Khóa học Luyện giải đề môn Toán – Thầy Đặng Việt Hùng Video chữa đề tại: www.moon.vn TRUNG TÂM LTĐH MOON.VN THI THỬ ĐẠI HỌC NĂM 2013 Môn thi: TOÁN; khối A, lần 1 (VIP) Thời gian làm bài: 180 phút, không kể thời gian phát đề PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu 1 (2,0 điểm). Cho hàm số ( ) ( ) 3 2 2 6 9 2 2 y m x mx m x = − − + − − có đồ thị là (C m ). a) Khảo sát sự biến thiên và vẽ đồ thị hàm số với m = 1. b) Tìm m để đường thẳng : 2 = − d y cắt đồ thị hàm số (C m ) tại ba điểm phân biệt A(0 ; −2), B và C sao cho diện tích tam giác OBC bằng 13 (với O là gốc tọa độ). Câu 2 (1,0 điểm). Giải phương trình ( ) 1 tan 2 tan sin 4 sin 2 . 6 − = + x x x x Câu 3 (1,0 điểm). Gi ả i h ệ ph ươ ng trình 2 2 (4 1) 2 1 0 2 3 2 0 2 x x y y x x xy x + − − = − + + − + = Câu 4 (1,0 điểm). Tính tích phân 2 1 ln 1 . + + = ∫ e x x x x I e dx x Câu 5 (1,0 điểm). Cho lăng trụ . ' ' ' ' ABCD A B C D có đ áy ABCD là hình ch ữ nh ậ t, ; 3 AB a AD a = = . Hình chiếu vuông góc của điểm ' A trên mặ t ph ẳ ng (ABCD) trùng v ớ i giao đ i ể m AC và BD. Góc gi ữ a hai m ặ t ph ẳ ng ( ' ') ADD A và (ABCD) b ằ ng 60 0 . Tính th ể tích kh ố i l ă ng tr ụ đ ã cho và kho ả ng cách t ừ đ i ể m ' B đế n m ặ t ph ẳ ng ( ' ) A BD theo a. Câu 6 (1,0 điểm). Cho các s ố th ự c d ươ ng a, b, c th ỏ a mãn 2 2 2 2 2 0. a b c ab bc ca + + + − − = Tìm giá tr ị nh ỏ nh ấ t c ủ a bi ể u th ứ c 2 2 2 2 2 . ( ) c c ab P a b c a b a b = + + + − + + PHẦN RIÊNG (3,0 điểm). Thí sinh chỉ được làm một trong hai phần (phần A hoặc phần B) A. Theo chương trình Chuẩn Câu 7.a (1,0 điểm). Trong m ặ t ph ẳ ng v ớ i h ệ t ọ a độ Oxy cho đườ ng tròn ( ) 2 2 ( ): 4 4 C x y − + = và đ i ể m E(4; 1). Tìm to ạ độ đ i ể m M trên tr ụ c tung sao cho t ừ đ i ể m M k ẻ đượ c hai ti ế p tuy ế n MA, MB đế n đườ ng tròn (C) v ớ i A, B là các ti ế p đ i ể m sao cho đườ ng th ẳ ng AB đ i qua E. Câu 8.a (1,0 điểm). Trong không gian v ớ i h ệ to ạ độ Oxyz, cho hai đườ ng th ẳ ng d 1 , d 2 có ph ươ ng trình 1 1 1 : 2 1 2 x y z d − + = = và 2 2 1 : 1 1 2 x y z d − − = = − . L ậ p ph ươ ng trình đườ ng th ẳ ng d c ắ t d 1 và d 2 và vuông góc v ớ i m ặ t ph ẳ ng ( ): 2 5 3 0 P x y z + + + = . Câu 9.a (1,0 điểm). Tìm s ố ph ứ c z th ỏ a mãn 2 2 2 . 2 1 2 iz z i z i i − + − = + − B. Theo chương trình Nâng cao Câu 7.b (1,0 điểm). Trong m ặ t ph ẳ ng v ớ i h ệ to ạ độ Oxy cho Hypebol 2 2 ( ): 1. 16 9 x y H − = Vi ế t ph ươ ng trình chính t ắ c c ủ a elip (E) có tiêu đ i ể m trùng v ớ i tiêu đ i ể m c ủ a (H) và ngo ạ i ti ế p hình ch ữ nh ậ t c ơ s ở c ủ a (H). Câu 8.b (1,0 điểm). Trong không gian v ớ i h ệ t ọ a độ Oxyz, cho m ặ t ph ẳ ng ( ) 052: =+−+ zyxP và đườ ng th ẳ ng 31 2 3 :)( −=+= + zy x d , đ i ể m A(−2; 3; 4). G ọ i ∆ là đườ ng th ẳ ng n ằ m trên (P) đ i qua giao đ i ể m c ủ a ( d) và (P) đồ ng th ờ i vuông góc v ớ i d. Tìm trên ∆ đ i ể m M sao cho độ dài đ o ạ n AM ng ắ n nh ấ t. Câu 9.b (1,0 điểm). Trong các s ố ph ứ c z th ỏ a mãn 2 1, z i − = tìm s ố ph ứ c z có mô- đ un l ớ n nh ấ t. . học Luyện giải đề môn Toán – Thầy Đặng Việt Hùng Video chữa đề tại: www.moon.vn TRUNG TÂM LTĐH MOON.VN THI THỬ ĐẠI HỌC NĂM 2013 Môn thi: TOÁN; khối A, lần 1 (VIP) Thời gian làm bài: 180. hàm số ( ) ( ) 3 2 2 6 9 2 2 y m x mx m x = − − + − − có đồ thị là (C m ). a) Khảo sát sự biến thi n và vẽ đồ thị hàm số với m = 1. b) Tìm m để đường thẳng : 2 = − d y cắt đồ thị hàm số (C m )