1. Trang chủ
  2. » Giáo Dục - Đào Tạo

100 Inequality Problems

45 248 1

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 45
Dung lượng 299,5 KB

Nội dung

100 INEQUALITY PROBLEMS ***** Cao Minh Quang 05/11/2006 Most of these problems were collected from the Mathematics and Youth Magazine in Vietnam. Translation from Vietnamese into English may have many errors. I am looking forward to hearing from your ideas. • Address: Cao Minh Quang, Mathematics teacher, Nguyen Binh Khiem specialized High School, Vinh Long town, Vinh Long, Vietnam. • Email: kt13quang@yahoo.com 1. () a,b 0,a b 1>+=, 22 ab4 a1b15 + ≤ ++ . First solution. Applying the AM – GM Inequality we get 22 2 2 1 3 1 3 4a 3 a 4a a1a 2a. 44 44 4 a 14a3 + += + + ≥ + = ⇒ ≤ + + . Similarly, 2 b 4b 4b 3 b1 ≤ + + . Adding these two inequalities, 22 ab 4a4b 1 1 23 a 1b 1 4a34b3 4a34b3 ⎡ ⎤ ⎛⎞⎛⎞ +≤ + =− + ⎜⎟⎜⎟ ⎢ ⎥ ++ ++ ++ ⎝⎠⎝⎠ ⎣ ⎦ . On the orther hand, ()() () 11 11 4 2 4a 3 4b 3 4 4a 3 4b 3 4a 3 4b 3 4 a b 6 5 ⎡⎤ ⎛⎞⎛⎞ ++ + + ≥⇒ + ≥ =⎡⎤ ⎜⎟⎜⎟ ⎢⎥ ⎣⎦ ++ ++ ++ ⎝⎠⎝⎠ ⎣⎦ . Thus, 22 ab 24 23. a1b1 55 + ≤− = ++ . Second solution. Applying the AM – GM Inequality we get 4 22 2 2 5 5 1111 1 5 a1a 5a 4a 4444 4 4 ⎛⎞ += ++++≥ = ⎜⎟ ⎝⎠ . Similarly, 22 5 5 b 14b 4 +≥ . Adding these two inequalities, 33 55 22 22 55 ab a b411 11 a. . b. . 55 a1b1 5 22 22 4a 4b 44 ⎛⎞ +≤ + = + ≤ ⎜⎟ ⎜⎟ ++ ⎝⎠ () 11 11 aaa bbb 3a b 2 444 22 22 55 5 555 ⎡⎤ ⎛⎞⎛⎞ ++++ ++++ ⎢⎥ ⎜⎟⎜⎟ ++ ⎡⎤ ≤+== ⎢⎥ ⎜⎟⎜⎟ ⎢⎥ ⎢⎥ ⎣⎦ ⎜⎟⎜⎟ ⎜⎟⎜⎟ ⎢⎥ ⎝⎠⎝⎠ ⎣⎦ . Third solution. Applying the AM – GM Inequality we get 1 ab2ab ab 4 + ≥⇒≤ . Therefore, () 22 2 22 2222 22 a b ab a b a b ab 1 a1b1aba b1 ab 2abab 1 +++ + += = = ++ +++ +−+ + 2 22 1 1 ab 1 ab 1 4 4 31 31 ab 2ab 2 5 1331 . ab ab 24 16 4216 + ++ == ≤= −+ ⎛⎞ −+ −−+ ⎜⎟ ⎝⎠ . 2. () a,b,c 0,a b c 1>++=, abc3 a1b1c1 4 + +≤ + ++ . First solution. Applying the AM – GM Inequality we get ()() aa1aa a1 a b ac 4ab ac ⎛⎞ =≤+ ⎜⎟ ++++ ++ ⎝⎠ , ()() b b1bb b 1ba bc4babc ⎛⎞ =≤+ ⎜⎟ ++++ ++ ⎝⎠ , ()() cc1cc c1 cb ca 4c b ca ⎛⎞ =≤+ ⎜⎟ ++++ ++ ⎝⎠ . Adding these three inequalities, abc1abbcac3 a1b1c1 4ab bc ac 4 +++ ⎛⎞ ++≤ ++ = ⎜⎟ +++ + ++ ⎝⎠ . Second solution. Applying the AM – GM Inequality we get +=+ + + ≥ ⇒ ≤ + 4 33 4 3 111 1 a 1 a1 a 4a a3 333 a14 3 , Similarly, 4 33 b1 b3 b1 4 ≤ + , 4 33 c1 c3 c1 4 ≤ + . Adding these three inequalities, 44 4 abc3 1 1 1 a.a.a. b.b.b. c.c.c. a1 b1 c1 4 3 3 3 ⎛⎞ ++≤ + + ≤ ⎜⎟ ⎜⎟ +++ ⎝⎠ 111 aaa bbb ccc 33 333 44 4 4 4 ⎡⎤ ⎛⎞⎛⎞⎛⎞ +++ +++ +++ ⎢⎥ ⎜⎟⎜⎟⎜⎟ ≤++= ⎢⎥ ⎜⎟⎜⎟⎜⎟ ⎢⎥ ⎜⎟⎜⎟⎜⎟ ⎢⎥ ⎝⎠⎝⎠⎝⎠ ⎣⎦ . Third solution. Applying the AM – GM Inequality we get ()()() ⎛⎞ ++ +++ + + ≥ ⎡⎤ ⎜⎟ ⎣⎦ +++ ⎝⎠ 111 a1 b1 c1 9 a1 b1 c1 ()()() ⎛⎞ ⇒++≥ = ⎜⎟ +++ +++++ ⎝⎠ 111 9 9 a1 b1 c1 a1 b1 c1 4 . Therefore, abc 111 93 33 a1 b1c1 a1 b1c1 4 4 ⎛⎞ ++=− ++ ≤−= ⎜⎟ +++ +++ ⎝⎠ . Forth solution Applying the AM – GM Inequality we get +=+ + ≥ + ⇒ ≤ + − + + 12 a2 a 3a11 1 a1 a 2 . 33 33 a1 2 23 a2 2 33 . Similarly, b3b111 . b1 2 2 3 b2 2 33 ≤+− + + , c3c111 . c1 2 2 3 c2 2 33 ≤+− + + . Adding these three inequalities, abc3abc311 1 1 a1 b1 c1 2 3 3 3 2 3 a2 b2 b2 222 33 33 33 ⎛⎞ ⎜⎟ ⎛⎞ ⎜⎟ ++≤ +++− + + ≤ ⎜⎟ ⎜⎟ +++ ⎜⎟ ⎝⎠ +++ ⎜⎟ ⎝⎠ 111 abc 33993 333 3 22 2 2 2 44 abc 2 23. 333 3 ⎡⎤ ⎛⎞⎛⎞⎛⎞ +++ ⎢⎥ ⎜⎟⎜⎟⎜⎟ ≤+++− ≤−= ⎢⎥ ⎜⎟⎜⎟⎜⎟ ⎛⎞ ⎢⎥ ⎜⎟⎜⎟⎜⎟ ++ + ⎜⎟ ⎢⎥ ⎝⎠⎝⎠⎝⎠ ⎣⎦ ⎝⎠ . 3. () a,b,c 1≥ , () 111 2abc 9 abc ⎛⎞ + ++ ≥ ⎜⎟ ⎝⎠ Solution. We have, () ( ) a1b1 0 ab1a b−−≥⇔+≥+, () ( ) ab 1 c 1 0 abc 1 ab c−−≥⇔+≥+. Adding these two inequalities, we obtain abc 2 a b c + ≥++. Thus, () () 111 111 2abc abc 9 abc abc ⎛⎞ ⎛⎞ +++≥++++≥ ⎜⎟ ⎜⎟ ⎝⎠ ⎝⎠ . 4. () x,y,z0,xyxyyzyzzxzx1>++=, + +≥ +++ 666 33 33 33 x y z1 x yy zzx2 . Solution. We set 333 a x , b y , c z=== and observe that ab bc ca 1 + +=. The inequality is equivalent to + +≥ +++ 222 abc1 ab bc ca 2 . Applying the Cauchy – Buniakowski Inequality we get ()()()( ) ⎡⎤ ++ +++++≥++ ⎡⎤ ⎢⎥ ⎣⎦ +++ ⎣⎦ 222 2 abc ab bc ca abc ab bc ca () () ⇒++≥++≥ ++= +++ 222 abc1 1 1 abc ab bc ca ab bc ca 2 2 2 . 5. () x, y 0,xy 1>= , ++++ ≥ ++ 22 22 9 x3xy3y 11 xy1 . Solution. Applying the AM – GM Inequality we get () () +++ ++−≥ ++ −= ++ ++ 22 22 4 22 22 99 x y 1 3x 3y 1 4 x y 1 . .3x.3y 1 11 xy1 xy1 . 6. { } () m, n \ 0 , m a, b, c n∈≤≤ , () () 2 nm abc3 bcacab 22mnm − ++≤+ +++ + . Solution. Without loss of generality, we can assume that abc≥≥ , we set xbc, yca, zab = +=+=+ . We observe that xyz≤≤, therefore, ⎛⎞⎛⎞ ⎛⎞ ⎛⎞ − −+− −≥ ⎜⎟⎜⎟ ⎜⎟ ⎜⎟ ⎝⎠ ⎝⎠ ⎝⎠⎝⎠ yz xy 11 11 0 xy yz ⎛⎞ +++ ⇔++≤++ ⎜⎟ ⎝⎠ yz xz xy x z 22 xyz yx () () − ⎛⎞ ⇔+++≤ + ⎜⎟ +++ ⎝⎠ 2 zx abc 23261 bc ca ab xy . On the other hand, zx ac nm 0 xbc2m −−− ≤=≤ + and zx ac ac nc nm 0 zabacncnm − −−−− ≤=≤≤≤ + +++ . Thus, ()() () () −− ≤ + 22 zx nm 2 xz 2m n m . From (1) and (2), we have () () 2 nm abc3 bcacab 22mnm − ++≤+ +++ + . 7. () 12 n 0 x , x , , x 1, n 2<≤≥, ()()() 12 n 12 n xx x 1 n1n1x1x 1x +++ ≤ +− − − . Solution. We set () −= = ii 1 x a , i 1, 2, , n and observe that i 0a 1 ≤ < , ( ) =i 1, 2, , n . The inequality is equivalent to ()() ( ) 12 n 12 n 1a 1a 1a 1 n 1 na a a −+−++− ≤ + , or () ( ) 2 12 n 12n 12n a a a 1 a a a n a a a+++ + ≥ . Applying the AM – GM Inequality we get n 12 n 12n a a a n a a a+++≥ and () ( ) n1 n 12 n 12 n 12 n 1 na a a 1 n 1 a a a n a a a − +≥+− ≥ . Therefore, ()()()()() n 22 2 n 1 2 n 12n 12n 12 n 12n 12n a a a 1 a a a n a a a n a a a 1 a a a n a a a+++ + ≥ = +++ + ≥ . 8. () 0xyz1,3x2yz4<<≤≤ + +≤ , + +≤ 222 10 3x 2y z 3 . Solution. We have 3x 2y z 4++≤, thus, ++≤ 2 3x 2xy xz 4x . On the other hand, 0xyz1<<≤≤, therefore ( ) ( ) 2 yy x2 y x − ≤− and () zz x z x−≤− . Adding these two inequalities, we obtain + +≤++ 222 3x 2y z x 2y z . Applying the Cauchy – Buniakowski Inequality we get () () () ⎛⎞ ++ ≤++≤++ ++⇒++≤ ⎜⎟ ⎝⎠ 2 2 222 222 222 110 3x 2y z x 2y z 2 1 3x 2y z 3x 2y z 33 . 9. () 0xyz1≤≤≤≤, ()()() −+ −+ −≤ 222 108 xyz yzy z1z 529 . Solution. We set ()() ( ) =−+−+− 222 Txyz yzy z1z. Applying the AM – GM Inequality and the Cauchy – Buniakowski Inequality we get ()() () 3 22 11yy2z2y T0 y.y2z2y z1z z1z 223 ++ − ⎛⎞ ≤+ − + − ≤ + − ⎡⎤ ⎜⎟ ⎣⎦ ⎝⎠ 2 22 42354232323 zz1zz1z zz1z 27 27 23 54 54 27 ⎛ ⎞⎛ ⎞⎛⎞⎛⎞⎛⎞⎛ ⎞ =+−=−= − ⎜ ⎟⎜ ⎟⎜⎟⎜⎟⎜⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎝⎠⎝⎠⎝⎠⎝ ⎠ 2 23 23 23 zz1z 54 108 54 54 27 23 3 529 ⎡⎤ ++− ⎢⎥ ⎛⎞ ≤= ⎢⎥ ⎜⎟ ⎝⎠ ⎢⎥ ⎣⎦ . 10. () 222 a,b,c ,abc8∈++≤ , + +≥−ab bc 2bc 8 . Solution. We have () 2 2 222 b3b 8 ab bc 2bc a b c ab bc 2bc a c 0 24 ⎛⎞ +++ ≥+++++ =+++ ≥ ⎜⎟ ⎝⎠ . Therefore, ab bc ca 8++≥−. 11. () a,b 0> , ()()() () () 2 22 ab 3aba3b ab ab 2 8a b a 6ab b −++ + ≥+ +++ . Solution. If ab= , the inequality is true. If ab≠ , the inequality is equivalent to ()()() () () −++ + −≥ +++ 2 22 ab 3aba3b ab ab 2 8a b a 6ab b () ( ) ()() () () ⎡⎤ +++ ⎢⎥ ⇔− − ≥ ⎢⎥ +++ ⎢⎥ ⎣⎦ 2 2 22 ab3aba3b ab1 0 4a b a 6ab b () ( ) ( ) ( ) ⇔+ ++−++ ++ ≥ 22 22 4 a b a 6ab b a b 2 ab 3a 3b 10ab 0 . We set xab, y ab=+ = and observe that 22 2 2 abx2y+=− . The inequality is equivalent to () () () () +−+ +≥⇔−≥⇔≥⇔+≥ 3 22 22 4x x 4 y x2 y 3x 4 y 0x2 y 0x2 y ab2ab. 12. () x ∈  , 33 sin x sin 2x sin3x 2 ++<. Solution. We have, ++=+ =+ ≤ 2 sin x sin 2x sin3x sin 2x 2sin 2x cos x sin 2x 4sin x cos x 22 2242 cos x cos x 1 4sinxcos x 1 4 sin xcos x 1 8 sin x. . 22 ≤+ ≤+ =+ 3 22 2 cos x cos x sin x 83 33 22 18 1 392 ⎛⎞ ++ ⎜⎟ ≤+ =+ < ⎜⎟ ⎜⎟ ⎜⎟ ⎝⎠ . 13. () 12 n x , x , , x 0,n 3>≥, ()() ()() 22 22 123 234 n1 n 1 n 1 2 12 3 23 4 n1n 1 n1 2 xxx xxx xxx xxx n xx x xx x x x x x x x − − ++ ++ +++ +≥ ++ ++ . Solution. We set, ()() ()() 22 22 123 234 n1 n 1 n 1 2 12 3 23 4 n1n 1 n1 2 xxx xxx xxx xxx A xx x xx x x x x xx x − − ++ ++ =+++ + ++ ++ . Applying the AM – GM Inequality we have () () () () 22 22 123 234 n1 n 1 n 1 2 12 3 23 4 n1n 1 n1 2 xxx xxx xxx xxx A n 1 1 1 1 xx x xx x x x x x x x − − ⎡⎤⎡⎤⎡ ⎤⎡⎤ ++ ++ += ++ +++ ++ + ⎢⎥⎢⎥⎢ ⎥⎢⎥ ++ ++ ⎣⎦⎣⎦⎣ ⎦⎣⎦ ()() () ()() () ( ) ( ) () ()() () 1213 2324 n1nn11 n1n2 12 3 23 4 n1n 1 n1 2 xxxx xxxx x xx x xxxx xx x xx x x x x xx x −− − ++ ++ + + ++ =+ ++ + ++ + + ()( )( )( ) n 13 24 n11 n2 1324 n11n 2 n n 12 n1n 12 n1n 2xxxx xxxxx x x x x x x x nn2n x x x x x x x x − − −− ++ ++ ≥≥= . Therefore, ()() ()() 22 22 123 234 n1 n 1 n 1 2 12 3 23 4 n1n 1 n1 2 xxx xxx xxx xxx n xx x xx x x x x xx x − − ++ ++ +++ +≥ ++ ++ . 14. () ≤≤1a,b,c2, () 111 abc 10 abc ⎛⎞ + +++≤ ⎜⎟ ⎝⎠ . Solution. Without loss of generality, we can assume that 1abc2 ≤ ≤≤≤, we obtain, ab bc abbcac 11 11 0 2 bc ab bcabca ⎛⎞⎛⎞⎛⎞⎛⎞ − − +− − ≥⇔+++≤++ ⎜⎟⎜⎟⎜⎟⎜⎟ ⎝⎠⎝⎠⎝⎠⎝⎠ . Therefore, () 111 abbc ac ac abc 3 52 abc bcab ca ca ⎛⎞⎛ ⎞ ⎛⎞ ++ ++ =+ +++ ++≤+ + ⎜⎟⎜ ⎟ ⎜⎟ ⎝⎠⎝ ⎠ ⎝⎠ . On the other hand, ⎛⎞⎛ ⎞ ⎛⎞ ≤≤⇒ − − ≤⇒ +≤ ⇒+≤ ⎜⎟⎜ ⎟ ⎜⎟ ⎝⎠⎝ ⎠ ⎝⎠ 2 1a a1a a 5a ac5 12 0 1. 2c c2c c 2c ca2 . Thus, () 111 abc 10 abc ⎛⎞ + +++≤ ⎜⎟ ⎝⎠ . 15. () a,b,c,d 0> , 2222 22 22 4 abcdabcd bcda abcd + ++ +++≥ . Solution. Applying the AM – GM Inequality we get 222 6 8 222 222 4 abc a 8a 3. 2. 2 8 bcd bcd abcd +++≥ = , 222 6 8 222 222 4 bcd b 8b 3. 2. 2 8 cda cda abcd +++≥ = , 222 6 8 222 222 4 cda c 8c 3. 2. 2 8 dab dab abcd +++≥ = , 222 6 8 222 222 4 dab d 8d 3. 2. 2 8 abc abc abcd +++≥ = . Adding these four inequalities, we obtain 2222 22 22 444 a b c d abcd abcd abcd 68862 bcda abcd abcd abcd ⎛⎞ + ++ +++ +++ ⎛⎞⎛⎞⎛⎞ +++ +≥ = + ⎜⎟ ⎜⎟⎜⎟⎜⎟ ⎝⎠⎝⎠⎝⎠ ⎝⎠ 4 444 abcd 4abcd abcd 62.68 abcd abcd abcd +++ +++ ⎛⎞ ⎛⎞ ≥+=+ ⎜⎟ ⎜⎟ ⎝⎠ ⎝⎠ . Thus, 2222 22 22 4 abcdabcd bcda abcd + ++ +++≥ . 16. () 0x2≤≤ , −+ +≤ 33 4 4x x x x 3 3 . Solution. Applying the Cauchy – Buniakowski Inequality we get ( ) () () ⎡⎤ −+ + = − + + ≤ + − ++ = ⎣⎦ 33 3 3 33 11 4x x x x 2 8x 2x 2 x x 2 4 8x 2x x x 22 () ()() 3 22 2 2 22 4 4 4 44 2x 9x 9x 16 6 .2x 9 x 33 23 222 ⎛⎞ +− +− ⎜⎟ =−= = ⎜⎟ ⎝⎠ . 17. () x ∈  , + −≤2sinx 15 10 2cosx 6. Solution. Applying the Cauchy – Buniakowski Inequality we get () ()() ⎡⎤ +− ≤+ +− = − +≤ ⎢⎥ ⎣⎦ 2 2 2 sin x 15 10 2 cosx 1 5 2sin x 3 2 2 cosx 6 6 2 cosx 1 6 . 18. () 222 x, y,z 0,x y z 1,n + >++=∈ , ( ) + + ++≥ −−− 2n 2n 2n 2n 2n 1 2n 1 xyz 1x 1y 1z 2n . Solution. We set () () () 2n ft t1 t , t 0,1=− ∈ . It is easy to show that () ( ) () () () () + ⎛⎞ =− + = ⇔= ⇒ ≤ ⇒ − ≤ ⎜⎟ + +++ ⎝⎠ 2n 1 2n 2n 2n 2n 11 2n f' t 1 2n 1 t , f' t 0 t f t f t 1 t 2n 1 2n 1 2n 1 2n 1 Since 0x,y,z1<<, thus () () 2n 2n 2n 1 2n 1 1 , 2n x1 x + + ≥ − () ( ) 2n 2n 2n 1 2n 1 1 , 2n y1 y + + ≥ − () () 2n 2n 2n 1 2n 1 1 2n z1 z ++ ≥ − [...]... b c 1 c a 3 a b b c 3 c a 1 b c 1 c a 3 17 2 Second solution Applying the Minkowski Inequality and the AM – GM Inequality we get 1 2 a b b c 1 2 1 2 c c a a b c a b 1 a b 2 2 2 2 3 36 3 a b a b b c c a , x 2 2y 2 46 x, y, z 3 36 2x 2 z 2 y 2 z 2 3x 2 y 2 z 2 b c 3 3 17 2 c a 9 , xyz 1 Solution Applying the AM – GM Inequality we get 9 x2 y2 y2 x2z2 x2 z2 x2z2 y2z2 x2 y2z2 x 2 y2z2 x2 y2z2 9 9 x12 y12... Cauchy – Buniakowski Inequality we get a2 2b 2 1 a b c 2 1 2 2 ab a b a b 2 a 4 a3 4 4 b 4 b3 2 a b a a b b 2 a b a a b b 2 a a b b Thus, a b 70 x, y 0, x 2 y2 b a 2 1 y 3 2 1 , 1 x x y Solution Applying the AM – GM Inequality we get x2 xy y2 1 2 2 1 xy 2 Thus, x y 71 x 1 x 1 y x 1 2x 1 1 y 2x 2y 1 2y 66 1 2 xy 4 66 1 23 3 2 0 , 2 2 x 1 x x 9 Solution Applying the Cauchy – Buniakowski Inequality we get... Solution Applying the AM – GM Inequality we get 2a 32 a b 2b 3 2 2 a b 2b 3 2 2b 3 2 32 a b 2b 3 2 3 2 44 2 a b 2b 3 32 4 a b 2b 3 73 a, b 0, a b 3 4 4 16 3 5 2 4 , 6 10 18 a b 2a 3b Solution Applying the AM – GM Inequality we get 6 10 a b 2a 3b 2 a b 4 b b 6 1 a 1 b 4 b 2.4 2 b 6 4 a b 18 74 a, b, c 0, a b c 3 , 5 5 2a b 2b c 5 35 3 2c a Solution Applying the AM – GM Inequality we get 5 2a b 1 5... Solution Applying the AM – GM Inequality we get x y y z z x 1 1 1 x y z xy x y z xy x y z xy 3 3 3 1 yz x y z 3 8 8 xyz 6 1 yz x y z 3 x y z 36 6 8 4 xyz 1 yz x y z 3 3 x y z 27 3 Thus, 16xyz x y z 35 x, y, z , 6 2 33 x y 4 y z 4 z x 4 , sinx siny siny sinz sinz sinx sinz sinx siny 2 1 1 2 Solution We set a sin x, b sin y, c sin z and observe that a, b, c 1 ,1 2 xz 2 zx 2 The inequality is equivalent... z3 2 x3 y3 z3 x2 y2 z2 x3 y3 z3 2 , cos cos cos 5 Solution Applying the Cauchy – Buniakowski Inequality we get cos cos 3 cos2 cos cos2 3 3 cos2 3 3 sin sin 3 sin2 sin sin2 sin2 3 3 4 3 2 5 45 a, b, c 0,a b c 6 , 1 a2 b c b2 1 c a c2 1 3 17 a b 2 Solution First solution Applying the Cauchy – Buniakowski Inequality we get 2 2 a 1 2 16a b c 16 1 2 2 2 a a a 1 1 a a a b c 16 16 16 b c 17 4 4 4 16 16... Solution We have, a2 b2 1 a b 1 a 1 b a b a2 b2 1 1 a 1 b 2 1 a 1 b a b 1 1 1 1 a 1 b a b 2 Applying the Cauchy – Buniakowski Inequality we get 1 1 2 1 1 1 1 1 b 1 a b 1 1 a 1 b a b 11 a 9 2 20 a, b, c 0, abc 1 , a 2 1 2b 2 3 b 2 1 2c2 3 c 2 1 2a2 3 1 2 Solution Applying the AM – GM Inequality we get a2 b2 2ab and b 2 1 2b Therefore, a2 2b2 3 2 ab b 1 2 a 1 1 2 2b 3 2 ab b 1 Similarly, 1 1 1 and 2 2... xyz xyz 1 0, xyzt 1 , 1 x yz zt ty 3 1 y xz zt tx 3 1 z xt ty yx 3 1 t xy yz zx 3 4 3 Solution We set a 1 1 1 1 ,b ,c ,d and observe that abcd 1 The inequality can rewrite x y z t a2 b c d b2 c2 d2 c d a d a b a b c Applying the Cauchy – Buniakowski Inequality we get 4 3 a2 b c d 48 k, n b2 c d a c2 d a b ,a1 , a2 , , ak d2 a b c 0,a1 a2 n a1 3 a b c d ak n a1 a b c d 3 4 4 abcd 3 4 3 k , n a2... 2x 2y 1 A B cos2 3 3 3 1 10 3 3 3 0 , 2x y 10 3 Solution Applying the Cauchy – Buniakowski Inequality we get 2x y 3 2 x 1 51 0 x, y, z 1, x y z y 1 5 x 1 y 1 2 3 , 2 x2 Solution 2 y2 z2 5 4 5 2 10 or 2x y 10 3 1 1, , 0 and f t 2 It is easy to show that x, y, z t 2 is convex on 0, Applying the Karamata Inequality we get f x f y f z f 0 c a b 1 2 f 2 f 1 or x 2 5 4 y2 z2 52 a, b, c 0 , a b c b... 15 2 13 a 2 b 2 c2 , a2 b 2 c3 a2 b2 b 2 c2 a3 b2 c2 c2 a2 b 3 c2 a2 3 2 Solution 1 ,b x We set a 1 ,c y 1 and observe that x, y,z z 0, x 2 y2 z2 1 The inequality can rewrite x3 y 2 y3 z 2 z 2 z3 x 2 x 2 y 3 2 2 Applying the Cauchy – Buniakowski Inequality we get 2 x2 y2 z x x 2 2 y x3 y2 2 z y3 z2 z2 x y2 z2 2 z3 x2 x2 y y x x y2 z2 y2 2 z z z y x2 z2 2 y z2 x2 z x2 y y2 2 x 2 z y2 x2 On the... , 3 a k b c Solution Applying the AM – GM Inequality we get c a c a b k 3 2k 1 3 1 a 2 1 2 a b c 3 2a b c 3 b c 2a b c 3 2 3 a 2 3 b c 3 a 4 a b c Similarly, 2 3 b 3 b c and 3 c a 4 a b c c a 2 3 3 3 c 4 a b c Adding these three inequalities, we obtain k a b c If k 2 , then we set m 3 k b k c c a 3 k 2k a b 2 3 3 k, m 1 2 Applying the well – known Inequality: xm 2 3 a x ym 3 m x y z 3 2 3 . 100 INEQUALITY PROBLEMS ***** Cao Minh Quang 05/11/2006 Most of these problems were collected from the Mathematics and Youth Magazine. , c z=== and observe that ab bc ca 1 + +=. The inequality is equivalent to + +≥ +++ 222 abc1 ab bc ca 2 . Applying the Cauchy – Buniakowski Inequality we get ()()()( ) ⎡⎤ ++ +++++≥++ ⎡⎤ ⎢⎥ ⎣⎦ +++ ⎣⎦ 222 2 abc ab. 2, , n . The inequality is equivalent to ()() ( ) 12 n 12 n 1a 1a 1a 1 n 1 na a a −+−++− ≤ + , or () ( ) 2 12 n 12n 12n a a a 1 a a a n a a a+++ + ≥ . Applying the AM – GM Inequality we

Ngày đăng: 18/05/2015, 16:13

TỪ KHÓA LIÊN QUAN