1. Trang chủ
  2. » Giáo án - Bài giảng

ĐỀ THI KHỐI B

1 157 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 1
Dung lượng 186,76 KB

Nội dung

BỘ GIÁO DỤC VÀ ĐÀO TẠO Đề dự bị 1 ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2002 Môn thi: TOÁN, KHỐI B Thời gian làm bài: 180 phút, không kể thời gian phát đề Câu 1 (3 điểm). Cho hàm số 32 1 22 33 yxmxxm=+−−− 1 (1) (m là tham số). 1. Cho 1 . 2 m = a) Khảo sát và vẽ đồ thị ( của hàm số (1). ) C b) Viết phương trình tiếp tuyến của đồ thị ( ) C , biết rằng tiếp tuyến đó song song với đường thẳng :4dy x=+2. 2. Tìm thuộc khoảng m 5 0; 6 ⎛ ⎜ ⎝⎠ ⎞ ⎟ sao cho hình phẳng giới hạn bởi đồ thị hàm số (1) và các đường thẳng có diện tích bằng 4. 0, 2, 0xxy=== Câu 2 (2 điểm). 1. Giải hệ phương trình 42 430 log log 0. xy xy ⎧ −+= ⎪ ⎨ − = ⎪ ⎩ 2. Giải phương trình ( ) 2 4 4 2 sin 2 sin 3 1. cos x x tg x x − += Câu 3 (2 điểm). 1. Cho hình chóp có đáy là hình vuông cạnh , vuông góc với mặt phẳng .SABCD a SA () A BCD và . Gọi là trung điểm của cạnh . Tính theo khoảng cách từ điểm đến đường thẳng SA a= E CD a S B E . 2. Trong không gian với hệ tọa độ Ox cho đường thẳng yz 21 : 20 xyz xyz +++= ⎧ ∆ ⎨ +++= ⎩ 0 và mặt phẳng ( ) :4 2 1 0.Pxyz − +−= Viết phương trình hình chiếu vuông góc của đường thẳng ∆ trên mặt phẳng ( . ) P Câu 4 (2 điểm). 1. Tính giới hạn 3 0 11 lim . x xx I x → ++ − = 2. Trong mặt phẳng với hệ tọa độ Ox cho hai đường tròn y ( ) 22 1 :450Cx y y+−−= và ( ) 22 2 :68160.Cxy xy + −++= Viết phương trình các tiếp tuyến chung của hai đường tròn ( ) 1 C và ( ) 2 C . Câu 5 ( 1 điểm). Giả sử , x y là hai số dương thay đổi thỏa mãn điều kiện 5 . 4 xy + = Tìm giá trị nhỏ nhất của biểu thức sau 41 4 S x y =+ . Hết Ghi chú: Cán bộ coi thi không giải thích gì thêm. Họ và tên thí sinh Số báo danh . B GIÁO DỤC VÀ ĐÀO TẠO Đề dự b 1 ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2002 Môn thi: TOÁN, KHỐI B Thời gian làm b i: 180 phút, không kể thời gian phát đề Câu 1 (3 điểm) 5 . 4 xy + = Tìm giá trị nhỏ nhất của biểu thức sau 41 4 S x y =+ . Hết Ghi chú: Cán b coi thi không giải thích gì thêm. Họ và tên thí sinh Số b o danh . vuông cạnh , vuông góc với mặt phẳng .SABCD a SA () A BCD và . Gọi là trung điểm của cạnh . Tính theo khoảng cách từ điểm đến đường thẳng SA a= E CD a S B E . 2. Trong không gian với hệ tọa

Ngày đăng: 03/11/2014, 00:00

Xem thêm

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN

w