hàm số () 2 t1 ft 2t =+ với t0.> Lập bảng biến thiên của f(t) ta suy ra () 3 ft ,t 0. 2 ≥∀> Suy ra: 9 P. 2 ≥ Dấu bằng xảy ra ⇔ xyz1. = == Vậy giá trị nhỏ nhất của P là 9 . 2 0,50 V.a 2,00 1 Tìm hệ số trong khai triển… (1,00 điểm) Ta có: () ( ) nn n0 n11 n22 n n nn n n 3 C 3 C 3 C 1 C 3 1 2 −− −+ −+−=−=. Từ giả thiết suy ra n11= . 0,50 Hệ số của số hạng chứa 10 x trong khai triển Niutơn của () 11 2x+ là: 10 1 11 C .2 22.= 0,50 2 Xác định tọa độ điểm B, C sao cho …(1,00 điểm) Vì 12 Bd,Cd∈∈ nên () ( ) Bb;2 b,Cc;8 c. − − Từ giả thiết ta có hệ: ( ) ( ) ()() 22 22 b1c 4 2 bc 4b c 2 0 AB.AC 0 AB AC b2bc8c18 b 1c43. −−= ⎧ −−+= ⎧ ⎧ = ⎪⎪ ⎪ ⇔⇔ ⎨⎨ ⎨ = −=−+ ⎪ ⎪ − −− = ⎩ ⎩ ⎪ ⎩ JJJG JJJG 0,50 Đặt x b 1, y c 4=− =− ta có hệ 22 xy 2 xy3. = ⎧ ⎪ ⎨ − = ⎪ ⎩ Giải hệ trên ta được x 2, y 1=− =− hoặc x 2, y 1 = = . Suy ra: ()() B1;3,C3;5− hoặc ( ) ( ) B3; 1,C5;3− . 0,50 4/4 V.b 2,00 1 Giải phương trình mũ (1,00 điểm) Đặt () () x 21 tt 0,−= > ta có phương trình 1 t220t21,t21. t +− =⇔=−=+ 0,50 Với t21=− ta có x1.= Với t21=+ ta có x1.=− 0,50 2 (1,00 điểm) Gọi P là trung điểm của SA. Ta có MNCP là hình bình hành nên MN song song với mặt phẳng (SAC). Mặt khác, ( ) BD SAC⊥ nên BD MN.⊥ 0,50 Vì () MN || SAC nên ()() () () 11a2 d MN;AC d N;(SAC d B; SAC BD . 244 == == Vậy () a2 dMN;AC . 4 = 0,50 NÕu thÝ sinh lµm bµi kh«ng theo c¸ch nªu trong ®¸p ¸n mµ vÉn ®óng th× ®−îc ®ñ ®iÓm tõng phÇn nh− ®¸p ¸n quy ®Þnh. Hết N E C B M P D A S 1/4 BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ CHÍNH THỨC ĐÁP ÁN - THANG ĐIỂM ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2007 Môn: TOÁN, khối D (Đáp án - Thang điểm gồm 04 trang) Câu Ý Nội dung Điểm I 2,00 1 Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1,00 điểm) Ta có 2x 2 y2. x1 x1 ==− ++ • Tập xác định: D = \{ 1} − \ . • Sự biến thiên: 2 2 y' 0, x D. (x 1) =>∀∈ + 0,25 Bảng biến thiên 0,25 • Tiệm cận: Tiệm cận đứng x = − 1, tiệm cận ngang y = 2. 0,25 • Đồ thị: 0,25 2 Tìm tọa độ điểm M … (1,00 điểm) Vì () MC∈ nên 0 0 0 2x Mx; . x1 ⎛⎞ ⎜⎟ + ⎝⎠ Phương trình tiếp tuyến của (C) tại M là: ()( ) ()() 2 00 00 22 0 00 2x 2x 2 yy'x xx y x . x1 x1 x1 =−+⇔= + + ++ () () 2 2 0 0 2 0 2x Ax;0,B0; . x1 ⎛⎞ ⎜⎟ ⇒− ⎜⎟ + ⎝⎠ 0,25 Từ giả thiết ta có: () 2 2 0 0 2 0 2x 1 .x 2 x1 − = + 2 00 2 00 2x x 1 0 2x x 1 0. ⎡ + += ⇔ ⎢ − −= ⎢ ⎣ 0 0 1 x 2 x1 ⎡ =− ⎢ ⇔ ⎢ = ⎣ 0,50 y x − ∞ 1 − +∞ y' + + + ∞ 2 − ∞ 2 y O x 2 1 − 2/4 Với 0 1 x 2 =− ta có 1 M;2 2 ⎛⎞ −− ⎜⎟ ⎝⎠ . Với 0 x1= ta có () M1;1. Vậy có hai điểm M thỏa mãn yêu cầu bài toán là: 1 M;2 2 ⎛⎞ − − ⎜⎟ ⎝⎠ và () M1;1. 0,25 II 2,00 1 Giải phương trình lượng giác (1,00 điểm) Phương trình đã cho tương đương với 1 1sinx 3cosx 2 cosx 62 π ⎛⎞ ++ =⇔ −= ⎜⎟ ⎝⎠ 0,50 () xk2,x k2k. 26 ππ ⇔=+π=−+π ∈ Z 0,50 2 Tìm m để hệ phương trình có nghiệm (1,00 điểm). Đặt () 11 xu,yvu2,v2. xy += += ≥ ≥ Hệ đã cho trở thành: () 33 uv5 uv5 uv 8 m u v 3 u v 15m 10 += ⎧ += ⎧ ⎪ ⇔ ⎨⎨ = − +− += − ⎩ ⎪ ⎩ 0,25 u,v⇔ là nghiệm của phương trình: 2 t5t8m − += (1). Hệ đã cho có nghiệm khi và chỉ khi phương trình (1) có hai nghiệm 12 tt,tt== thoả mãn: 12 t2,t 2≥≥ (t 1 , t 2 không nhất thiết phân biệt). Xét hàm số () 2 ft t 5t 8=−+ với t2≥ : Bảng biến thiên của () ft : 0,50 Từ bảng biến thiên của hàm số suy ra hệ đã cho có nghiệm khi và chỉ khi 7 m2 4 ≤ ≤ hoặc m22≥ . 0,25 III 2,00 1 Viết phương trình đường thẳng d (1,00 điểm) Tọa độ trọng tâm: () G 0;2;2 . 0,25 Ta có: () ( ) OA 1; 4; 2 , OB 1; 2; 4==− JJJG JJJG . Vectơ chỉ phương của d là: ( ) ( ) n 12; 6; 6 6 2; 1;1 .=−= − G 0,50 Phương trình đường thẳng d: xy2z2 . 211 − − == − 0,25 2 Tìm tọa độ điểm M (1,00 điểm) Vì () MM1t;2t;2t∈∆⇒ − − + 0,25 t −∞ 2 − 2 5/2 +∞ () f' t − − 0 + () ft 22 +∞ 7/4 2 +∞ . và vuông góc với (P). Đường thẳng d cắt (S) tại hai điểm A, B . Nhận xét: nếu ( ) ( ) ( ) ( ) dA; P dB;P≥ thì () ( ) dM;P lớn nhất khi MA.≡ 0,25 Phương trình đường thẳng d: x1 y2 z1 . 212 − ++ == − . tìm được hai giao điểm ( ) ( ) A 1; 1; 3 , B 3; 3;1 .−−− − 0,25 Ta có: () () ( ) () dA; P 7 dB;P 1.=≥ = Vậy khoảng cách từ M đến (P) lớn nhất khi ( ) M1;1;3. − −− 0,25 IV 2,00