1. Trang chủ
  2. » Giáo án - Bài giảng

zo koi

30 304 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 30
Dung lượng 629 KB

Nội dung

chủ đề 1: toán tính tổng theo quy luật Bai 1: Tính tổng 1000.999 1 4.3 1 3.2 1 2.1 1 ++++=S Giải: Ta có 1 11 )1()1( 1 )1( )1( )1( 1 + = + + + = + + = + kkkk k kk k kk kk kk (1) áp dụng đẳng thức (1) ta có: 1000 999 1000 1 1 1000 1 999 1 999 1 998 1 4 1 3 1 3 1 2 1 2 1 1 1000.999 1 4.3 1 3.2 1 2.1 1 1000 1 999 1 1000.999 1 999 1 998 1 999.998 1 . 4 1 3 1 4.3 1 3 1 2 1 3.2 1 2 1 1 1 2.1 1 == ++++=++++= = = = = = S S Bài 2: Tính tổng )1( 1 4.3 1 3.2 1 2.1 1 + ++++= nn S Giải: áp dụng đẳng thức (1) ta có: 11 1 1 1 11 4 1 3 1 3 1 2 1 2 1 1 )1.( 1 4.3 1 3.2 1 2.1 1 1 11 )1.( 1 . . 4 1 3 1 4.3 1 3 1 2 1 3.2 1 2 1 1 1 2.1 1 + = + = + ++++= + ++++= + = + = = = n n n S nnnn S nnnn Bµi 3: TÝnh tæng: 99.97 4 9.7 4 7.5 4 5,3 4 ++++=Q Gi¶i: Ta cã: 99 64 99 32 .2 99 133 .2 99 1 3 1 2 99 1 97 1 9 1 7 1 7 1 5 1 5 1 3 1 2 99.97 4 9.7 4 7.5 4 5,3 4 ______________________________________________________ 99 1 97 1 .2 99.97 4 9 1 7 1 .2 9.7 4 7 1 5 1 .2 7.5 4 5 1 3 1 .2 5.3 4 ==       − =       −=       −++−+−+−=++++=                        −=       −=       −=       −= Q Q Bµi 4: TÝnh tæng 100.97 1 11.8 1 8.5 1 5.2 1 ++++= S Gi¶i: Ta cã: 300 49 100 49 . 3 1 100 150 3 1 100 1 2 1 3 1 100 1 97 1 11 1 8 1 8 1 5 1 5 1 2 1 3 1 100.97 1 11.8 1 8.5 1 5.2 1 100 1 97 1 3 1 100.97 1 11 1 8 1 3 1 11.8 1 8 1 5 1 3 1 8.5 1 5 1 2 1 3 1 5.2 1 ==       − =       −=       −++−+−+−=++++= −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−                        −=       −=       −=       −= S S Bµi 5: TÝnh tæng )1.().1( 1 5.4.3 1 4.3.2 1 3.2.1 1 +− ++++= nnn S Gi¶i: Ta cã: )1.( 1 ).1( 1 )1.().1( 1 )1.().1( 1 )1.().1( )1()1( )1.().1( 2 + − − = +− + − +− + = +− −−+ = +− nnnnnnn n nnn n nnn nn nnn Suy ra: )1( )1( 1 ).1( 1 2 1 )1.().1( 1         + − − = +− nnnnnnn ¸p dông ®¼ng thøc (1) ta cã:         + ++++−         − ++++= −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−                          + − − = +−       −=       −=       −= )1( 1 5.4 1 4.3 1 3.2 1 2 1 ).1( 1 4.3 1 3.2 1 2.1 1 2 1 )1.( 1 .).1( 1 2 1 )1.().1( 1 5.4 1 4.3 1 2 1 5.4.3 1 4.3 1 3.2 1 2 1 4.3.2 1 3.2 1 2.1 1 2 1 3.2.1 1 nnnn S nnnnnnn Ta cã: n n n S nnnn S nnnn 11 1 1 1 1 4 1 3 1 3 1 2 1 2 1 1 )1.( 1 4.3 1 3.2 1 2.1 1 1 1 1 ).1( 1 . . 4 1 3 1 4.3 1 3 1 2 1 3.2 1 2 1 1 1 2.1 1 1 1 − =−= − − ++−+−+−= + ++++= −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−                − − = − −= −= −= 11 1 1 1 11 4 1 3 1 3 1 2 1 2 1 1 )1.( 1 4.3 1 3.2 1 2.1 1 1 11 )1.( 1 . . 4 1 3 1 4.3 1 3 1 2 1 3.2 1 2 1 1 1 2.1 1 2 2 + = + −= + −++−+−+−= + ++++= −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−                + −= + −= −= −= n n n S nnnn S nnnn VËy S = 2 1 (S 1 - S 2 )= )1(2 1 )1( 1 2 1 1 1 2 1 22 + −=         + −− =       + − − nnnn nn n n n n Bµi 6: TÝnh tæng )2)(1( 1 4,3,2 1 3.2.1 1 ++ +++= nnn S Gi¶i: Ta cã: )2)(1(2 1 )2)(1(2 122 )2)(1(2 )1()2( )2(2 1 )1(2 )2(2 1 2 1 . 2 1 )2)(1( 1 4.3 1 3.2 1 2 1 )1(21 . 2 1 )1( 1 3.2 1 2.1 1 2 1 )2)(1( 1 4.3 1 3.2 1 2 1 )1( 1 3.2 1 2.1 1 2 1 )2)(1( 1 )1( 1 2 1 )2)(1( 1 4.3 1 3.2 1 2 1 4.3.2 1 3.2 1 2.1 1 2 1 3.2.1 1 22 2 21 2 1 ++ −= ++ −−−+ = ++ +−+ = + + − + =−= + + = + + =         ++ +++= + = + =         + ++=         ++ +++−         + ++= −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−                    ++ − + = ++       −=       −= nnnn nnnn nn nnn n n n n SSS n n n n nn S n n n n nn S nnnn S nnnnnnn (2) Bµi 7: TÝnh tæng )3)(2)(1( 1 5.4.3.2 1 4.3.2.1 1 +++ +++= nnnn S Gi¶i: Ta có )1( )3)(2)(1( 1 )2)(1( 1 3 1 )3)(2)(1( )3( . 3 1 )3)(2)(1( 1 +++ ++ = +++ + = +++ kkkkkkkkkk kk kkkk áp dụng đẳng thức (1) ta có: )3)(2)(1(.3.4.3.2.1 4.3.2.1)3)(2)(1( )3)(2)(1( 1 4.3.2.1 1 3 1 )3)(2)(1( 1 5.4.3 1 4.3.2 1 4.3.2 1 3.2.1 1 3 1 )3)(2)(1( 1 5.4.3 1 4.3.2 1 3 1 5.4.3.2 1 4.3.2 1 3.2.1 1 3 1 4.3.2.1 1 +++ +++ = +++ = +++ ++= +++ = = nnnn nnnn nnnn S nnnnnnnn Bài 8: Dạng tổng theo quy luật S = a 1 + a 2 + a 3 + + a n Với d = a 2 a 1 = a 4 a 3 = =a n a n-1 Thì a n = a 1 + (n - 1).d 2 ).( 1 naa S n + = Bài 9: Tính tổng S = 1 + 2 + 3 + 4 + n Giải Cách 1:Ta có: S = 1+ 2+ 3+ 4+ +n + S = n + (n-1) + (n - 2) + (n - 3) + 1 2S = 1)(n 1) (n 1) (n ) 1(n ++++++++ = (n +1).n n lần 2 ).1( nn S + = Cách 2: Chọn hàm số g(x) = x Ta xác định hàm số f(x) bậc 2 có dạng f(x) = ax 2 + bx + c thoả mãn: g(x) = f(x) f(x -1) <=> x = ax 2 + bx + c a(x-1) 2 b(x-1) - c <=> x = ax 2 + bx + c ax 2 + 2ax - a bx + b - c <=> x = 2ax a + b = = = = 2 1 2 1 0 12 b a ab a cxxxf ++= 2 1 2 1 )( 2 (c tuỳ ý) Mặt khác: 2 ).1( 2 1 2 1 0. 2 1 0. 2 1 2 1 2 1 4321 )0()()( )4()3()2()1( )1()()( )3()4()4( )2()3()3( )1()2()2( )0()1()1( 222 nn nnccnnnS fnfnggggg nfnfng ffg ffg ffg ffg + =+= ++++=++++= =+++++ = = = = = Bài 10: Tính tổng: S = 1 + 3 + 5 + + (2n - 1) Giải: Đặt g(x) = 2x 1 Ta chọn hàm f(x) bậc 2 có dạng: f(x) = ax 2 + bx + c sao cho g(x) = f(x) f(x - 1) <=> 2x - 1 = ax 2 + bx + c a(x-1) 2 b(x-1) - c <=> 2x - 1 = ax 2 + bx + c ax 2 + 2ax - a bx + b - c <=> 2x 1 = 2ax a + b = = = = 0 1 1 22 b a ab a vậy f(x) = x 2 + c (c tuỳ ý) Ta có ( ) 2222 0)12 (531 )0()()( )4()3()2()1( )1()()( )3()4()4( )2()3()3( )1()2()2( )0()1()1( nccnccnnS fnfnggggg nfnfng ffg ffg ffg ffg =+=++=+++= =+++++ = = = = = Bài 11: Tính tổng S = 2 + 4 + 6 + + 2n Giải: Đặt g(x) = 2x Chọn hàm số f(x) có bậc 2 có dạng f(x) = ax 2 + bx +c sao cho: g(x) = f(x) f(x -1) <=> 2x = ax 2 + bx + c a(x-1) 2 b(x-1) - c <=> 2x = ax 2 + bx + c ax 2 + 2ax - a bx + b - c <=> 2x = 2ax a + b = = = = 1 1 0 22 b a ab a suy ra: f(x) = x 2 + x + c (c tuỳ ý) nnccnnnS fnfnggggg nfnfng ffg ffg ffg ffg +=++−++=++++= −=+++++ −−−−−−−−−−−−−−−−−−−−−−−−−−            −−= −= −= −= −= 222 )00(2 8642 )0()()( )4()3()2()1( )1()()( )3()4()4( )2()3()3( )1()2()2( )0()1()1( Bµi 12: TÝnh tæng S = 1 2 + 3 2 + 5 2 + + (2n - 1) 2 Gi¶i: §Æt g(x) = (2x -1) 2 Chän hµm sè f(x) cã bËc 3 cã d¹ng f(x) = ax 3 + bx 2 + cx + d sao cho: g(x) = f(x) – f(x-1) <=> (2x -1) 2 = ax 3 + bx 2 + cx + d – a(x-1) 3 – b(x-1) 2 – c(x-1) - d <=> 4x 2 – 4x + 1 = ax 3 + bx 2 + cx + d – ax 3 + 3ax 2 – 3ax + a – bx 2 + 2bx – b – cx + c - d <=> 4x 2 – 4x + 1 = 3ax 2 + (2b – 3a)x + a – b + c      =+− −=− = ⇔ 1 432 43 cba ab a        −= = = ⇔ 3 1 0 3 4 c b a nªn f(x) = dxx +− 3 1 3 4 3 (d tuú ý) 3 4 3 1 3 4 0. 3 1 0. 3 4 3 1 3 4 )12( 7531 )0()()( )4()3()2()1( )1()()( )3()4()4( )2()3()3( )1()2()2( )0()1()1( 3 33322222 nn nnddnnnS fnfnggggg nfnfng ffg ffg ffg ffg − =−=       +−−       +−=−+++++= −=+++++ −−−−−−−−−−−−−−−−−−−−−−−−−−            −−= −= −= −= −= Bµi 13: TÝnh tæng: S = 1 2 + 2 2 + 3 2 + n 2 Gi¶i: §Æt g(x) = x 2 Chän hµm sè f(x) cã bËc 3 cã d¹ng f(x) = ax 3 + bx 2 + cx + d sao cho: g(x) = f(x) – f(x-1) <=> x 2 = ax 3 + bx 2 + cx + d – a(x-1) 3 – b(x-1) 2 – c(x-1) - d <=> x 2 = ax 3 + bx 2 + cx + d – ax 3 + 3ax 2 – 3ax + a – bx 2 + 2bx – b – cx + c - d <=> x 2 = 3ax 2 + (2b – 3a)x + a – b + c          = = = ⇔      =+− =− = ⇔ 6 1 2 1 3 1 0 032 13 c b a cba ab a f(x)= dxxx +++ 6 1 2 1 3 1 23 (d tuú ý) 6 )12)(1( 6 32 6 1 2 1 3 1 0. 6 1 0. 2 1 0. 3 1 6 1 2 1 3 1 4321 )0()()( )4()3()2()1( )1()()( )3()4()4( )2()3()3( )1()2()2( )0()1()1( 23 23232322222 ++ = ++ = ++=       +++−       +++=+++++= −=+++++ −−−−−−−−−−−−−−−−−−−−−−−−−−            −−= −= −= −= −= nnnnnn S nnnddnnnnS fnfnggggg nfnfng ffg ffg ffg ffg Bµi 14: TÝnh tæng S = 2 2 + 4 2 + 6 2 + + (2n) 3 Gi¶i: §Æt g(x) = (2x) 2 Chän hµm sè f(x) cã bËc 3 cã d¹ng f(x) = ax 3 + bx 2 + cx + d sao cho: g(x) = f(x) – f(x-1) <=> 4x 2 = ax 3 + bx 2 + cx + d – a(x-1) 3 – b(x-1) 2 – c(x-1) - d <=> 4x 2 = ax 3 + bx 2 + cx + d – ax 3 + 3ax 2 – 3ax + a – bx 2 + 2bx – b – cx + c - d <=> 4x 2 = 3ax 2 + (2b – 3a)x + a – b + c        = = = ⇔      =+− =− = ⇔ 3 2 2 3 4 0 032 43 c b a cba ab a f(x)= dxxx +++ 3 2 2 3 4 23 (d tuú ý) 3 )132(2 3 264 3 2 2 3 4 0. 3 2 0.20. 3 4 3 2 2 3 4 )2( 8642 )0()()( )4()3()2()1( )1()()( )3()4()4( )2()3()3( )1()2()2( )0()1()1( 2 23 23232322222 ++ = ++ = ++=       +++−       +++=+++++= −=+++++ −−−−−−−−−−−−−−−−−−−−−−−−−−            −−= −= −= −= −= nnn nnn S nnnddnnnnS fnfnggggg nfnfng ffg ffg ffg ffg Bµi 15: TÝnh tæng: S = 1 3 + 2 3 + 3 3 + + n 3 Gi¶i: §Æt g(x) = x 3 Chän hµm sè f(x) cã bËc 4 cã d¹ng: f(x) = ax 4 + bx 3 + cx 2 + dx + e sao cho g(x) = f(x) – f(x-1) <=> x 3 = ax 4 + bx 3 + cx 2 + dx + e – a(x-1) 4 - b(x-1) 3 – c(x -1) 2 – d(x -1) – e <=> x 3 = ax 4 + bx 3 + cx 2 + dx + e – a(x 4 – 4x 3 + 6x 2 – 4x + 1) – b(x 3 – 3x 2 + 3x - 1) - c(x 2 – 2x + 1) – dx + d – e <=> x 3 = ax 4 + bx 3 + cx 2 + dx + e – ax 4 + 4ax 3 – 6ax 2 + 4ax – a – bx 3 + 3bx 2 – 3bx + b - cx 2 + 2cx – c – dx + d - e <=> x 3 = 4ax 3 + (3b – 6a)x 2 + (4a – 3b + 2c)x – a + b – c + d            = = = = ⇔        =+−+− =+− =− = ⇔ 0 4 1 2 1 4 1 0 0234 063 14 d c b a dcba cba ab a f(x) = exxx +++ 234 4 1 2 1 4 1 (e tuú ý) −−−−−−−−−−−−−−−−−−−−−−−−−−            −−= −= −= −= −= )1()()( )3()4()4( )2()3()3( )1()2()2( )0()1()1( nfnfng ffg ffg ffg ffg 2 2222 234 23423423433333 2 )1( 4 )1( 4 )12( 4 2 4 1 2 1 4 1 0. 4 1 0. 2 1 0. 4 1 4 1 2 1 4 1 4321 )0()()( )4()3()2()1(       + = + = ++ = ++ = ++=       +++−       +++=+++++= −=+++++ nnnnnnn nnn S nnneennnnS fnfnggggg Bµi 16: TÝnh tæng: S = 1 3 + 3 3 + 5 3 + + (2n - 1) 3 Gi¶i: §Æt g(x) = (2x - 1) 3 Chän f(x) bËc 3 cã d¹ng: f(x) = ax 4 + bx 3 + cx 2 + dx + e sao cho: g(x) = f(x) – f(x -1) <=> (2x -1) 3 = ax 4 + bx 3 + cx 2 + dx + e – a(x-1) 4 - b(x-1) 3 – c(x -1) 2 – d(x -1) – e <=> 8x 3 – 12x 2 + 6x -1 = ax 4 + bx 3 + cx 2 + dx + e – a(x 4 – 4x 3 + 6x 2 – 4x + 1) – b(x 3 – 3x 2 + 3x - 1) - c(x 2 – 2x + 1) – dx + d – e <=>8x 3 – 12x 2 + 6x -1 = ax 4 + bx 3 + cx 2 + dx + e – ax 4 + 4ax 3 – 6ax 2 + 4ax – a – bx 3 + 3bx 2 – 3bx + b - cx 2 + 2cx – c – dx + d - e <=> 8x 3 – 12x 2 + 6x -1 = 4ax 3 + (3b – 6a)x 2 + (4a – 3b + 2c)x – a + b – c + d        = −= = = ⇔        −=+−+− =+− −=− = ⇔ 0 1 0 2 1 6234 1263 84 d c b a dcba cba ab a f(x) = 2x 4 – x 2 + e (e tuú ý) −−−−−−−−−−−−−−−−−−−−−−−−−−            −−= −= −= −= −= )1()()( )3()4()4( )2()3()3( )1()2()2( )0()1()1( nfnfng ffg ffg ffg ffg ( ) ( ) 24 24242433333 2 200.22)12( 7531 )0()()( )4()3()2()1( nnS nneennnS fnfnggggg −= −=+−−+−=−+++++= −=+++++ Bµi 17: TÝnh tæng S = 2 3 + 4 3 + 6 3 + 8 3 + + (2n) 3 Gi¶i §Æt g(x) = (2x) 3 Chän f(x) bËc 3 cã d¹ng: f(x) = ax 4 + bx 3 + cx 2 + dx + e sao cho: g(x) = f(x) – f(x -1) <=> 8x 3 = ax 4 + bx 3 + cx 2 + dx + e – a(x-1) 4 - b(x-1) 3 – c(x -1) 2 – d(x -1) – e <=> 8x 3 = ax 4 + bx 3 + cx 2 + dx + e – a(x 4 – 4x 3 + 6x 2 – 4x + 1) – b(x 3 – 3x 2 + 3x - 1) - c(x 2 – 2x + 1) – dx + d – e

Ngày đăng: 12/06/2015, 06:00

Xem thêm

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w