2 Traàn Quang Lost time is never found again30... 3 Traàn Quang Time goes, you say?. Alas, time stays, we goPhương pháp4: Đưa về phương trình tích và Đặt ẩn phụ không toàn phần... 4 T
Trang 11 Traàn Quang Time goes, you say? Ah, no! Alas, time stays, we go
PHÖÔNG TRÌNH MUÕ
Phương pháp 1: Đưa về cùng cơ số
1 x2 3x 2 x 1
2 x2 6x 5/2
3 3 x 2 4x 1 / 243
4
32 0 25 128,
5 5x34 1252x8 3/
6 4x 82x1
7 2 3x x 1.5x 2 12
8 2 9 27
x x
9 x
x x
2
1 1
3 2
10 2 2 5 2 1
3 x x 27 x
11 4.9x1 3 22x1
12 (2 3)3x 1 (2 3)5x 8
13
x 1
( 5 2) ( 5 2)
14
1 3
3 1
( 10 3) ( 10 3)
x x
x x
15
3
1 2 1 3
2x 4 x 8x 2 2 0 125 ,
16 2x3 4x x3 0 125, 4 23
17
4
5 0,2 125.0, 04
x
18
4
x
19
2( 1)
1
2 x 3.2x 7
20 2 33x x 23x1.3x1 192
21
2
x
x x
22 2x21 3x2 3x21 2x22
23
2 2
x
x
24 (x2 x 1)x2 1 1
25
2 3
3 3
1
3
x
x x x x
27 x 4 x 3 x x 2
28 x 1 x 2 x 4 x 3
29 2x 2x 1 2x 2 3x 3x 1 3x 2
30 2 9 3 2
2 2 2
2
2
1 2 cos
2
x
Phương pháp 2: Đặt ẩn phụ
1 2 16 15 4 8 0 x x
2 9x8.3x 7 0
3 32x 8 4.3x 5 27 0
4 4x1 2x4 2x2 6
4x 6.2x 8 0
6
2
7 6.0, 7 7 100
x
x
7
3
64x 2 x 12 0
4x x 5.2x x 6 0
9 4 x2 1610.2 x2
25 x 5 4.x
11 2 log ( 3 2 16) log ( 3 2 16) 1
12 9x2 x 110.3x2 x 2 1 0
13 22x 6 2x 7 17 0
14 10
53 x 103 x 84
.4 21 13.4 2
x x
16 3 2cos 1 cos
4 x7.4 x 2 0
17 4x x25 12 2 x 1 x25 8 0
18 32x32x 30
5 5 26
20 D032x2x 22 x x2 3
21 9sin2x 9cos2x 10
5.2 x 3.2 x 7 0
23 5x1 5.0,2x2 26
4x4 x 3.2x x
25
sin cos
26 cos 2 cos2
4 x4 x 3
28 9 x2 2x 1 34.152x x 2 252x x 2 1 0
29
Trang 22 Traàn Quang Lost time is never found again
30
6.9x13.6x 6.4x 0
25x 9x 15x 0
32 A063.8x 4.12x 18x 2.27x 0
33 2.22x 9.14x 7.72x 0
34 6.9 13.6x x6.4x 0
35 27x12x 2.8x
36 4.3x 9.2x 5.6x/2
37
15.25x 34.15x 15.9x 0
38 25x12.2x6, 25.0,16x 0
39 125x 50x 23x1
40 8x18x 2.27x
41 2 3 x 2 3x 14
42 2 3 x 2 3x 2
(2 3) (2 3) 4 0
45 B07( 2 1) x ( 2 1) x 2 2 0
46 ( 3 2)x (7 4 3)(2 3)x 4(2 3)
47 3 5 x 3 5x 7.2x 0
48 (3 5)x 16(3 5)x 2x 3
50 26 15 3 2 7 4 3 2 2 3 1
2
52 7 3 5 x 7 3 5x 14.2x
53 ( 2 3) x ( 2 3) x 4
54
55 5 24 x 5 24x 10
56 7 5 21 x 5 21x 2x 3
58 52 6tanx 52 6tanx 10
x
61 3
16
64 8x 1 8.0,53x 6.2x 2 125 24.0,5 x
65 53x 9.5x 27.(125x 5x)64
67 4.33x 3x1 19x
68 5.32x17.3x1 16.3x 9x1 0
69 4.23x 3.2x 122x2 24x2
10(2 3)
72 23x17.22x7.2x 2 0
Phương pháp 3:
Sử dụng tính đơn điệu của hàm số
1 4x9x 25x
2 3x 4x 5x
3 3x x 4 0
x
4 1
5 3x2 2x 2 2 2x x2
6 2x 3x/2 1
7 3.16x 2.8x 5.36x
8
x x
x x
20 2 4 5
9 ►
1/
2, 9
x
11 3 2x ( 3 2 )x ( 10 )x
5 2 2 3 5
x
2
4 2 2
6 2 1 7
9
3x ( x 4)3x 1 0
17 ►3 2x x 3x 2 x 1
x
x
20 2013x 2015x 2.2014x
Trang 33 Traàn Quang Time goes, you say? Ah, no! Alas, time stays, we go
Phương pháp4:
Đưa về phương trình tích và Đặt ẩn phụ
không toàn phần
6 1 3
2
2 8.3x + 3.2x = 24 + 6x
5x 7x 175x350
4 D062x2x 4.2x2x22x 40
x x x x
7 12.3x 3.15x 5x120
8 4x2 3 2x 4x2 6 5x 42x2 3 7x 1
9 32x 2x 9.3x 9.2x 0
10 2 32x 2.12x0
x x
11 9x 2.x2.3x 2x50
12 3.25 2 3 10.5 2 3 0
x
x
13 4x2x 21x2 2 x12 1
14 22x21 9.2x2x 22x2 0
15 x2.2x 8 2x2 2x2
17 x2.2x12x 3 2x2.2x 3 42x1
18 9x2x2 3 x2x 5 0
x2 3 2 x2 1 2 0
21 3.16x2 (3 x 10)4x2 3 x 0
4 x 2 x 2x 16 0
23 ►54x 1 25.53x 26.52x 5x 1 5 0
24 ►81x 4.27x 10.9x 4.3x 1 3 0
Phương pháp5: Lôgarit hóa
Phương pháp 6:
Hàm đặc trưng và PP đánh giá
1 22x1 32x 52x1 2x 3x1 5x2
2
2
1 1 2
2
2
x
3 2x1 4x x 1
1 2
4 2
x
x x
5 2x23.cosx 2x24.cos3x 7.cos3x
6 2 3 x1 74 3x x1
7 2x x 1
8 3x 2x 1
9
x
x
1
1
10 32 22 2 3 1 2 1 1
x
x x x x x
x
cos
2
2 2
12 3x2 cos2x
13 3cos2x 3 x2
4
x
2 x x
x x
17 4x 6x 25 x 2
18 3x 5x 6 2
x
19 3x 2x 3x2
20 3x 2x 3x2 2
21 2x2 3x2 4x2 3
22 2x2 3x2 7x2 8x2 41x2
23 2x2 4.10x2 7 3x2
24 8.3x 3.2x 24 6 x
PHÖÔNG TRÌNH LOGARIT
Phương pháp 1: Đưa về cùng cơ số
1 log (52 x 1) 4
5 log x(x 2x65)2
3 logx2 x 2x1
log (x 1) log (x 1)
9
4 1 3 2
x x
10 23 32
11
2 5 6 3
12
2
5 3x x 1
13 2x4.3x2 22x1.33x2
14
3
2
3 2 6
x
x x
15
1
x
x x
2x 3x x 3x x 2x
1 5 x x18x 100
2
2
x
x x
4 4.9x13 22x1
5
2 2
2x x.3x 1,5
6
2 1 1
5 2 50
x
x x
7 34x 43x
8 57x 75x
Trang 44 Traàn Quang Lost time is never found again
5 log (5 x 3) log ( 25 x6)
6 log 3 2 1
2
x xx
7 log2 6 x log 32 x1
2
2 log 36
log 4
x x
9 log3xlog9xlog27x11
10 log3xlog (3 x2) 1
11 log (9 x 8) log (3 x26) 2 0
log (x 3) log (6x10) 1 0
log( 1) log( 2 1) log
2
log xlog xlog x 5
log (1 x 1) 3log x400
5 5
log (4x 6) log (2 x 2) 2
3
log x log x log 3x 3
log (x 1) log 5 log (x 2) 2log (x 2)
3
log logxlog(logx 2)0
log 1 x 3log 1 x 2 log 1x
22 log (4 x 3) log (2 x 7) 2 0
8
log (x 2) 6log 3x 5 2
2
2
log x 1 log (3x)log (x1)
2
2 log 2x2 log 9x 1 1
26 log (4 x2).log 2 1x
27 2
9 log 27.logx 4
log (x ) log (x ) 3
log (x 3x 2) log (x 7x 12) 3 log 3
2log xlog x.log ( 2x 1 1)
31 log5xlog3xlog 3.log 2255 9
log (x1) 2 log 4 x log (x4)
log ( x 1 x) log ( x 1 x) 0
x
2 1
log x 4 2
5 log log ( 25) 0
5
x
x x
38 log55x 4 1 x
2
3
x
x
log x 1 2 log 4 x log 4 x
1 1
7 2
x
x x
3
1 log 3 1 2
2
x xx
2log ( x 2) log ( x 4) 0
44 xlog 9 9logx 6
45 5logx 50 log5
x
46
2
log
1
x
47
3
log x x x x
log 10 1 log 4
log 2 log (3 2) 2 log 5
x
49 log29 2
1 3
x
x
50 log (4x4) x log (2x 13)
2
2
1
52 D07
1 log (4 15.2 27) 2log 0
4.2 3
x
2
log 3 2 2 log16 log 4
x x x
55
1
1
2 log 2 1 log 3 log 3 27 0
2
x
x
log 4x 1 log 2x 6
Trang 55 Traàn Quang Time goes, you say? Ah, no! Alas, time stays, we go
1 4 log 1 7 2.
1
2 1
2 1
x x
x x
1 log 2 log 1 log 1 3 log
2
x
log x x 1 log x x 1
log x x 1 log x x 1
2
log ( x 3) log (6 x 10) 1 0
2
log ( x 2) log x 4 x 4 9
3
4
1 log
x
x
x
3
1
66 log (22 x 4) x log2 2x 12 3
Phương pháp 2: Đặt ẩn phụ
1 log2x log x3 2 0
2 log22x2log2 x 2 0
3 3 log2xlog (8 ) 32 x 0
1
4
5 log (33 x1).log (33 x1 3) 6
6 log (55 x1).log (525 x1 5) 1
4
3
8 log (4 x1)2log (2 x1)3 25
9 4 log9xlog 3x 3
10 log(x1)16 log (2 x 1)
11 1 log ( 2 x 1) logx14
12 log 16x2 log2x643
13 log (33 x2).log 3 12x
14 log (22 ) log 2 x 2
x x x
5 log x log ( )x 1
x
16 log 2 2log 4x 2x log 2x8
2 3 27
16log x x3log x x 0
8
x
19 4 logx/2 x 2 log4x x2 3 log2x x3
20 log3/x2 log 23 x 1
21 3log 16x 4log16x 2log2x
22 logx/2 x2 40 log4x x 14 log16x x3 0
log x(6x 5x 1) log x(4x 4x 1) 2 0
log x (9 12 x 4x ) log x (6x 23x 21) 4
log x(2x x 1) logx (2x1) 4
26 4log(10 )x 6logx 2.3log(100x2)
27 log 2 2 log 6 2 log 4 2 2
4 xx 2.3 x
28 log2/x2 log 4 2 x3
29 log 4 logx x2 22 x 12
30 log2 x 4 log4 x 5 0
31 log23 x log23 x 1 5 0
32 log 3 logx 3xlog x3 log 3 x 1 / 2
2
34 log 3 x log 3 3 logx 33 3 6
35 log log4 2 x log log2 4 x 2
38 1 log(2 1) 2
2
1 log( 1)
1 log ( 1)
x
x x
39 1 log 2x 4 log4 x 2 4
40 CĐ08log (22 x 1) 6log2 x 1 2 0
Phương pháp 3.
Sử dụng tính đơn điệu của hàm số
1 log (5 x 3) 4 x
2 log (3 x 3) 8 x
3 0,5
log
log (x x 6) x log (x 2) 4
Trang 66 Traàn Quang Lost time is never found again
log(x x 12) x log(x 3) 5
6 log 2
10 log22x 1 log34x22
11 log3x 2 log2x 3 2
12 log (3 x 1) log (25 x 1) 2
13 4(x 2) log 3x 2 log 2x 3 15(x 1)
x
2
2 log ( 2) 6
2 1
Chứng minh : 2
nghiệm thực phân biệt
Phương pháp 4:
Phương trình tích và đặt ẩn phụ không
toàn phần
2
2 log x (x 1)log2 x 6 2x
2
3 2log log log 2 1 1
3 3 2
9 x x x
4
1
5 2
6 log2x.log3x 1 log2xlog3x
7 log2x.log3xlog2 xlog3x
8 log ( 4 x x2 1).log ( 5 x x2 1) log ( 20 x x2 1)
9
2
log x(x3).log x x 2 0
10
2
(log 3) 4 log 0
11 log .log log log2 3
3 3 3
2 x x x x
12 x 2log23x 1 4 x 1log3x 1 16 0
13 log2 1 5log3 1 2 6 0
3 x x x x
14 2 2 2 2 2
15 log2 x2log7x2log2 x.log7 x
16
2
log x(x12) log x 11 x 0
17
2
log 2( 1) log 4 0
18 2 3 5
log log log
log log log log log log
19
3
log log log log
2 3
x
20 (2 2)log2xx(2 2)log2x 1 x2
x x x x x x x x
22 log log2x 3x log3x3 log2x 3
23 2 2
3 log 1 2 logx 2 3 logx 2 2 log 1
x x x x
log xxlog x3 x/ 2 2 log x3 log x
y
Phương pháp 5: Mũ hóa
4 18
5
7 2 log log
3
21 log log
4
log ( x 2 x 1) log ( x 2 ) x
5 2log tan3 xlog sin2 x
6 log2xlog3x1
7 log5xlog3xlog15
8 log log2 2 x log log3 3 x
9 log log2 3 x log log3 2 x log log3 3 x
10 log log log2 3 4 x log log log4 3 2 x
11 log 92 2.3log2x log 32
12
3 2
3 log log 3
13
x
x
x
log 5
5 log
3 10
14
2
2
15
2 log 3log 4,5 2log
10
16 log 2 log 3 2 3log 2
2
2 log
2
Phương pháp 6:
PP đánh giá và dùng hàm đặc trưng
1
1
2
2
3 2
log 1
3 2 x x2 log (5 x2 x 4) log5x
4 ln(x2 x 1) ln(2x2 1) x2x
Trang 77 Traàn Quang Time goes, you say? Ah, no! Alas, time stays, we go
5
2
2
2 2
1
6
1
x x
x
7
2
2
2015 2
3
x x
x x
x x
8
2
2
3 2
3
9
2x .log ( x 1) 4x.(log x 1 1)
10
sin( )
x
3
8
log (4 4 4)
1
1
x
x
x
x
x x
Biện luận
A02: Cho phương trình
log x log x 1 2m 1 0 (1) (m là
tham số)
a) Giải phương trình (1) khi m = 2
b) Tìm m để phương trình (1) có ít nhất
một nghiệm thuộc đoạn 1 ; 3 3
Trang 88 Traàn Quang Lost time is never found again
BAÁT PHÖÔNG TRÌNH MUÕ
1.3x22x27
2.5 1
2
log3
x
x
3
1
( 5 2) ( 5 2)
x
4
2 2 16
( ) ( )
x x x
5
1 2
1 1
2
16
x
x
6.2x2x12x2 3x 3x13x2
7
2 3 2 2 3 3 2 3 4
2x x 3x x 5x x 12
8
( 10 3) ( 10 3)
9
2
1 3 xx 9
10
2 5 6 2
3
3 x x x
11 2 2 7
2 x x 1
12 2x2x1 3x 3x1
13 ( 2 1) 1 ( 2 1) 1
x
14
2
1
3
3
x x
x x
15 9x2.3x 3 0
16 22x62x7170
17 2 x23 x 9
18 2.49x7.4x9.14x
19 5.2x7 10x 2.5x
20 4x3.2x x4 x1
21
6.9 xx13.6 xx6.4 xx0
22 4x2x.3 x31 x 2 3x2 x2x6
23
2
1
x x
x x
24 2x27x 9
25
12 3
1 3 3
1 2
26 16loga x 43.xloga4
27 xx xx xx
1 5 3 2
1
28 32x8.3x x4 9.9 x4 0
29 3x24 24.3x2 1
x
30 4 16 2.log48
1
x
31
52 8
2
1 2 1
x x
x
32
0 2 2
1 21 2
3 2 1
2
x x
33
9.4x 5.6x 4.9x
34 8.3 x x 9 x 1 9 x
4 4
35 2 1x 1
x x
36
6.9 xx13.6 x x6.4 xx 0
37 25x3x2 2x2x.3x 25x3x2 4x2.3x
38 4 2 3 . 31 2.3 . 22 6
x x x
39 1
1 1
1 5 2
x x
40
2 2
2
15 34 9
25 xx xx xx
41 5 5 10
2
5 log log x x
x
42
log log 2 1
1 1
3
3 5 12
, 0
x x
x x
43 3x24 24.3x21
x
44
1 5
9 log 3 3 log log 2 log 3 3 2
2 1
x x
2 log log x x
x
12 5
3
2log2x log2 x1 log2x2
47 9 2 1 7.3 2 1 2
2 2
x
48 log2x4 32
x
49 4 .2 3.2 .2 8 12
2 2
x x
x
50 3x122x1122x 0
BAÁT PHÖÔNG TRÌNH LOGARIT
1
2 1
1 8 log
2
x
x x
2
3 2 1 log 2
2
1 x x
3 log93x24x21log33x24x2
1 6
5 log 3
x
x
x
1 1
1 2 log4
x x
6
2 4
1
x
x
7
x x
x
2 1 2
2
3 2 2 1 4
2 9log 32 4.log
8 log
Trang 99 Traàn Quang Time goes, you say? Ah, no! Alas, time stays, we go
8
2
2 1 2
2
9 logx24x51
10 log2xlog2x84
11 1 8 2 6 1 0
5 log 1 3
5
x
x x
x
12 4x2 16x7log3x30
13
log 2
1 2 log
6 5 log
3 1 3
1 2
3 x x x x
14
1 1
3 2
log3
x x
15 log2xlog3x1log2x.log3x
16
1
log
1 1
3 2
log
1
3 1 2
3
1 x x x
17 log2x2 3x2
18 log5x2 11x432
19
4 6 2
log 2
2
1 x x
20
x1log 2x
2
1
21 log 1
1 2
9 6
2
2
x x
x x
22
8
2 18 log 2 18
23 log log93x 9 1
x
24
1 log 1 log 5 1
3 1 3
1 x x x
25 log3xx23x1
26 logxx2 x21
x x
x x
x
x 7 12 2 1 14 2 24 2 logx2
28 logx5x28x32
29
log ( x 2 x 1) log ( x 2 ) x
30
4
3 16
1 3 log 1 3
log
4 1
x
31 log0,3 x5x10
32
0 3
5 2
11 4 log
11 4 log
2
3 2
11
2 2
x x
x x
x
33
9
4
1 log
log x x
1 2
5 4 log 2
x
x
x
35
2 1 2
1 1 log 1 2 log
2
1
x
36
1 log 2
1 log
2
3
2 3
4 x x
1 4 log
5
2
x x
38 log 2 1 log2 2 2
2 x x
39
x
x x
2 log 1 1 2
40
0 8 2
1 log 2 2
1
x x x
41
x x
8 1 2
8
1 1 4log log
9
42 log log24x6 1
x
43 log3xlog5xlog3 x.log5x
44
3 log
8 9 log
2
2
x
x x
45
2 log
1 log
2 2 log
2 2
x
46
1 1
1 2
x
x
x
47
1 log 1
log 1 3
2
3
x x
48
1 log
2 log
4
3
4 3
2 x x
49
5 3
log
35 log 5
3
x x
1 1 2 2 logx2x1 x2 x
51
2 log
2
1 log7 x 7 x
52
0 4
3
1 log 1 log
2
3 3 2
x x
x x
53
2 2 lg lg
2 3
lg 2
x
x x
3 logx 5x 18x16 2
55 log2x64logx2163
56
0 log
4 1 2
2
1 x x
Trang 1010 Traàn Quang Lost time is never found again
57 log x2 x2log x12
58
1 1 2
1 log
1 log
.
2
5 1 5
2
x x
59 log42x2 3x21log22x2 3x2
60
x x
x
2 1 2
2
3 2 2 1 4
8 log
61
log 3 5
3 log
2 1 2
2 x x x
62
9 1 2 log 3 7
2 1 1
2
1 x x
63 log x3 log x 3 03
64
3
log log x 5 0
65
2
5
log x 6x 8 2 log x 4 0
66
3
5 log x log 3
2
67 log 2.logx 2x2.log 4x2 1
68 log2x 3 1 log2x 1
69
8
2
2 log (x 2) log (x 3)
3
70
2 log log x 0
71 log5 3x 4.log 5 1 x
72
2
3 2
x 4x 3
x x 5
73
2
log x log x 1
74 2
2x log x 5x 6 1
75
2
2 3x
x 1
5
2
76
3
x 1
x 2
77 2
log x log x 0
78
2 16
1 log 2.log 2
log x 6
log x 4 log x 9 2 log x 3
80
2 log x 4 log x 2 4 log x
81 log22x1log34x 22
Trang 1111 Traàn Quang Time goes, you say? Ah, no! Alas, time stays, we go
HEÄ PHÖÔNG TRÌNH MUÕ - LOGARIT
I Hệ phương trình mũ
1
1
3
3 5 4
y
x
y
x
x y x
y
y x y
x
x
y
y
x
3
log
32
4
3
4 2 3
9
9
3
1
y
x x
y
x
y x y
4
y y y
x
x
y y
x
1
3 5
2
3
3
3
2
2
2
5
2 lg
lg
1
2 2
y x
xy
6
7 2
3
77 2
3
2
2
y
x
y
x
7
19 3
2
6 3
2
2
3
1
1 y
x
y x
8
3 3
3
3 5 5
5
y x y x
y x
y x
9
y
y y
x
x x x
2 2
2 4
4 5 2
1
2 3
10
0 6
8
1 3
4 4
4 4
y x
x y
y x
y x
11
3 lg 4
lg
lg lg
3 4
4 3
y x
y x
12
1 log
3 log 4
2
5 log
x y y x
y
x x y
13
1 1
3
2 3 2 2
2
3 2
1 3
x xy
x
x y y
x
14
4 2 1 2 2 3
4 2 1 2 2 3
x y
y x
15
x y 3x 2y 3
16
x y (x y) 1
17
2x y
3 2 77
18
2 2 12
x y 5
19
1
4 2
2 2
x
x x x
y
1
3 9 18
y y
x x
20
21
1
2x y 2x
x y
22
y x
II.Hệ phương trình lôgarit
1)
16
2 log log
3
3
2 2
y
x
xy x
y y
x
2)
3 lg 4
lg
lg lg
3 4
4
3
y x
y x
3)
1 log
3 log 2 log log
7
2 2
2
y x
y x
4)
8
5 log
log
2
xy
y
y
5)
1 log log
4
4 4
log log8 8
y x
y
6)
1 log log
4
4 4
log log 8 8
y x
y
7)
1 log
4 3 3 1 1
3x y
x
x
8)
x x
y x
4 2 2
4
2 4 4
2
log log log
log
log log log
log
9)
3
8 1 log
2 log
14 2
2
y xy x
y x
10)
2 2 3 log
2 2 3 log
x y
y x
y x
11)
4 5 3 log 5 3 log
4 5 3 log 5
3 log
x y y
x
x y y
x
y x
y x