1. Trang chủ
  2. » Khoa Học Tự Nhiên

Hướng dẫn giải bài tập phương trình mũ

12 638 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 12
Dung lượng 1,2 MB

Nội dung

BÀI GIẢNG PT - BPT - HPT Logarit và Mũ  Trần Quang Time goes, you say? Ah, no! Alas, time stays, we go PHƯƠNG TRÌNH MŨ : Đưa về cùng cơ số 1.     x x x 2 3 2 1 2 16 2.   2 x 6x 5/2 2 16 2 3.   2 x 4x 3 1 / 243 4. 5 17 73 32 0 25 128,.    xx xx 5. 3 4 2 8 3 5 125 /xx  6. 21 48 xx  7. x x 1 x 2 2 .3 .5 12   8. 2 9 27 3 8 64              xx 9.   x x x        2 1 1 3 2 2 2 4 10. 2 2 5 2 1 3 27     x x x 11. 1 2 1 4.9 3 2   xx 12. 3x 1 5x 8 (2 3) (2 3) 13. x1 x1 x1 ( 5 2) ( 5 2) 14. 1 3 3 1 ( 10 3) ( 10 3) x x x x 15. 3 1 2 1 3 2 4 8 2 2 0 125. . . ,     x x x 16. 3 3 3 2 4 0 125 4 2,  xx x 17. 4 2 4 22 4 5 .0,2 125.0,04 x x x xx x      18. 4 1 2 3 2 5.4 2 16 3 x xx      19. 2( 1) 1 2 3.2 7 x x    20. 3 3 1 1 2 .3 2 .3 192 x x x x  21. 2 2 3 1 3 3 9 27 675 x xx    22. 2 2 2 2 1 1 2 2 3 3 2 x x x x      23. 22 3 9 9 4 16 16      x x 24. x xx 2 21 ( 1) 1 25. 23 3 3 1 9 27 81 3 x x x x       26. 2 1 1 11 3.4 .9 6.4 .9 32 x x x x      27.       x 4 x 3 x x 2 3 5 3 5 28.        x 1 x 2 x 4 x 3 7.3 5 3 5 29. x x 1 x 2 x x 1 x 2 2 2 2 3 3 3          30.   3 2 9 2 2222 2   xxxx x 31.   2 cos 1 2 cos 22 xx x x x x   : Đặt ẩn phụ. 1. 2 16 15 4 8 0   xx 2. 9 8.3 7 0   xx 3.     2x 8 x 5 3 4.3 27 0 4. 1 4 2 4 2 2 6 x x x      5. 22 4 6.2 8 0 xx    6. 2 7 6.0,7 7 100 x x x  7. 13 3 64 2 12 0 xx     8. 22 2 1 2 4 5.2 6 0 x x x x        9. 22 4 16 10.2 xx  10. log log5 25 5 4. x x 11. 22 33 2log ( 16) log ( 16) 1 2 2 24 xx    12. 22 12 9 10.3 1 0 x x x x       13. 2x 6 x 7 2 2 17 0     14.     10 5 10 3 3 84 xx  15. 2 1 1 1 .4 21 13.4 2 xx  16. 3 2cos 1 cos 4 7.4 2 0 xx    17. 22 5 1 5 4 12 2 8 0.         x x x x 18. 3033 22   xx 19. x 1 3 x 5 5 26   20. D03 x x x x    22 2 2 2 3 21. 22 sin cos 9 9 10 xx 22. 31 53 5.2 3.2 7 0 x x      23. 12 5 5.0,2 26   xx 24. 1 4 4 3.2 x x x x  25. 22 sin cos 2 5.2 7 xx 26. 2 cos2 cos 4 4 3 xx  27. 1 5 5 4 0 xx 28. 2 2 2 2 1 2 2 1 9 34.15 25 0          x x x x x x 29. 1 1 1 x x x 2.4 6 9 www.VNMATH.com BAỉI GIANG PT - BPT - HPT Logarit vaứ Muừ Tran Quang Lost time is never found again 30. 1 1 1 6.9 13.6 6.4 0 x x x 31. 3 3 3 25 9 15 0 x x x 32. A06 027.21812.48.3 xxxx 33. 07.714.92.2 22 xxx 34. x x x 6.9 13.6 6.4 0 35. 27 12 2.8 x x x 36. /2 4.3 9.2 5.6 x x x 37. 2 2 2 15.25 34.15 15.9 0 x x x 38. 25 12.2 6,25.0,16 0 x x x 39. 31 125 50 2 x x x 40. xxx 27.2188 41. 2 3 2 3 14 xx 42. 2 3 2 3 2 xx 43. 4 15 4 15 8 xx 44. xx (2 3) (2 3) 4 0 45. B07 ( 2 1) ( 2 1) 2 2 0 xx 46. ( 3 2) (7 4 3)(2 3) 4(2 3) xx 47. 02.75353 x xx 48. x x x 3 (3 5) 16(3 5) 2 49. xx (7 4 3) 3(2 3) 2 0 50. 26 15 3 2 7 4 3 2 2 3 1 x x x 51. cos cos 5 7 4 3 7 4 3 2 xx 52. 7 3 5 7 3 5 14.2 xx x 53. xx ( 2 3) ( 2 3) 4 54. xx 7 3 5 7 3 5 78 22 55. 10245245 xx 56. 3 7 5 21 5 21 2 xx x 57. xx 7 4 3 7 4 3 14 58. 10625625 tantan xx 59. xx x 3 5 21 7 5 21 2 60. sin sinxx 5 2 6 5 2 6 2 61. 3 31 81 2 6 2 1 22 xx xx 62. x x x x22 5 2 2 2 2 20 16 63. 11 3 3 9 9 6 x x x x 64. x x x x1 3 2 8 8.0,5 6.2 125 24.0,5 65. 64)5125.(275.95 3 xxxx 66. 2 2 6 2 6 xx 67. xxx 9133.4 13 68. 093.613.73.5 1112 xxxx 69. 24223 2212.32.4 xxxx 70. 2 2 1 2 1 4 2 3 2 3 23 x x x 71. 22 ( 1) 2 1 101 (2 3) (2 3) 10(2 3 ) x x x 72. 3 1 2 2 7.2 7.2 2 0 x x x S dng tớnh n iu ca hm s 1. 4 9 25 x x x 2. x x x 3 4 5 3. x 3 x 4 0 4. x x 4115 5. 2 2 2 2 3 2 2 xx xx 6. /2 2 3 1 xx 7. x x x 3.16 2.8 5.36 8. x xxx 202459 9. 1/ 52 2,9 25 xx 10. 2 3 2 3 2 xx x 11. 3 2 3 2 10( ) ( ) x xx 12. xxx 5.22357 13. xx xx 2.1.24 2 2 14. x x 6 217.9 15. 32 1 1 1 5 4 3 2 2 5 7 17 2 3 6 x x x x x x x x x x 16. 2 4 2 2 3 ( 4)3 1 0 xx x 17. 3 .2 3 2 1 xx xx 18. 1 1 5 3 5 3 10 3 4 12 x x x xx x 19. 1 1 1 3 2 2 6 3 2 6 x x x xx x 20. 2013 2015 2.2014 x x x www.VNMATH.com BÀI GIẢNG PT - BPT - HPT Logarit và Mũ  Trần Quang Time goes, you say? Ah, no! Alas, time stays, we go 4: Đưa về phương trình tích và Đặt ẩn phụ khơng tồn phần. 1. xxx 6132  2. 8.3 x + 3.2 x = 24 + 6 x 3. 2 1 1 5 7 175 35 0 x x x     4. D06 0422.42 2 22   xxxxx 5. 22 2 ( 4 2) 4 4 4 8 x x x x x       6. 2 1 2 4 .3 3 2 .3 2 6 x x x x x x x       7. 20515.33.12 1  xxx 8. 2 2 2 3 2 6 5 2 3 7 4 4 4 1          x x x x x x 9.   02.93.923 2  xxxx 10.     021.2.23 2  xx xx 11.   0523.2.29  xx xx 12.   035.10325.3 22   xx xx 13.   1224 2 22 11   xxxx 14. 22 2 1 2 2 2 9.2 2 0 x x x x      15. 2 2 2 .2 8 2 2 xx xx     16. 2 2 2 2 .6 6 .6 6 x x x x xx       17. 3 2 3 4 2 1 2 1 .2 2 .2 2 xx xx xx         18.   9 2 2 .3 2 5 0 xx xx     19.     xx xx     2 3 2 2 1 2 0 20. 3.4 (3 10)2 3 0 xx xx 21. 22 3.16 (3 10)4 3 0 xx xx       22. ► 2 3 1 3 4 2 2 16 0 x x x     23. ► x x x x      4 1 3 2 1 5 25.5 26.5 5 5 0 24. ► x x x x      1 81 4.27 10.9 4.3 3 0  Lơgarit hóa 6: Hàm đặc trưng và PP đánh giá. 1. 2112212 532532   xxxxxx 2. 2 22 1 1 2 2 22 2 xx xx x x 3. 1 2 4 1 xx x     4.   2 11 124 2   x xx 5. x xxxx 3cos.722 322 cos.4cos.3   6.     134732 1   x xx 7. x x21 8. x x3 2 1 9. x x     1 1 22 10. 123223 1122   x xxx xx 11.   x x x   1 2cos 22 2 12. x x 2cos3 2  13. 2 cos 2 33 x x 14. 4 2 16 2 2 xx x     15. 2 3 2 6 9 4 x xx        16. 2 2 1 2 xx x x   17. 4 6 25 2 xx x   18. 3 5 6 2   xx x 19. xx x  3 2 3 2 20. xx x    2 3 2 3 2 21. 2 2 2 2 3 4 3 x x x    22. 2 2 2 2 2 1 2 3 7 8 4 x x x x x     23. 2 2 2 2 4.10 7 3 x x x    24. 8.3 3.2 24 6 x x x    PHƯƠNG TRÌNH LOGARIT : Đưa về cùng cơ số 1. 2 log (5 1) 4x  2. 2 5 log ( 2 65) 2 x xx     3. 2 2 log 1 xx x   4. 2 2 1/2 log ( 1) log (x 1)x    9. 4 1 3 2 21 57 xx              10. 32 23 xx  11. 2 5 6 3 52 x x x 12. 2 5 .3 1 xx  13. 231224 3.23.2   xxxx 14. 3 2 3 .2 6 x x x  15. 1 2 .5 10 x x x 16. 22 3 2 6 2 5 2 3 3 2 x x x x x x        1. 1 5 . 8 100 xx x  2. 2 2 .3 9 xx 3. 2 2 8 36.3 x x x 4. 1 2 1 4.9 3 2 xx  5. 2 2 2 .3 1,5 x x x  6. 21 1 5 .2 50 x x x    7. 43 34 xx 8. 75 57 xx  www.VNMATH.com BAỉI GIANG PT - BPT - HPT Logarit vaứ Muừ Tran Quang Lost time is never found again 5. 55 log ( 3) log ( 2 6)xx 6. log 2 3 1 3 1 2 2 x xx 7. 22 log 6 log 3 1xx 8. 4 15 2 22 2 2 log 36 log 81 log 3 log 4 xx 9. 3 9 27 log log log 11x x x 10. 33 log log ( 2) 1xx 11. 93 log ( 8) log ( 26) 2 0xx 12. 2 22 log ( 3) log (6 10) 1 0xx 13. 32 1 log( 1) log( 2 1) log 2 x x x x 14. 3 4 1/16 8 log log log 5x x x 15. 3 22 log (1 1) 3log 40 0xx 16. 2 5 5 log (4 6) log (2 2) 2 xx 17. 34 1/3 3 3 log log log 3 3x x x 18. 2 5 0,2 5 0,04 log ( 1) log 5 log ( 2) 2log ( 2)x x x 19. 2 3 3 1/4 0,25 1/4 3 log ( 2) 3 log (4 ) log ( 6) 2 x x x 20. 3 loglog log(log 2) 0xx 21. 2 log 1 3log 1 2 log 1x x x 22. 42 log ( 3) log ( 7) 2 0xx 23. 21 8 log ( 2) 6log 3 5 2xx 24. 3 18 2 2 log 1 log (3 ) log ( 1)x x x 25. 21 2 2log 2 2 log 9 1 1xx 26. 4 log ( 2).log 2 1 x x 27. 2 9 log 27.log 4 x x x x 28. 22 33 log ( ) log ( ) 3xx xx 29. 22 2 2 2 log ( 3 2) log ( 7 12) 3 log 3x x x x 30. 2 9 3 3 2log log .log ( 2 1 1)x x x 31. 5 3 5 9 log log log 3.log 225xx 32. 2 3 3 log 1 log 2 1 2xx 33. 23 48 2 log ( 1) 2 log 4 log ( 4)x x x 34. 2 2 2 2 3 2 3 log ( 1 ) log ( 1 ) 0x x x x 35. 22 93 3 11 log ( 5 6) log log 3 22 x x x x 36. 42 21 11 log ( 1) log 2 log 4 2 x xx 37. 2 22 5 log log ( 25) 0 5 x x x 38. 5 log 5 4 1 x x 39. 44 2 log 2 ( 3) log 2 3 x xx x 40. 23 48 2 log 1 2 log 4 log 4x x x 41. 2 66 11 1 log log 1 72 x x x 42. 2 3 1 log 3 1 2 2 x xx 43. 2 33 2log ( 2) log ( 4) 0xx 44. log9 log 96 x x 45. 5 5 50 log log x x 46. 2 log 1 log 6 5 x x 47. 3 16 3 log 9 log x x xx 48. 2 22 log 10 1 log4 log2 log (3 2) 2 log 5 xx x 49. 2 log 9 2 1 3 x x 50. log ( ) log ( ) xx x 1 4 4 2 3 21 2 51. 2 2 1 2 2 1 log ( 1) log ( 4) log (3 ) 2 x x x 52. D07 22 1 log (4 15.2 27) 2log 0 4.2 3 xx x 53. 8 42 2 11 log ( 3) log ( 1) log (4 ) 24 x x x 54. 4 1 log 3 2 2 log16 log 4 42 xx x 55. 1 1 2log2 1 log3 log 3 27 0 2 x x 56. 3 22 log 4 1 log 2 6 xx x www.VNMATH.com BAỉI GIANG PT - BPT - HPT Logarit vaứ Muừ Tran Quang Time goes, you say? Ah, no! Alas, time stays, we go 57. 2 1 4 log 1 7 2. 1 21 21 xx x x 58. 4 3 2 3 1 log 2 log 1 log 1 3log 2 x 59. 22 22 4 2 4 2 22 log x x 1 log x x 1 log x x 1 log x x 1 60. 5 1 2log( 1) logx log 2 xx 61. 2 22 log ( 3) log (6 10) 1 0.xx 62. 2 1 log( 10) logx 2 lg4 2 x 63. 22 33 log ( 2) log 4 4 9x x x 64. 39 3 4 2 log log 3 1 1 log x x x 65. 22 3 1 log (3 1) 2 log ( 1) log 2 x xx 66. 22 log (2 4) log 2 12 3 xx x : t n ph. 1. 23 log log 2 0xx 2. 2 22 log 2log 2 0xx 3. 22 3 log log (8 ) 3 0xx 4. 2 4 2 1 2 log 1 log log 0 4 xx 5. 1 33 log (3 1).log (3 3) 6 xx 6. 1 5 25 log (5 1).log (5 5) 1 xx 7. 3 3 22 4 log log 3 xx 8. 4 2 2 3 log ( 1) log ( 1) 25xx 9. 9 4log log 3 3 x x 10. ( 1) 2 log 16 log ( 1) x x 11. 21 1 log ( 1) log 4 x x 12. 2 2 log 16 log 64 3 x x 13. 22 3 log (3 ).log 3 1 x x 14. 2 2 log (2 ) log 2 x x xx 15. 2 55 5 log log ( ) 1 x x x 16. 2 2 log 2 2log 4 log 8 xx x 17. 2 2 3 27 16log 3log 0 x x xx 18. 2 2 1/2 2 log 4 log 8 8 x x 19. 23 /2 4 2 4 log 2log 3log x x x x x x 20. 2 3/ 3 log 2 log 1 x x 21. 16 2 3log 16 4log 2log x xx 22. 23 /2 4 16 log 40log 14log 0 x x x x x x 23. 22 1 2 1 3 log (6 5 1) log (4 4 1) 2 0 xx x x x x 24. 22 3 7 2 3 log (9 12 4 ) log (6 23 21) 4 xx x x x x 25. A08 22 2 1 1 log (2 1) log (2 1) 4 xx x x x 26. 2 log(10 ) log log(100 ) 4 6 2.3 x x x 27. 2 2 2 2 log 2 log 6 log 4 4 2.3 xx x 28. 2/ 2 log 2 log 4 3 x x 29. 22 2 log 4 .log 12 x xx 30. 24 log 4 log 5 0xx 31. 22 33 log log 1 5 0xx 32. 33 log 3 log log 3 log 1/ 2 x x xx 33. 44 4 2 2 2 log 2 log 2 log log 2 x x x x x 34. 33 log . log 3 3 log 3 3 6 x x 35. 4 2 2 4 log log log log 2xx 36. 8 2 3log log 2 2 5 0 x x xx 37. 12 1 4 log 2 logxx 38. 2 1 log( 1) 2 2 1 log( 1) 1 log ( 1) x x x 39. 24 1 log 4 log 2 4xx 40. 2 22 log ( 1) 6log 1 2 0xx S dng tớnh n iu ca hm s 1. 5 log ( 3) 4xx 2. 3 log ( 3) 8xx 3. 0,5 11 log 42 xx 4. 2 22 log (x x 6) x log (x 2) 4 www.VNMATH.com BÀI GIẢNG PT - BPT - HPT Logarit và Mũ  Trần Quang Lost time is never found again 5. 2 log( 12) log( 3) 5x x x x      6. 2 log 2.3 3 x x  10 .     23 log 2 1 log 4 2 2 xx     11.     32 log 2 log 3 2xx    12. 35 log ( 1) log (2 1) 2xx    13.     32 4( 2) log 2 log 3 15( 1)x x x x        x xx    2 2 log ( 2) 6 21  :   2 4 4 1 1 x x  có đúng 3 nghiệm thực phân biệt. 4: Phương trình tích và đặt ẩn phụ khơng tồn phần. 1. 0)(log).211( 2 2  xxxx 2. xxxx 26log)1(log 2 2 2  3.   112log.loglog2 33 2 9  xxx 4. 6 3 2 2 2 2 2 2 2 1 log (3 4) .log 8log log (3 2) 3 x x x x    5.         2 33 3 log 2 4 2 log 2 16x x x x      6. 2 3 2 3 log .log 1 log logx x x x   7. 2 3 2 3 log .log log logx x x x 8. 2 2 2 4 5 20 log ( 1).log ( 1) log ( 1)x x x x x x       9. 2 22 log ( 3).log 2 0x x x x     10. 2 33 (log 3) 4 log 0x x x x     11. 3logloglog.log 2 3 332  xxxx 12.         0161log141log2 3 2 3  xxxx 13.       0621log51log 3 2 3  xxxx 14.         2 2 2 2 2 1 log 1 4 2 1 .log 1 0x x x x      15. xxxx 7272 log.log2log2log  16. 2 33 log ( 12)log 11 0x x x x     17. 2 22 log 2( 1)log 4 0x x x x    18. 2 3 5 2 3 2 5 3 5 log .log .log log .log log .log log .log x x x x x x x x x   19. 3 3 2 3 2 31 log .log log log 2 3 x xx x    20. 22 log log 2 (2 2) (2 2) 1 xx xx     21.   2 2 2 2 6 1/6 .log 5 2 3 log 5 2 3 2x x x x x x x x       22. 3 2 3 3 2 log .log log log 3x x x x 23.       22 2 1 1 2 3 .log 1 2 log 2 3 .log 2 2log 1 xx x x x x         24.     2 2 7 7 2 log log 3 / 2 2 log 3 logx x x x x x        25.     1 4 2 2 2 1 sin 2 1 2 0 x x x x y         5: Mũ hóa 1.   x x x 4 4 18 2log log 2.   xx 57 log2log  3.   xx 32 log1log  4. 22 32 log ( 2 1) log ( 2 )x x x x    5. 32 2log tan log sinxx 6. 23 log log 1xx 7. 53 log log log15xx 8. 2 2 3 3 log log log logxx 9. x x x 2 3 3 2 3 3 log log log log log log 10. 2 3 4 4 3 2 log log log log log logxx 11. 2 2 2 log 9 log log 3 2 .3 x x x x 12. 3 2 3 log log 3 3 100. 10 xx x 13. x x x log 5 5 log 3 10 14. 2 22 log 1 2log 2 224 xx x   15. 2 log 3log 4,5 2log 10 x x x x     16. 2 2 2 log log 3 3log 36 xx x 17. 9 log 2 9. x xx 18. 2 log 22 2 2. log 2 x x xx áp 6: PP đánh giá và dùng hàm đặc trưng. 1. 2 2 3 22 1 log (2 ) log 3 2 2 x x x x    2. 3 2 log 1 22 22 3 2 log ( 1) log x x x x      3. 22 55 2 log ( 4) logx x x x x     4. 2 2 2 ln( 1) ln(2 1)x x x x x      www.VNMATH.com BAỉI GIANG PT - BPT - HPT Logarit vaứ Muừ Tran Quang Time goes, you say? Ah, no! Alas, time stays, we go 5. 2 2 2 2 1 log 3 2 2 4 3 xx xx xx 6. 11 1 37 log 30 3 3.7 4.7 30 xx xx x 7. 2 2 2015 2 3 log 3 2 2 4 5 xx xx xx 8. 2 2 3 2 3 log 7 21 14 2 4 5 xx xx xx 9. 2 1 12 22 2 .log ( 1) 4 .(log 1 1) x x xx 10. sin( ) 4 tan x ex 11. 2 1 3 2 2 3 8 22 log (4 4 4) xx xx 12. 23 1 log 2 4 log 8 1 x x 13. 2 21 log 1 2 x x x x 14. log 1 lg 4,5 0 x x A02: Cho phng trỡnh 22 33 log log 1 2 1 0x x m (1) (m l tham s) a) Gii phng trỡnh (1) khi m = 2. b) Tỡm m phng trỡnh (1) cú ớt nht mt nghim thuc on 3 1 ; 3 . www.VNMATH.com BÀI GIẢNG PT - BPT - HPT Logarit và Mũ  Trần Quang Lost time is never found again BẤT PHƯƠNG TRÌNH MŨ 1. 2 2 3 27 xx  2. 15 2 log 3   x x 3. 1 1 1 ( 5 2) ( 5 2) x x x       4. 2 2 16 11 ( ) ( ) 39 x x x  5. 1 2 1 1 2 16 x x       6. 1 2 1 2 2 2 2 3 3 3 x x x x x x         7. 2 2 2 3 2 3 3 3 4 2 .3 .5 12 x x x x x x       8. 31 13 ( 10 3) ( 10 3) xx xx      9. 2 1 3 9 xx  10. 2 2 56 11 3 3 x xx    11.   2 27 21 xx x   12. 11 2 2 3 3 x x x x    13. 1 1 ( 2 1) ( 2 1) x x x      14. 2 1 2 1 3 3 xx xx       15. 9 2.3 3 0 xx    16. 2 6 7 2 2 17 0 xx    17. 3 2 2 9 xx  18. 2.49 7.4 9.14 x x x  19. 5.2 7. 10 2.5 x x x  20. 1 4 3.2 4 x x x x  21. 2 2 2 2 2 2 6.9 13.6 6.4 0 x x x x x x      22. 2 1 2 4 .3 3 2 .3 2 6 x x x x x x x       23. 2 8.3 2 1 3 2 3 x x xx       24. 922 7  xx 25. 12 3 1 3 3 1 1 12                xx 26. 4loglog .3416 aa x x  27.     xx xx xx     2 2 2 153215 1 28. 09.93.83 442   xxxx 29.   13.43 224 2   xx x 30. 8log.2164 4 1   xx 31.     52824 3 12 12    x xx 32. 02 2 1 212 32 12           x x 33. 1 1 1 9.4 5.6 4.9 x x x     34. xxxx 993.8 1 44   35.   11 2  x xx 36. 2 2 2 2 2 2 6.9 13.6 6.4 0 x x x x x x      37. xx xxxxxxx 3.43523.22352 222  38. 62.3.23.34 212   xxxx xxx 39.     1 1 1 1525     x x x 40. 222 21212 15.34925 xxxxxx   41.   105 5 2 5 log log  x x x 42.       12log log 1 1 3 35 12,0           x x x x 43.   13.43 224 2   xx x 44.   15 9log33loglog 3 3 log.2 2 2 1   x x 45. 126 6 2 6 loglog  xx x 46.     125.3.2 2log1loglog 222   xxx 47. 23.79 1212 22   xxxxx 48. 32 4log 2  x x 49. 1282.2.32.4 222 212   xxxx xxx 50. 01223 2 121   x xx BẤT PHƯƠNG TRÌNH LOGARIT 1. 2 1 18 log 2 2    x xx 2.   123log 2 2 1  xx 3.     243log1243log 2 3 2 9  xxxx 4. 3 1 6 5 log 3    x x x 5. 2 1 1 12 log 4    x x 6. 2 4 1 log        x x 7. x x x x 2 2 1 2 2 3 2 2 1 4 2 log.4 32 log9 8 loglog                  www.VNMATH.com BAỉI GIANG PT - BPT - HPT Logarit vaứ Muừ Tran Quang Time goes, you say? Ah, no! Alas, time stays, we go 8. xxxxx 2log1244log2 2 1 2 2 9. 154log 2 x x 10. 48loglog 22 x x 11. 01628 1 5 log134 2 5 2 xx x x xx 12. 03log7164 3 2 xxx 13. 3log 2 1 2log65log 3 1 3 1 2 3 xxxx 14. 1 1 32 log 3 x x 15. xxxx 3232 log.log1loglog 16. 1log 1 132log 1 3 1 2 3 1 x xx 17. 23log 2 2 xx 18. 24311log 2 5 xx 19. 264log 2 2 1 xx 20. xx 2log1log 2 2 1 21. 1log 12 96 log 2 2 2 1 x x xx 22. 1 8 218 log.218log 24 x x 23. 193loglog 9 x x 24. 15log1log1log 3 3 1 3 1 xxx 25. 13log 2 3 x xx 26. 12log 2 xx x 27. x xx x xx x 2 log2242141 2 1272 22 28. 2385log 2 xx x 29. 22 32 log ( 2 1) log ( 2 )x x x x 30. 4 3 16 13 log.13log 4 14 x x 31. 015log 3,0 xx 32. 0 352 114log114log 2 3 2 11 2 2 5 xx xxx 33. 2 3 2 9 4 1 loglog xx 34. 2 1 2 54 log 2 x x x 35. 3 2 1 2 1 21log1log 2 1 xx 36. 1log 2 1 log 2 3 2 3 4 xx 37. 0 14log 5 2 x x 38. 22log1log 2 2 2 xx 39. x x x 2log1 12 6 2 40. 0 82 1log 2 2 1 xx x 41. xx 8 1 2 8 1 log41log.91 42. 164loglog 2 x x 43. xxxx 5353 log.logloglog 44. 2 3log 89log 2 2 2 x xx 45. 2log 1 log22log 2 2 x x x 46. 1 1 12 log x x x 47. 1 log1 log1 3 2 3 x x 48. 1log2log 4 3 4 3 2 xx 49. 3 5log 35log 5 3 5 x x 50. 2 1 122log 2 1 2 xx xx 51. 2log 2 1 log 7 7 xx 52. 0 43 1log1log 2 3 3 2 2 xx xx 53. 2 2lglg 23lg 2 x xx 54. 2 3 log 5 18 16 2 x xx 55. 316log64log 2 2 x x 56. 0loglog 2 4 1 2 2 1 xx www.VNMATH.com BAỉI GIANG PT - BPT - HPT Logarit vaứ Muừ Tran Quang Lost time is never found again 57. 2log2log 12 xxx 58. 1log. 112 1 log1log.2 5 15 2 25 x x x 59. 232log1232log 2 2 2 4 xxxx 60. x x x x 2 2 1 2 2 3 2 2 1 4 2 log4 32 log9 8 loglog 61. 3log53loglog 2 4 2 2 1 2 2 xxx 62. 73log219log 1 2 1 1 2 1 xx 63. 33 log x log x 3 0 64. 2 14 3 log log x 5 0 65. 2 15 5 log x 6x 8 2 log x 4 0 66. 1x 3 5 log x log 3 2 67. x 2x 2 log 2.log 2.log 4x 1 68. 22 log x 3 1 log x 1 69. 81 8 2 2 log (x 2) log (x 3) 3 70. 31 2 log log x 0 71. 5x log 3x 4.log 5 1 72. 2 3 2 x 4x 3 log 0 x x 5 73. 13 2 log x log x 1 74. 2 2x log x 5x 6 1 75. 2 2 3x x1 5 log x x 1 0 2 76. x 6 2 3 x1 log log 0 x2 77. 2 22 log x log x 0 78. xx 2 16 1 log 2.log 2 log x 6 79. 2 3 3 3 log x 4 log x 9 2 log x 3 80. 24 1 2 16 2 log x 4log x 2 4 log x 81. 224log12log 32 xx www.VNMATH.com [...]...BÀI GIẢNG PT - BPT - HPT Logarit và Mũ www.VNMATH.com HỆ PHƯƠNG TRÌNH MŨ - LOGARIT I Hệ phương trình mũ 1 2 3 4 5 x   y4 x 5 y   x  y  3   x 3  y 1  y  xx 4 y  32  log 3 x  y   1  log 3 x  y   x 1 1 y 2y  9  9 3  ... x 1 y  x 19  2  2 y 1  x  3  2  y 3 x  9  18  20  x2  y  y 2  x   x y x 1 2  2  x  y 21   x  x 2  2 x  2  3 y 1  1   2 x 1  y  y  2 y  2  3 1 22  II.Hệ phương trình lơgarit 1) 2) 3) 4) 5) 6)  x  y  log 2 y  log 2 x 2  xy   3 3  x  y  16 3lg x  4 lg y   4 x lg 4  3 y lg 3  log 2 x  log 2 y  2  log 2 3  log 7 x  y   1 2log...  2  log 3 y  2 x   2 10)  y log x 3x  5 y   log y 3 y  5 x   4   log 3x  5 y  log y 3 y  5 x   4 11)  x Time goes, you say? Ah, no! Alas, time stays, we go BÀI GIẢNG PT - BPT - HPT Logarit và Mũ www.VNMATH.com 12) 1 2  2 log 3 x  log 3 y  0   x 3  y2  2y  0  x  2y  27  13) log 3 y  log 3 x  1 5 log 2 x  log 4 y 2  8   5 log 2 x 3  log 4 y  9 14) . www.VNMATH.com BÀI GIẢNG PT - BPT - HPT Logarit và Mũ  Trần Quang Time goes, you say? Ah, no! Alas, time stays, we go HỆ PHƯƠNG TRÌNH MŨ - LOGARIT I. Hệ phương trình mũ. 1.                 13 3 5 4 yx yx x y xy . nghim thuc on 3 1 ; 3 . www.VNMATH.com BÀI GIẢNG PT - BPT - HPT Logarit và Mũ  Trần Quang Lost time is never found again BẤT PHƯƠNG TRÌNH MŨ 1. 2 2 3 27 xx  2. 15 2 log 3   x x . BÀI GIẢNG PT - BPT - HPT Logarit và Mũ  Trần Quang Time goes, you say? Ah, no! Alas, time stays, we go PHƯƠNG TRÌNH MŨ : Đưa về cùng cơ

Ngày đăng: 20/04/2015, 21:38

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w