1. Trang chủ
  2. » Luận Văn - Báo Cáo

Phân cụm dữ liệu định danh với số chiều cao

91 656 3

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 91
Dung lượng 2,58 MB

Nội dung

Ngày đăng: 25/03/2015, 10:03

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
[1] PGS.TS Hoàng Xuân Huấn (2012), Giáo trình Nhận dạng mẫu, Trường Đại học công nghệ - Đại Học Quốc Gia Hà Nội.Tiếng Anh Sách, tạp chí
Tiêu đề: Giáo trình Nhận dạng mẫu
Tác giả: PGS.TS Hoàng Xuân Huấn
Năm: 2012
[2] Agrawal, Rakesh, Johannes Gehrke, Dimitrios Gunopulos and Prahhakar Raghavan (June 1998), “Automatic Subspace Clustering of High Dimensional Data for Data Mining Applications”, Proceedings of the 1998 ACM-SIGMOD International Conference on Management of Data, Seattle, Washington, pp. 94 - 105 Sách, tạp chí
Tiêu đề: Automatic Subspace Clustering of High Dimensional Data for Data Mining Applications”, "Proceedings of the 1998 ACM-SIGMOD International Conference on Management of Data, Seattle, Washington
[4] C. Aggarwal, C. Procopiuc, J.L. Wolf, P.S. Yu, J.S. Park (1999), “Fast algorithms for projected clustering”, in: Proceedings of the ACM SIGMOD InternationalConference on Management of Data, pp. 61 - 72 Sách, tạp chí
Tiêu đề: Fast algorithms for projected clustering”, "in: Proceedings of the ACM SIGMOD International "Conference on Management of Data
Tác giả: C. Aggarwal, C. Procopiuc, J.L. Wolf, P.S. Yu, J.S. Park
Năm: 1999
[5] C.C. Aggarwal, P.S. Yu (2000), “Finding generalized projected clusters in high dimen-sional spaces”, in: Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 70 - 81 Sách, tạp chí
Tiêu đề: Finding generalized projected clusters in high dimen-sional spaces”, "in: Proceedings of the ACM SIGMOD International Conference on Management of Data
Tác giả: C.C. Aggarwal, P.S. Yu
Năm: 2000
[6] C.H. Cheng, A.W. Fu, Y. Zhang (1999), “Entropy-based subspace clustering for mining numerical data”, in: Proceedings of the 5th ACM SIGKDD International Conference on Knowledge and Data Mining, pp. 84 - 93 Sách, tạp chí
Tiêu đề: Entropy-based subspace clustering for mining numerical data”, "in: Proceedings of the 5th ACM SIGKDD International Conference on Knowledge and Data Mining
Tác giả: C.H. Cheng, A.W. Fu, Y. Zhang
Năm: 1999
[7] C.M. Procopiuc, M. Jones, P.K. Agarwal, T.M. Murali (2002), “A Monte Carlo algorithm for fast projective clustering”, in: Proceedings of the ACM SIGMOD Conference on Management of Data, pp. 418 - 427 Sách, tạp chí
Tiêu đề: A Monte Carlo algorithm for fast projective clustering”, "in: Proceedings of the ACM SIGMOD Conference on Management of Data
Tác giả: C.M. Procopiuc, M. Jones, P.K. Agarwal, T.M. Murali
Năm: 2002
[8] Daniel Barbara, Julia Couto, Yi Li (October 1, 2001), “COOLCAT: An entropy- based algorithm for categorical clustering”, George MasonUniversity Information and Software Engineering Department Fairfax, VA22030, pp. 582 - 589 Sách, tạp chí
Tiêu đề: COOLCAT: An entropy-based algorithm for categorical clustering”, "George MasonUniversity Information and Software Engineering Department Fairfax, VA22030
[9] J. Yang, W. Wang, H. Wang, P. Yu (2002), “D-clusters: capturing subspace correlation in a large data set”, in: Proceedings of the 18th International Conference Sách, tạp chí
Tiêu đề: D-clusters: capturing subspace correlation in a large data set
Tác giả: J. Yang, W. Wang, H. Wang, P. Yu
Năm: 2002
[10] Jiawei Han and Micheline Kamber (2001), “Data Mining: Concepts and Techniques”, Hacours Science and Technology Company, USA Sách, tạp chí
Tiêu đề: Data Mining: Concepts and Techniques”
Tác giả: Jiawei Han and Micheline Kamber
Năm: 2001
[11] K. Chakrabarti, S. Mehrotra (2000), “Local dimensionality reduction: a new approach to indexing high dimensional spaces”, in: Proceedings of the 26th Interna-tional Conference on Very Large Data Bases, pp. 89 - 100 Sách, tạp chí
Tiêu đề: Local dimensionality reduction: a new approach to indexing high dimensional spaces”, "in: Proceedings of the 26th Interna-tional Conference on Very Large Data Bases
Tác giả: K. Chakrabarti, S. Mehrotra
Năm: 2000
[12] K.C. Gowda, E. Diday (1991), “Symbolic clustering using a new dissimilarity measure”, Pattern Recognition 24 (6), pp. 567 - 578 Sách, tạp chí
Tiêu đề: Symbolic clustering using a new dissimilarity measure”, "Pattern Recognition 24 (6)
Tác giả: K.C. Gowda, E. Diday
Năm: 1991
[13] K.G. Woo, J.H. Lee (2002), “Find it: a fast and intelligent subspace clustering algorithm using dimension voting”, Ph.D. Dissertation, Korea Advanced Institute of Science and Technology, pp. 255 - 271 Sách, tạp chí
Tiêu đề: Find it: a fast and intelligent subspace clustering algorithm using dimension voting”, "Ph.D. Dissertation, Korea Advanced Institute of Science and Technology
Tác giả: K.G. Woo, J.H. Lee
Năm: 2002
[14] K.Y. Yip, D.W. Cheung, M.K. Ng (2004), “A practical projected clustering algorithm”, IEEETransactions on Knowledge and Data Engineering 16 (11), pp.1387 - 1397 Sách, tạp chí
Tiêu đề: A practical projected clustering algorithm”, "IEEETransactions on Knowledge and Data Engineering 16 (11)
Tác giả: K.Y. Yip, D.W. Cheung, M.K. Ng
Năm: 2004
[15] Ka Y ee Y eung, Walter L. Ruzzo (May 3, 2001), Details of the Adjusted Rand index and Clustering algorithmsSupplement to the paper “An empirical study on Principal Component Analysis for clustering gene expression data” (To appear in Bioinformatics), pp. 763 - 774 Sách, tạp chí
Tiêu đề: An empirical study on Principal Component Analysis for clustering gene expression data
[16] L.P. Jing, M.K. Ng, Z.X. Huang (2007), “An entropy weighting k-means algorithm for subspace clustering of high-dimensional sparse data”, IEEE Transactions on Knowledge and Data Engineering 19 (8), pp. 1026 - 1041 Sách, tạp chí
Tiêu đề: An entropy weighting k-means algorithm for subspace clustering of high-dimensional sparse data”, "IEEE Transactions on Knowledge and Data Engineering 19 (8)
Tác giả: L.P. Jing, M.K. Ng, Z.X. Huang
Năm: 2007
[17] Liang Bai a, b , Jiye Liang a, * , Chuangyin Dang b , Fuyuan Cao a (2011), “A novel attribute weighting algorithm for clustering high-dimensional categorical data”, Pattern Recognition 44(2011), pp. 2843 - 2861 Sách, tạp chí
Tiêu đề: A novel attribute weighting algorithm for clustering high-dimensional categorical data”, "Pattern Recognition 44(2011)
Tác giả: Liang Bai a, b , Jiye Liang a, * , Chuangyin Dang b , Fuyuan Cao a (2011), “A novel attribute weighting algorithm for clustering high-dimensional categorical data”, Pattern Recognition 44
Năm: 2011
[18] MARIA HALKIDI (2001), “On Clustering Validation Techniques”, Kluwer Academic Publishers, Holland Sách, tạp chí
Tiêu đề: On Clustering Validation Techniques”
Tác giả: MARIA HALKIDI
Năm: 2001
[20] Tian Zhang Raghu Ramakrishnan Miron Livny (1996), “BIRCH: An Efficient Data Clustering Method for Very Large Databases”, SIGMOD ’96 6/96 Montreal, Canada IQ 1996 ACM 0-89791 -794-4/96/0006, pp. 103 - 114 Sách, tạp chí
Tiêu đề: BIRCH: An Efficient Data Clustering Method for Very Large Databases”, "SIGMOD ’96 6/96 Montreal, Canada IQ 1996 ACM 0-89791 -794-4/96/0006
Tác giả: Tian Zhang Raghu Ramakrishnan Miron Livny
Năm: 1996
[21] Usama M. Fayyad, Gregory Piatetsky-Shapiro, Padhraic Smyth (1996), “From Data Mining to Knowledge Discovery”: An Overview, Advances in Knowledge Discovery and Data Mining 1996, pp. 37 - 54 Sách, tạp chí
Tiêu đề: From Data Mining to Knowledge Discovery”": An Overview, Advances in Knowledge Discovery and Data Mining 1996
Tác giả: Usama M. Fayyad, Gregory Piatetsky-Shapiro, Padhraic Smyth
Năm: 1996
[22] Y. Chan, W. Ching, M.K. Ng, Z.X. Huang (2004), “An optimization algorithm for clustering using weighted dissimilarity measures”, Pattern Recognition 37 (5), pp.943 - 952 Sách, tạp chí
Tiêu đề: An optimization algorithm for clustering using weighted dissimilarity measures”, "Pattern Recognition 37 (5)
Tác giả: Y. Chan, W. Ching, M.K. Ng, Z.X. Huang
Năm: 2004

HÌNH ẢNH LIÊN QUAN

Hình 1.1 Quá trình phát hiện tri thức trong CSDL - Phân cụm dữ liệu định danh với số chiều cao
Hình 1.1 Quá trình phát hiện tri thức trong CSDL (Trang 12)
Hình 1.2: Mô phỏng vấn đề PCDL - Phân cụm dữ liệu định danh với số chiều cao
Hình 1.2 Mô phỏng vấn đề PCDL (Trang 13)
Hình 1.3. Dữ liệu chữ thập với các mêtric khác nhau: a) Euclide; b) Mahattan - Phân cụm dữ liệu định danh với số chiều cao
Hình 1.3. Dữ liệu chữ thập với các mêtric khác nhau: a) Euclide; b) Mahattan (Trang 14)
Hình  1.4:  Kết  quả  phân  cụm  thay  đổi  khi  thay  đổi  tỷ  lệ  trục  tọa  độ.a)  {Faro,  V.Real} {Setúba, Viseu}; b) { Viseu, V.Real} {Setúba, Faro }; - Phân cụm dữ liệu định danh với số chiều cao
nh 1.4: Kết quả phân cụm thay đổi khi thay đổi tỷ lệ trục tọa độ.a) {Faro, V.Real} {Setúba, Viseu}; b) { Viseu, V.Real} {Setúba, Faro }; (Trang 14)
Bảng 1 : Bảng ngẫu nhiên - Phân cụm dữ liệu định danh với số chiều cao
Bảng 1 Bảng ngẫu nhiên (Trang 20)
Bảng 1.1 : Bảng tham số - Phân cụm dữ liệu định danh với số chiều cao
Bảng 1.1 Bảng tham số (Trang 20)
Hình 2.1: Minh họa phân cụm K-Means - Phân cụm dữ liệu định danh với số chiều cao
Hình 2.1 Minh họa phân cụm K-Means (Trang 25)
Hình 2.2: Ví dụ về trộn và tách của phân cụm phân cấp trên tập đối tượng {a, b, c, d, e} - Phân cụm dữ liệu định danh với số chiều cao
Hình 2.2 Ví dụ về trộn và tách của phân cụm phân cấp trên tập đối tượng {a, b, c, d, e} (Trang 27)
Hình 2.3: Cấu trúc cây CF - Phân cụm dữ liệu định danh với số chiều cao
Hình 2.3 Cấu trúc cây CF (Trang 29)
Hình 2.4 Phạm vi và sự liên kết mật độ trong phân cụm dựa trên mật độ - Phân cụm dữ liệu định danh với số chiều cao
Hình 2.4 Phạm vi và sự liên kết mật độ trong phân cụm dựa trên mật độ (Trang 33)
Hình 2.5  Ví dụ về xác định các cụm trung tâm (hàng đầu) và các cụm có hình dạng tùy ý  (hàng dưới cùng) - Phân cụm dữ liệu định danh với số chiều cao
Hình 2.5 Ví dụ về xác định các cụm trung tâm (hàng đầu) và các cụm có hình dạng tùy ý (hàng dưới cùng) (Trang 33)
Hình 2.6 Ví dụ về đặc trưng của không gian 2 chiều. Từ [SCZ98]. - Phân cụm dữ liệu định danh với số chiều cao
Hình 2.6 Ví dụ về đặc trưng của không gian 2 chiều. Từ [SCZ98] (Trang 34)
Hình 3.1  Tần số, thuộc tính của a j - Phân cụm dữ liệu định danh với số chiều cao
Hình 3.1 Tần số, thuộc tính của a j (Trang 37)
Bảng 3.1: Ví dụ về tập dữ liệu - Phân cụm dữ liệu định danh với số chiều cao
Bảng 3.1 Ví dụ về tập dữ liệu (Trang 44)
Hình 3.2 Các chức năng giá trị khách quan đối với các lần lặp lại khác nhau ban  đầu dự đoán - Phân cụm dữ liệu định danh với số chiều cao
Hình 3.2 Các chức năng giá trị khách quan đối với các lần lặp lại khác nhau ban đầu dự đoán (Trang 54)

TỪ KHÓA LIÊN QUAN

TRÍCH ĐOẠN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w