1. Trang chủ
  2. » Giáo án - Bài giảng

Bài giảng Phân tích và Thiết kế giải thuật nâng cao: Chương 5 PGS.TS. Trần Cao Đệ

20 667 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 20
Dung lượng 853 KB

Nội dung

Pattern Matching 1 Pattern Matching 1 a b a c a a b 234 a b a c a b a b a c a b Text processing Pattern Matching 2 Outline and Reading Strings (§9.1.1) Pattern matching algorithms  Brute-force algorithm (§9.1.2)  Boyer-Moore algorithm (§9.1.3)  Knuth-Morris-Pratt algorithm (§9.1.4) Pattern Matching 3 Strings A string is a sequence of characters Examples of strings:  Java program  HTML document  DNA sequence  Digitized image An alphabet Σ is the set of possible characters for a family of strings Example of alphabets:  ASCII  Unicode  {0, 1}  {A, C, G, T} Let P be a string of size m  A substring P[i j] of P is the subsequence of P consisting of the characters with ranks between i and j  A prefix of P is a substring of the type P[0 i]  A suffix of P is a substring of the type P[i m − 1] Given strings T (text) and P (pattern), the pattern matching problem consists of finding a substring of T equal to P Applications:  Text editors  Search engines  Biological research Pattern Matching 4 Brute-Force Algorithm The brute-force pattern matching algorithm compares the pattern P with the text T for each possible shift of P relative to T, until either  a match is found, or  all placements of the pattern have been tried Brute-force pattern matching runs in time O(nm) Example of worst case:  T = aaa … ah  P = aaah  may occur in images and DNA sequences  unlikely in English text Algorithm BruteForceMatch(T, P) Input text T of size n and pattern P of size m Output starting index of a substring of T equal to P or −1 if no such substring exists for i ← 0 to n − m { test shift i of the pattern } j ← 0 while j < m ∧ T[i + j] = P[j] j ← j + 1 if j = m return i {match at i} else break while loop {mismatch} return -1 {no match anywhere} Pattern Matching 5 Boyer-Moore Heuristics The Boyer-Moore’s pattern matching algorithm is based on two heuristics Looking-glass heuristic: Compare P with a subsequence of T moving backwards Character-jump heuristic: When a mismatch occurs at T[i] = c  If P contains c, shift P to align the last occurrence of c in P with T[i]  Else, shift P to align P[0] with T[i + 1] Example 1 a p a t t e r n m a t c h i n g a l g o r i t h m r i t h m r i t h m r i t h m r i t h m r i t h m r i t h m r i t h m 2 3 4 5 6 7891011 Pattern Matching 6 Last-Occurrence Function Boyer-Moore’s algorithm preprocesses the pattern P and the alphabet Σ to build the last-occurrence function L mapping Σ to integers, where L(c) is defined as  the largest index i such that P[i] = c or  −1 if no such index exists Example:  Σ = {a, b, c, d}  P = abacab The last-occurrence function can be represented by an array indexed by the numeric codes of the characters The last-occurrence function can be computed in time O(m + s), where m is the size of P and s is the size of Σ c a b c d L(c) 4 5 3 −1 Pattern Matching 7 m − j i j l . . . . . . a . . . . . . . . . . b a . . . . b a j Case 1: j ≤ 1 + l The Boyer-Moore Algorithm Algorithm BoyerMooreMatch(T, P, Σ ) L ← lastOccurenceFunction(P, Σ ) i ← m − 1 j ← m − 1 repeat if T[i] = P[j] if j = 0 return i { match at i } else i ← i − 1 j ← j − 1 else { character-jump } l ← L[T[i]] i ← i + m – min(j, 1 + l) j ← m − 1 until i > n − 1 return −1 { no match } m − (1 + l) i jl . . . . . . a . . . . . . . a . . b . . a . . b . 1 + l Case 2: 1 + l ≤ j Pattern Matching 8 Example 1 a b a c a a b a d c a b a c a b a a b b 234 5 6 7 891012 a b a c a b a b a c a b a b a c a b a b a c a b a b a c a b a b a c a b 1113 Pattern Matching 9 Analysis Boyer-Moore’s algorithm runs in time O(n+m + s) Example of worst case:  T = aaa … a  P = baaa The worst case may occur in images and DNA sequences but is unlikely in English text Boyer-Moore’s algorithm is significantly faster than the brute-force algorithm on English text 11 1 a a a a a a a a a 23456 b a a a a a b a a a a a b a a a a a b a a a a a 7891012 131415161718 192021222324 Pattern Matching 10 The KMP Algorithm - Motivation Knuth-Morris-Pratt’s algorithm compares the pattern to the text in left-to-right, but shifts the pattern more intelligently than the brute- force algorithm. When a mismatch occurs, what is the most we can shift the pattern so as to avoid redundant comparisons? Answer: the largest prefix of P[0 j] that is a suffix of P[1 j] x j . . a b a a b . . . . . a b a a b a a b a a b a No need to repeat these comparisons Resume comparing here [...]... from T[1 m] in O(m) time Pattern Matching 15 Example 6378 = 8 + 10 (7 + 10 (3 + 10(6))) = 8 + 7 × 10 + 3 × 102 + 6 × 103 = 8 + 70 + 300 + 6000 Pattern Matching 16 Compute Ts ts+1 can be computed from ts in constant time ts+1 = 10(ts –10m-1 T[s+1])+ T[s+m+1] Example : T = 314 152  ts = 314 15, s = 0, m= 5 and T[s+m+1] = 2  ts+1= 10(314 15 –10000*3) +2 = 14 152 Thus p and t0, t1, , tn-m can all be computed... {use failure function to shift P} j ← F[j − 1] else F[i] ← 0 { no match } i←i+1 13 Example a b a c a a b a c c a b a c a b a a b b 1 2 3 4 5 6 a b a c a b 7 a b a c a b 8 9 10 11 12 a b a c a b 13 j 0 1 2 3 4 P[j] a b a c a 5 b F(j) 0 0 1 0 1 2 a b a c a b 14 15 16 17 18 19 a b a c a b Pattern Matching 14 Rabin-Karp Algorithm Let Σ = {0,1,2, ,9} We can view a string of k consecutive characters as... to eliminate spurious hits Test to check whether P[1 m] = T[s+1 s+m] Pattern Matching 18 Example ts+1 = (d(ts –T[s+1]h)+ T[s+m+1]) mod q h = dm-1(mod q) Example : d=10, alphabet = {0…9} T = 314 15; P = 26, n = 5, m = 2, q = 11 We have: p = 26 mod 11 = 4 t0 = 31 mod 11 = 9 t1 = (10(9 - 3(10) mod 11 ) + 4) mod 11 = (10 (9- 8) + 4) mod 11 = 14 mod 11 = 3 Pattern Matching 19 Rabin-Karp Implementation Procedure... prefix of P[0 j] that is also a suffix of P[1 j] Knuth-Morris-Pratt’s algorithm modifies the bruteforce algorithm so that if a mismatch occurs at P[j] ≠ T[i] we set j ← F(j − 1) j 1 2 3 4 P[j] a b a a b 5 a F(j) 0 0 0 1 1 2 3 a b a a b x a b a a b a j Pattern Matching a b a a b a F(j − 1) 11 The KMP Algorithm The failure function can be represented by an array and can be computed in O(m) time At . –10 m -1 T [ s +1])+ T [ s+m +1] Example : T = 314 152  t s = 314 15, s = 0, m = 5 and T [ s+m +1] = 2  t s+1 = 10(314 15 –10000*3) +2 = 14 152 Thus p and t 0 , t 1 , . . ., t n-m can all. c a a b a c a b a c a b a a b b 7 8 191817 15 a b a c a b 1614 13 2 3 4 5 6 9 a b a c a b a b a c a b a b a c a b a b a c a b 10 11 12 c j 0 1 2 3 4 5 P[j] a b a c a b F(j) 0 0 1 0 1 2 Rabin-Karp. brute-force algorithm on English text 11 1 a a a a a a a a a 23 456 b a a a a a b a a a a a b a a a a a b a a a a a 7891012 1314 151 61718 192021222324 Pattern Matching 10 The KMP Algorithm - Motivation Knuth-Morris-Pratt’s

Ngày đăng: 17/04/2015, 15:21

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w