4'- TRUoNG rHPr LE xoev Ot 1'fff 1'fftl DAI HOC - f,AN fff Nim hec z0t0-z0n MU*, ,oU*rlio\rfrort f::ryNurEN Cf,u 1: Cho him s6 y = -r' + 3x2 -4. (l) 1. Khio s6t sU bii5n thi€n vi v€ <16 thi (C) cua him sO (t). 2. Chrmg minh r6ng: Mgi duong thqg qua I(l; -2).v6ihp s6 g6c k < 3 dAu cit gO thi (C) tei ba di6m ph6n bigt trong d6 mQt diiAm h trung dii6m cria ttoan thAng n6i trai tti€m cdnl4i. Ciu2z l. Giaiphuongtrinh: tanx.tan3x a3=-2 - . I + cos2x 2. Giii phuong trinh: !* * =2. x ,12-x' 3 . Giai bAt phuong trinh: logo (9' - l).log* ,?, = j '22 Ciu 3: Tinh tich ph6n: f = Jd+sinr.* 0 Cffu 4: Cho hinh vu6ng ABCD c6 cenh ld ali. L6y H thuQc do4n AC sao cho ATI: a/2. Kd Hx *Qng g6c vqr (ABCD) vi 6y <Ii6m S thuQc Hx sao cho g6c ,lSC Uing 45o. Tinh b6n kfnh mat cdu ngo4i ti€p S.ABCD. ry, Ciu 5: ciai he phuong trinh: {f1. J7;)0 + '[v' +t) =t lzt' - yt +(l+3x212' +3x.22r * ! =2 CAU 6: l. Trong mat ph6ng vdi hq trgc to4 tlQ Oxy cho iludrng trdn (C): x ' + y' - 4x + 6y =36 . Dudng thang A qua f(-2:.0) vi cit duong trdn t4i hai <li€m P, Q. Vi6t phuong trinh cria A sao cho doan PQ ngin nhdt. 2. Trong kh6ng gian v6i hQ tryc to4 ttQ axyz. Cho A (-5; -3; 2); B(-2;0; -$;C(1; 0; -1). Lfp phucmg trinh mat phing qua OA vi chia tti di$n OABC thanh 2 ph,an c6 t1i s6 th€ tich bAng 2. (DiCm B thu$c ph6n c6 the tich lcm hon), www.violet.vn/haimathlx www.violet.vn/haimathlx \rnr-roNc THPT r'fl xoaY ^^- NA- hgc 2010-2011 dudngthing !=x' Ciu II 4k_" Dt rrrr rHU DAr Hgg;l'AN rrl 7 Ban co oa"" t' n'roo inii 1oful Thdi gian ldm bdi ttti pntii'r'0"erc thdi gian giaod€ Ciuf. i. fnao s6t vdvd dd thi him sO *t +(m+Z)x-m co 2. Cho ! = x3 -6xz +9x ' AO tfri (c')vd duong tnAng d"v=-x'4'lfim €lua ,, dC duong th6ng dvd x+l r dvir(c",)c6t nhau t4i hai di0m phdn biet d6i ximg nhau ar=L ta x'e' J-+ .) {) *fi 1. TinhtichPhdn/ = I# lG*z)' 2. Nhan dang o1,' -, A+B Mncbi6t: atan A + b tan B = lo + b)tan:l- *[i]-@ 3. Tinh gioi h4n J =lill Ciu III 1. Giai Phuong trinh: x-1 (.F *r)' *: i(r-'l , )/. )r-q;;i , j *+&'T]t z.chohQphuonu, {f7: F=o . Tim ,, eC hQ dd cho c6 nghiQmthgc' "uotl. rrong hg truc rou uo.rrryIlS?.* #:r. Dubng thrngBcc6 phuong trinhr- v - 4 =o ; dinh/gr6m.tr€n dudng thdngx+zv -3 =o'Di0mM(z;o) le trung di.m cua Ac. Tim to11O "* i* ro ^ yl.'^,!i6iolen tigh c11n6 bhne 2' 2. rrong mflt phing hefruc ;il' ;;' 'vi6t;;;;;i'ior' m[t phing (or) chira trvc oxvd t4o vdi m{t nr'a"e Wi tu o*1"9 :*n -f" * v +22 = am6t g6c oo0 ' 3. Cho ttl di€.n lncp|rJno*9:* eiui z.a;,yg thang AB,CDbhng d, g6c gifra chirngb6nga'blftts=o'ci=l'ir"rtth€tichtirdiQnABCD' HCt Hs vdt€n thi sinh: """"""""':"": """""'SO b6o danh:';""""""" A;;O;;i thi khong gi6i thich gi th€m' www.violet.vn/haimathlx www.violet.vn/haimathlx . cdnl4i. Ciu2z l. Giaiphuongtrinh: tanx.tan3x a3= -2 - . I + cos2x 2. Giii phuong trinh: !* * =2. x , 12- x' 3 . Giai bAt phuong trinh: logo (9' - l).log* ,?, = j &apos ;22 Ciu. -r' + 3x2 -4. (l) 1. Khio s6t sU bii5n thi n vi v€ <16 thi (C) cua him sO (t). 2. Chrmg minh r6ng: Mgi duong thqg qua I(l; -2) .v6ihp s6 g6c k < 3 dAu cit gO thi (C). yt +(l+3x2 12& apos; +3x .22 r * ! =2 CAU 6: l. Trong mat ph6ng vdi hq trgc to4 tlQ Oxy cho iludrng trdn (C): x ' + y' - 4x + 6y =36 . Dudng thang A qua f( -2: .0) vi