1. Trang chủ
  2. » Giáo án - Bài giảng

đề thi thử đại học (có đáp án)

5 131 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 498,72 KB

Nội dung

x y O 1 GỢI Ý GIẢI A. PHẦN CHUNG: Câu I. (2đ) 1. (1đ). Khảo sát sự biến thiên và vẽ đồ thị hàm số (C 1 ). Hàm số (C 1 ) có dạng 3 3 2 y x x    . Tập xác định: D   . Sự biến thiên 2 ' 3 3 0 1 y x x       . Bảng biến thiên: Kết luận: Đồ thị nhận điểm   0; 2 I làm tâm đối xứng. 2. Ta có 2 ' 3 3 y x m   . Để hàm số có cực đại, cực tiểu thì phương trình ' 0 y  có hai nghiệm phân biệt 0 m   . Vì 1 . ' 2 2 3 y x y mx    nên đường thẳng  đi qua cực đại, cực tiểu của đồ thị hàm số có phương trình là 2 2 y mx    . Ta có   2 2 1 , 1 4 1 m d I R m       (vì m>0), chứng tỏ đường thẳng  luôn cắt đường tròn tâm   1;1 I , bán kính R=1 tại hai điểm A và B phân biệt. Với 1 2 m  , đường thẳng  không đi qua I (A, I, B không thẳng hàng) ta có:  2 1 1 1 . .sin 2 2 2 ABI S IA IB AIB R     . Cho nên diện tích tam giác IAB đạt giá trị lớn nhất bằng 2 khi  sin 1 AIB  hay tam giác ABI vuông cân tại I. 1 2 2 R IH   (H là trung điểm AB) 2 2 2 1 1 2 3 4 8 1 0 22 4 1 m m m m m            Câu II (2đ) 1. (1đ) Giải phương trình: 2 1 sin cos 2cos 2 cos 2sin cos 2cos 2 4 2 2 2 2 4 cos . cos sin cos cos 2 cos 1 0 2 2 2 2 4 2 4 2 3 cos 0 2 4 2 4 2 2 1 2 cos 2 4 2 2 x x x x x x x x x x x x x x x k x k x x k                                                                                               2 4 2 k x k               x y’ y  -1 1  0 0 + - + 4 0   www.VNMATH.com 2 (1đ) Giải hệ: Điều kiện x y  . Ta có:     2 2 2 2 3 3 2 2 x y xy x y x y       . Do đó hệ trở thành:           2 2 2 1 2 20 1 5 x y x y x y x y x y x y                    Đặt 1 ;u x y v x y x y       , hệ trở thành     2 2 2 22 1 5 2 u v u v          Từ (2) ta rút ra v=5-u và thế (2) vào (1), ta có   2 2 2 3 2 5 22 3 10 3 0 1 3 u u u u u u               . TH1: 3 3 2 1 2 2 1 x y u x x y v y x y                        TH2: 1 1 4 10 3 3 3 1 14 14 3 10 3 3 3 x y u x x y v y x y                                     Vậy hệ đã cho có 3 nghiệm. Câu III (1đ) 2 sin cos sin cos x x I dx x x      Ta biến đổi: 2 cos 2 1 2sin sin cos sin 2 2 4 sin cos 2 2 sin 2 2 sin 2 2 sin 4 4 4 x x x x x x x x x x                                              Đặt 4 t x    và đưa tích phân về 3 3 3 2 4 4 4 1 2 4 4 4 1 1 2sin 1 1 1 1 sin sin sin 2 2 2 2 2 2 2 2 t dt I dt tdt I I t t                , trong đó:     3 3 3 3 4 4 4 4 1 2 2 4 4 4 4 cos sin 1 1 1 cos sin 1 cos cos 1 2 cos 1 cos 1 d t dt tdt I d t t t t t t                            3 4 4 1 cos 1 2 1 ln | ln 2 cos 1 2 1 t t         ; 3 3 4 4 2 4 4 sin cos | 2 I tdt t          . Do đó 1 2 1 1 1 2 1 ln 1 2 2 2 2 2 2 1 I I I       . Câu IV (1đ): Vì S.ABCD là hình chóp tứ giác đều nên SO AC  , SO CD    SO ABCD CD SO CD      . www.VNMATH.com A K H S D C B O G I Gọi K là trung điểm của CD. Khi đó SK CD  và   CD SOK  . Từ G, kẻ , vaø do GH SK GH CD     GH SCD   hay 3 6 a GH  (theo gt). Gọi I là hình chiếu của O lên SK, khi đó , OI SK OI CD     OI SCD    OI là khoảng cách cần tìm. Ta có: 2 3 3 3 3 . 3 2 2 6 4 GH SG a a OI GH OI SO       Mặt khác, trong tam giác OIK,   3 sin 60 2 o OI OKI OKI OK     . 3 tan 60 .tan 60 2 o o SO a SO OK OK     . Đáy ABCD là hình vuông cạnh a nên   2 ñvdt ABCD S a Vậy   3 2 . 1 3 . 3 . . 3 2 6 S ABCD a a V a  ñvtt Câu V (1đ) Từ giả thiết ta có 0 , , 3 x y z   . Khi đó: 2 1 1 1 1 1 1 1 2 2 2 x x x x x x x x x x             . Tương tự 2 1 1 1 2 2 y y y y      ; 2 1 1 1 2 2 z z z z      . Cộng vế với vế các bất đẳng thức trên ta được: 1 1 1 1 3 2 2 P x y z x y z              Ta lại có 0 3 x y z     , theo bất đẳng thức Cauchy-Swartz: 1 1 1 9 3 x y z x y z       Do đó 3 3 3 3 2 2 P     . Dấu bằng xảy ra khi x=y=z=1. Vậy P max =3, đạt được khi x=y=z=1. B. PHẦN RIÊNG: I. Theo chương trình chuẩn: Câu VIa. 1) Viết lại phương trình đường tròn (C):     2 2 3 1 4 x y     , từ đó (C) có tâm   3; 1 I  , bán kính 2 R  . Đường thẳng  đi qua điểm   2;0 M cắt (C) tại A, B sao cho M là trung điểm AB, do đó   1;1 IM    là một vector pháp tuyến của đường thẳng  ; phương trình đường thẳng  là     1. 2 1. 0 0 2 0 x y x y           . 2) Gọi   ; ; n A B C   là một vector pháp tuyến của mặt phẳng (P), phương trình mặt phẳng (P) có dạng     1 2 0 2 0 Ax B y C z Ax By Cz B C            .     1;1;3 3 2 0 N P A B C B C          2 A B C    . Như vậy phương trình mặt phẳng (P) trở thành   2 2 0 B C x By Cz B C       . Khoảng cách từ K đến mặt phẳng (P): www.VNMATH.com   2 2 2 2 2 1 1 1 , 2 4 2 4 2 4 4 2 1 2 B d K P B C BC C C C B B B                 . Dấu bằng xảy ra khi B=-C. Từ đó, phương trình mặt phẳng (P) trở thành: 3 0 3 0 Cx Cy Cz C x y z           . Câu VIIa. Điều kiện x>0. Đặt 3 log t x  , phương trình trở thành   2 1 4 16 0 x t xt     (*).     2 2 4 16 1 2 4 x x x          3 3 1 log 4 4 2 2 4 81 * 4 4 1 log 3 1 1 haøm VT ñoàng bieán, VP nghòch bieán x t x x x t x t x x x x                                II. Theo chương trình nâng cao: Câu VIb. 1) Gọi phương trình đường thẳng  đi qua 1 1; 2 M       có dạng 2 2 1 , 0 1 2 x at a b y bt            Phương trình hoành độ giao điểm của  và (E) là:       2 2 2 2 2 1 1 1 4 2 2 2 0 4 2 at bt a b t a b t                 . Vì   2 2 2 0 ac a b     , phương trình có hai nghiệm phân biệt t 1 , t 2 , nên  luôn cắt (E) tại hai điểm A, B phân biệt. Khi đó   1 2 2 2 2 2 4 a b t t a b      Gọi 1 1 2 2 1 1 1 ; ; 1 ; 2 2 A at bt B at bt                 . Ta có   1 2 1 2 2 1 0 2 0 2 2 A B M a t t x x x t t a b               1 2 1 1 2 0 2 2 2 A B M b t t y y y a b          . Chọn 1 b   ; 2 a  , phương trình trở thành 1 2 1 2 x t y t          . 2) Viết lại phương trình mặt cầu:       2 2 2 1 2 3 81 x y z       , mặt cầu có tâm   1;2;3 I , bán kính R=9. Phương trình mặt phẳng (P) đi qua A có dạng:     13 1 0 13 0 a x b y cz ax by cz b a            .   12 4 13 0 4 B P a b c a a b c          . Phương trình mặt phẳng (P) trở thành   4 12 52 0 b c x by cz b c       . (P) tiếp xúc với mặt cầu (S) khi và chỉ khi:   2 2 2 2 2 2 2 2 9 5 , 9 9 2 8 17 4 2 8 17 10 25 2 8 0 2 b c d I P b bc c b c b bc c b bc c b bc c b c                        Vậy (P) có phương trình 8 4 100 0 x y z     hoặc 2 2 28 0 x y z     . www.VNMATH.com Câu VIIb. Đặt 2 0 x t   , phương trình trở thành   2 3. 3 10 . 3 0 t x t x      có       2 2 2 3 10 12 3 9 48 64 3 8 x x x x x           . Do đó         10 3 3 8 1 6 3 10 3 3 8 3 6 x x t x x t x                  hay 2 1 1 2 log 3 3 2 3 1 ( 3 y=2 ñoàng bieán, nghòch bieán) x x x x x x y x                   www.VNMATH.com . sát sự biến thi n và vẽ đồ thị hàm số (C 1 ). Hàm số (C 1 ) có dạng 3 3 2 y x x    . Tập xác định: D   . Sự biến thi n 2 ' 3 3 0 1 y x x       . Bảng biến thi n: Kết.  . Để hàm số có cực đại, cực tiểu thì phương trình ' 0 y  có hai nghiệm phân biệt 0 m   . Vì 1 . ' 2 2 3 y x y mx    nên đường thẳng  đi qua cực đại, cực tiểu của đồ. 1 1 2 1 ln 1 2 2 2 2 2 2 1 I I I       . Câu IV (1đ): Vì S.ABCD là hình chóp tứ giác đều nên SO AC  , SO CD    SO ABCD CD SO CD      . www.VNMATH.com A K H S D

Ngày đăng: 25/04/2015, 22:00

TỪ KHÓA LIÊN QUAN

w