1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Modulation Evan Everett and Michael Wu ELEC 433 - Spring 2013

17 218 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 17
Dung lượng 554,76 KB

Nội dung

Modulation Evan Everett and Michael Wu ELEC 433 - Spring 2013 Questions from Lab 1? Modulation x(t) = A sin(ωt + φ) Carrier Data 10100 Modulation • Goal: overlay data onto carrier signal (sinusoid) • Sinusoids have two very accessible parameters • Modulate amplitude and phase Modulation Why not? 1) Interference avoidance 2) High freq → small antennas Data 10100 Modulation • Goal: overlay data onto carrier signal (sinusoid) • Sinusoids have two very accessible parameters • Modulate amplitude and phase Signal Representation: Phasor • Polar: Amplitude & Phase • Rectangular: “In-phase” (I) & “Quadrature” (Q) Am pl itu de π/2 Q Im[x] Phase π I Re[x] -π/2 x(t) = A sin(ωt + φ) x(t) = I cos(ωt) + Q sin(ωt) I = A sin(φ) Q = A cos(φ) Signal Representation • Rectangular (I,Q) form suggests a practical implementation I Q Im[x] cos(ωt) 10100 I Re[x] I cos(ωt) + Q sin(ωt) 90˚ sin(ωt) Q • Modulation = mapping data bits to (I,Q) values Digital Modulation [01] [10] [00] [11] • Maps bits to complex values (I/Q) (focus of the Lab 3) • Complex • Set •# modulated values are called “symbols” of symbols is called “constellation” or “alphabet” of symbols in constellation is “modulation order”, M • M-order constellation can encode bits per symbol Digital Modulation [01] [10] [00] [11] • Maps bits to complex values (I/Q) (focus of the Lab 2) • Complex • Set •# modulated values are called “symbols” of symbols is called “constellation” or “alphabet” of symbols in constellation is “modulation order”, M • M-order constellation can encode log2(M) bits per symbol Phase Shift Keying (PSK) • Encodes information only in phase BPSK (M =2) QPSK (M =4) 8-PSK (M =8) [000] [00] [10] [0] • Constant [01] [001] [11] [1] power envelope • Pros: no need to recover amplitude, no need for linear amplifier • Con: wastes amplitude dimension Quadrature Amplitude Modulation (QAM) • Encodes • information in both amplitude and phase (I,Q) Mì 4-QAM ã M grid 16-QAM Common in wideband systems: 64-QAM 802.11b 802.11g/n 802.11ac 16-QAM 64-QAM 256-QAM Bit-to-Symbol Mapping • Confusing • with neighbor is most likely error Best to minimize bit-difference between neighbors • Gray Coding • Neighboring symbols differ by only one bit • Extra performance at zero cost (this is rare!) Natural-coded QPSK [01] [10] [00] [11] Gray-coded QPSK [01] [11] [00] [10] Tradeoff: Rate vs Error Probability • By increasing modulation order, M, we get: • More data in same bandwidth :) • Lower noise tolerance (i.e higher error probability) :( • Therefore, SNR dictates feasible constellation size QPSK: bits/symbol Q I QPSK: bits/symbol Q I 16-QAM: bits/symbol Q I 64-QAM: bits/symbol Q I Bit error rate (BER) vs SNR per bit (Eb/N0) 1E+00 BPSK QPSK 8-PSK 16-QAM 64-QAM 1E-01 1E-02 BER 1E-03 1E-04 1E-05 1E-06 1E-07 1E-08 1E-09 10 12 Eb/N0 (dB) 14 16 18 ... Q I 16-QAM: bits/symbol Q I 64-QAM: bits/symbol Q I Bit error rate (BER) vs SNR per bit (Eb/N0) 1E+00 BPSK QPSK 8-PSK 16-QAM 64-QAM 1E-01 1E-02 BER 1E-03 1E-04 1E-05 1E-06 1E-07 1E-08 1E-09 10... Modulation (QAM) • Encodes • information in both amplitude and phase (I,Q) Mì 4-QAM ã M grid 16-QAM Common in wideband systems: 64-QAM 802.11b 802.11g/n 802.11ac 16-QAM 64-QAM 256-QAM Bit-to-Symbol... rare!) Natural-coded QPSK [01] [10] [00] [11] Gray-coded QPSK [01] [11] [00] [10] Tradeoff: Rate vs Error Probability • By increasing modulation order, M, we get: • More data in same bandwidth :)

Ngày đăng: 05/04/2015, 17:23

TỪ KHÓA LIÊN QUAN