1. Trang chủ
  2. » Giáo Dục - Đào Tạo

ynamic absorber effect for self-excited systems

38 212 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 38
Dung lượng 11,2 MB

Nội dung

Vdvances in Mechanics 991 • VOL NR y c n e x H M exaH H H H D Y N A M IC ABSORBER E F FE C T FO R SE LF-EX C ITED SYSTEM S Nguyen Van D a o , Nguyen Van Dinh (Vietnam) Contents n t r o d u c t i o n D ynam ic absorber for self-excited systems with single degree of fr e e d o m 1.1 Sclf-excited vibration of a quasi-linear m echanical s y s t e m 1.2 Weak dynam ic absorber [7, ] 1.3 S tr o n g d y n a m i c a b s o r b e r [ , ] 1.4 Som e r e m a r k s 1.5 D am ping the self-excited vibration-caused by the limit energy resource [ ] 4 10 11 1.6 D y n a m i c a b s o r b e r for d r illin g in s t r u m e n t [ 1 ] Dynam ic absorber for self-excited system s with several degrees of fr eed o m 2.1 Self-excited vibration of system with tw o degrees of freedom [ ] 2.2 Strong absorber for the system with two degrees of fr eed o m 2.3 Weak absorber for the system with two degrees of fr e e d o m 2.4 Self-cxcited vibration of system with n degrees of freedom [6, ] 2.5 Weak absorber for system with n degrees of fr e e d o m D ynam ic absorber for system with distributed p aram eters 3.1 D ynam ic absorber for vibrating string [ ] 3.2 D ynam ic absorber for beam [ ] 3.3 Absorber for self-excited vibration o f the plate [ ] C o n c lu s io n R e fe r e n c e s S u m m a r y Pc3fOM e 19 19 20 22 24 26 27 28 33 36 39 39 40 40 Introduction T h e theory of d a m p i n g for a linear system u n d e r the actio n of external h a r m o n ic f o r c e is well k n o w n T h r e e k i n d s o f m e a s u r e s h a v e b e e n u s e d t o d a m p t h e f o r c e d v i b r a t i o n o f th i s s y s t e m : Nguyen Van Dao Nguyen Van Dinh ị C h a n e i n e th e f r e q u e n c y to m o v e a w a y t h e free f r e q u e n c y fr o m th e f o r c e d one I n t r o d u c i n e t h e d a m p e r to d i s s i p a t e t h e v i b r a t i o n a l en er gy B u t t h e d a m p i n g n e c h a n i s m o p e r a t e s o n l y w h e n exists v i b r a t i o n So, by this w a y (e n e rg y d i s s i p a t i o n ) , he v i b r a t i o n is n o t d a m p e d c o m p l e t e l y U s i n g t h e d y n a m i c a b s o r b e r ( m e t h o d of d y n a m i c a l b a la n c e ) a s u p p l e m e n t a r y / i b r a t i o n a l s v s te m — c o n s i s t i n g o f a m a s s fo ll o w e d by a n el astic e l e m e n t U n d e r d e al c o n d i t i o n s w h e n t h e r e a r e n o f r ic ti o n s a n d w h e n th e free f r e q u e n c y of the i b s o r b e r is e q u a l t o t h a t of th e e x t e r n a l force, the v i b r a t i o n of th e m a i n m a s s i i s a p p p e a r s T h e a b s o r b e r c o n t i n u e s to v i b r a t e a n d c r e a t e s th e in e rt fo rce w h i c h j p s e t s t h e b a l a n c e w i t h th e e x c i t a t i o n a l force H e n c e th e d y n a m i c a l b a l a n c e is th e Drinciple of a c t i o n o f t h e d y n a m i c a l a b s o r b e r F o r n o n l i n e a r s y s t e m s t w o first m e a s u r e s ( C h a n g i n g t h e f r e q u e n c y a n d e n e r g y d i s s ip a ti o n ) h a v e b e e n u s ed to limit th e e r o w t h of th e a m p l i t u d e o f v i b r a t i o n o f the m a in m a ss T h e d y n a m i c a b so rb er has b e e n in v e s t i g a t e d firstly for t h e l i n e a r v i b r a t i o n a l s y s t e m t o d a m p t h e f o r c e d v i b r a t i o n N o t l o n g a g o w M M a n s o u r [4 ], w R C l e n d e n i n s R N D u b e v [ ] , A T o n d l [ - ] , p H a e e d o r n [ ] a n d the i u t h o r s o f this m o n o g r a p h p r o p o s e d a n d s t u d i e d th e effect o f th e d y n a m i c a b s o r b e r o r a self-excited s y s t e m It t u r n e d o u t t h a t t h e self-excited v i b r a t i o n m a y be d a m p e d entirely by m e a n s o f t h e d y n a m i c a b s o r b e r w i t h a s u it a b le v a lu e of e x t e r n a l fr ictio n orce In th e p r e s e n t w o r k , to c l e a r u p s o m e q u e s t i o n s a b o u t t h e p r i n c i p l e s o f a c t i o n of the d y n a m i c a b s o r b e r f o r a self-excited s y s t e m we limit o u r s e l v e to a n i n - d e p t h s t u d y :)f a w i d e s p r e a d class o f n o n l i n e a r s y s t e m : a q u a s i - l i n e a r o n e w i t h the h e l p o f a well b a s e d m a t h e m a t i c a l a s y m p t o t i c m e t h o d H e r e it is n e c c e s a r y to d i s t i n g u i s h t w o ^ases: t h e s t r o n g a b s o r b e r w h e n t h e m a s s a n d th e s p r i n g of the a b s o r b e r a r e finite, a n d th e w e a k a b s o r b e r w h e n t h o s e p a r a m e t e r s a re small In b o t h case s t h e fr ic ti on m e c h a n i s m c o n n e c t e d w ith t h e a b s o r b e r h a s a decisive in fl ue nc e o n t h e a m p l i t u d e of self-excited v i b r a t i o n F o r t h e s t r o n g a b s o r b e r , i n c r e a s i n g t h e fri cti on for ce l e a d s to t h e d e c r e a s e o f th e a m p l i t u d e o f self-excited v i b r a t i o n But for th e w e a k a b s o r b e r the effect of d a m p i n g is a c h i e v e d o n l y w ith s o m e m e a n v a lu e s of t h e fr ictio n force In this w o r k m e c h a n i c a l s y s t e m s w i t h on e , t w o a n d seve ral d e g r e e s of f r e e d o m a s well as s y s t e m s w it h d i s t r i b u t e d p a r a m e t e r s will he in v e st ig at e d t Ỉ Dynamic absorber for self-excited systems with single degree of freedom 1.1 S e lf - e x c ite d vib tio n o f a q u a si-lin ea r m e c h a n ic a l s y s te m Let us c o n s i d e r a self-ex cited m e c h a n i c a l s y s t e m (Fig 1) w h o s e m o t i o n is d e s c r i b e d by th e diff erential e q u a t i o n (1.1) m x + c x — Í.R (.V, v) Dynamic absorber effect for self-excited systems R m 7777777777777777777777777777, Fig I h e r e t h e f u n c t i o n R { x , x) e xp re ss es t h e a c t i o n o f the self-excited force, th e o t h e r a r a m e t e r s a r e c le a r f r o m t h e figur e; E is a s m al l p o s i t i v e p a r a m e t e r c h a r a c t e r i z e d the m a l l n e s s of t h e c o r r e s p o n d i n g m e m b e r s W i t h o u t loss of g e n e r a l validity, o n e c a n a s s u m e t h a t m = 1, c = T h e s o l u t i o n o f E q (1.1) c a n he w r i t t e n a s 1.2) X = asirup, x = acos(p, (p = t + u'/ in d a a n d ip a r e s lo w ly v a r y i n g f u n c t i o n s o f time S u b t i t u t i n g th e s o l u t i o n (1.2) i n t o 5q (1.1) g iv e s ã c o s (/5 — aiị/sinq) = s R { x , x) a) Taking into account a sin cp + aiị/ COS (/7 = ib) we get f r o m (a), (b): ủ — e R ( x , x)cos (p, (1.3) uijj — — eR ( x , x ) s i n (p S in c e it is a s s u m e d t h a t a a n d |// a r e s lo w ly v a r y i n g , Eqs o v e r o n e cycle as fo ll ow s: R (x , x ) c o s (pdcp a An (1.4) K 2” a ip = — — J R ( x , x )s in (pd(p 2n For (1.5) R ( x , x ) = /jjX — /?3X Eqs (1.4) become (1.6) aệ = 3) m a y be a v e r a g e d Nguyen Van Dao Nguyen Van Dinh m th e r e s u lt o f Eq (1.6) i/ m s a c o n s t a n t T h e s t e a d y s t a t e m o t i o n c o r r e s p o n d s to H e n c e E q s (1.6) give a = 0, A = h J >m h e r e it fo ll ow s t h a t : T h e e q u i l i b r i u m a = is s t a b l e if /jj < a n d u n s t a b l e if hị > T h e r e exist s h a r m o n i c v i b r a t i o n w i t h f r e q u e n c y Ộ = a n d w i t h th e a m p l i t u d e e r m i n e d by A = h !j > T h u s , d e p e n d i n g o n t h e v a l u e /jj o f t h e f r ic ti o n force, t h e m e c h a n i c a l t e m will b e e i t h e r at rest o r v i b r a t e d Weak dynamic absorber [7, 8] e a b s o r b e r is c al l ed a w e a k o n e if its m a s s m a n d stiffness c a r e s m a l l in m p a r i s o n w i t h th e m a i n m a s s m x a n d s p r i n g c J T h e f o l l o w i n g e q u a t i o n s a r e i u m e d for t h e s y s te m in Fig 2: ■ //////////// / / / / / / / / / / / / / / / / , R m, '7777777777777777777777777777777 Fig Xj + c o j x m [ / ỉ 1x - / ? x ? - c ( x - 9) here c m (i>2 — (c2 + c ] ), m2 /ij > , /i3 > x 2) ] , Dynamic absorber effect for self-excited systems T h e first e q u a t i o n o f (1.9) is q u a s i - l i n e a r w hi le t h e s e c o n d o n e is a l i n e a r e q u a t i o n [n t h e first a p p r o x i m a t i o n we shall find th e s o l u t i o n of Eq (1.9) in th e f o r m : Xj = a c os , X, = ( 1 ) a a jjS in X = w J I + lỊ/ , a (M c o sO + N sin ỡ ), X = flC0 j ( — M s i n + N c o s ) where M = c 12(cú2 — (ứỉ m~, [ ( a >2 — coỊ)2 + (ú]Â2y N = c c Oj A m [ ( a >2 — CO?)2 + t O i / ] a n d a \Ị/ satisfy th e a v e r a g e d e q u a t i o n s of ty p e (1.4): ea = 1m c '- 2\2 I ,2-2-1A ^COịŨ > -(X>ÌY tO]/.2] m , [(cư2 — CL>i)2 + t o f / r ] J Cl 2| J f "i< À = \2 - + C O ? /2] li is e a s y to verify t h a t t h e e q u i l i b r i u m a = is u n s t a b l e a n d th e r e exists a s t a t i o n a r y self-excited v i b r a t i o n w i t h th e a m p l i t u d e a d e t e r m i n e d by ( 1.12 ) L ,.,2 h-ịCOịU h J CỈ ^2 \2 _L "2-1 m 1(0)2 — 0JÌ) + W ] / ; J if th e r i g h t h a n d side o f Eq (1.12) is po si tiv e In Fig t h e d e p e n d e n c e o f a m p l i t u d e of v i b r a t i o n o n th e p a r a m e t r Ằ is p r e s e n t e d for th e c ase /?, = 0.05, C ] = 1, c \ 1j m — 0.1, O A = - h 3w \ a T h e c u r v e c o r r e s p o n d s t o a>2 = 1,5 a n d t h e c u r v e to ct>2 = W h e n COJ, co2 a r e in e q u a l i t y , th e e x p r e s s i o n (1.12) is of fo r m : (1.13) h^cúịa2 Cl h i- m 20) Nguyen Van Dao Nguyen Van Dinh n d t h e r e s o n a n t c u r v e is s h o w n in fig by 0" In this case th e effect of d a m p i n g is lichest .3 S tr o n g d y n a m ic a b so rb er [7 , ] ^et us c o n s i d e r th e s o - c a l l e d s t r o n g a b s o r b e r w h e n th e p a r a m e t e r s in, a n d C a re -, inite In this case th e m o t i o n e q u a t i o n s a r e m x + c J X J + fp (.X j X 2) = F ịh x l — h 2x j ) , 1.14) m , X + C2X , + C i ( x — X j ) = — £/ x and t h e y a r e n o t s e p a r a t e , w h e n £ = as Eqs (1.9) U s i n g ' t h e t r a n s f o r m a t i o n in to the n o r m a l m o d e s here M ị = j\ = h lx l - ffl, + d f m h 3x ] , /2 = - /-v2 I n t r o d u c i n u th e n e w v a r i a b l e s a, b \Ị/, Ộ by m e a n s of th e f o r m u l a e Q^acosO, s at + E/ , = £ / ' ? ( ox (3.25) ;i) \ / a4z Ờ z ^v4 ■ 1 ' w i t h th e b o u n d a r y c o n d i t i o n s y (f , x) = z { t , x) = , ^ | ^ ỠX I x = 0, X = / -3 = S ox = I X = , X = / H e r e £ is a s m a l l p o s i t i v e p a r a m e t e r U s i n g th e n o t a t i o n s _ £/ a = (JS ’ e 12 ^1^1 ^ = “ V ’ (?jSj , J l = qS ’ c h° _ ^ "3 = T S ’ r q (3.26) Ỵ c == ■- Advances in Mechanics 1/1991 eS ’ y = Ọị S ị gS’ 34 N guyen Van D a o N guyen Van Dinh we h a v e for th e w e a k a b s o r b e r c ~y c V T T + fl T dr rx (3.27) ct ct ƠÍ W h e n £ = t h e s y s t e m o f e q u a t i o n s (3.27) h a s th e s o l u t i o n * V— 7T 2_ s i n - r c x i ^ c o s a v + /?ws i n c o nf), n= * 71 = - s i n - n x ( a „ c o s a ; j + /)ns i n a j / ) , n= * he re a n a n d /}„ a r e c o n s t a n t s , cư„ = fl n r t t 7 // \\ T T {b — a ) \ —n j + r + / ~ > y/i) «„ + (/> 2- a 2) ■ = (h2 - a 2) ( ^ n ( b - a 2) ị j n ^ / 0i „ a „ + ^ V., +

Ngày đăng: 08/04/2015, 15:36

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN