3 2 3 2 y x x = − + !"#$% &' &'##(!)#*#+, !"#$% 9 7 y x = + -%.!)#*#+/ 2 0 mx y − + = 01. 234565 678.49:; Cho hình chóp S.ABCD có áy ABCD là hình thang vuông ti A và B. Bit AB = BC = a, AD = 2a, SA ⊥ (ABCD), 45 0 . a) Tính th tích kh i chóp S.ABCD theo a. b) Xác !nh tâm "#$"mt c%u i qua 4 im S, A, B, C. c) &'()*+,-"./012((SCD). <=#2'>?7@ A#$B# ( ) 2 2 2 2 2 0 2 x y y x x y xy + ≤ ≤ + − !"#$$ !# $%&'() *+,-./0 !1 2C !"#$%& 25 6.5 5 0 x x − + = ( ) 2 log 6 7 log( 3) 0. x x x − + − − = 3-%#$D(E#$FE ( ) 2 1 x e f x x = + $ 1 [0;2] 24C !"#$%& ( ) ( ) 3 8 3 8 6 x x + + − = 4 3 1 10 log log 4 2 log . x x x + = − 3-% #$ D( E#$FE ln ( ) x f x x = $ 1 2 1; e GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG !"# $–%&'( !"# $%$ 56(7 8./.69 )*%)+!,- )&./ !"# $#%&'( HIJ;9@@G;9@; !&' ()$*+# $ $ -KLM7N C(1 lim , lim x x y y →+∞ →−∞ = +∞ = −∞ O& 2 0 ' 3 6 , ' 0 2 x y x x y x = = − = ⇔ = 7P#$Q<# ( ;0) −∞ (2; ) +∞ 5#$ <#9:; R1S L 795' - 7;5.&S - 7;5' - 7G; 66- S G ∞ 9;R ∞ '/ R9G9R ' ;R ∞ G ∞ G; RL.& '' 6 6, '' 0 1 y x y x = − = ⇔ = 5'//>+E&<ST&#$@ 7PU@:9 RL f(x)=x^3-3x^2+2 -2 -1 1 2 3 4 5 -3 -2 -1 1 2 3 4 5 x y LV.&D2SA# W3#, &'<7'/S5X,'/S7Y 2 1 3 6 9 3 x x x x = − − = ⇔ = R(S7G@7P '7YSRZD1% &'$[#(+ R(S787P '7YSG;\ V' D'7YSG;\ +/'7SR; ]^#. ( ) 3 2 2 3 2 2 3 0 x x mx x x x m − + = + ⇔ − − = 2 0 3 0 (*) x x x m = ⇔ − − = +/018. 23]_,;#3 23<9 0 (0) 0 g ∆ > ⇔ ≠ ( 2 ( ) 3 g x x x m = − − 9 4 0 m m > − ⇔ ≠ ( ::;<=21 , ( ; 2) ' ( ; 2) ' B B C C B x mx B d C x mxC d = + ∈ = + ∈ ( , B C x x D#3 _ 3 . B C B C x x x x m + = = − 2 2 2 2 2 ( ) ( ) ( 1). ( ) 4 B C B C B C B C BC x x m x x m x x x x = − + − = + + − [ ] 2 0( ) 9 17 3 ( 1). 9 4 3 ( / ) 8 9 17 ( / ) 8 m loai BC m m m t m m t m = − + = ⇔ + + = ⇔ = − − = V' 9 17 8 9 17 8 m m − + = − − = )$ )$ )$ A D B C S M I C,#`a6 46MD#, 0 45 SBA = SA AB a = = 2 ( ). 3 2 2 ABCD BC AD AB S a + = = 3 . 1 1 . . 3 2 S ABCD ABCD V S SA a = = ( ) BC SAB BC SB ⊥ ⊥ b654[#%1a+!(@#,&=#a54565[# B$cd&2e5!)#<fa -f!g 1 3 2, 3 2 2 a AC a SC a R IS SC= = = = = 2 2 4 3 mc S R a π π = = . . . 3 1 . . ( ,( )) ( ,( )) 3 S MCD S MCD M SCD SCD SCD V V V S d M SCD d M SCD S Λ Λ = = = ( ) 3 . 1 1 . . 3 3 4 S MCD MCD ABCD MBC MAD a V SA S SA S S S Λ Λ Λ = = − − = -f!g 2, 5 CD a SD a SCD = = ∆ &=#1 2 1 6 . 2 2 SCD a S SC CD Λ = = . 3 3 ( ,( )) 2 6 S MCD SCD V a d M SCD S Λ = = $ M:3, ( ) ( ) ( ) 2 2 2 2 2 2 2 2 1 3 3 x y y x xy x y xy x y xy xy x y xy + + = = + − − + − h S 0 ≥ 5' 0 ≥ 2 x y xy + ≥ 9 ≤ S' ≤ 2 ( ) 1 4 4 x y + = Lc:5Sij7 2 1 , 0; 1 3 4 t t t ∈ − j/7 2 2 1 0, 0; (1 3 ) 4 t t > ∀ ∈ − 7PWj#$ 1 0; 4 5 j979:j 1 4 7; 9 ≤ j ≤ ;' 2 0 2 1 3 xy xy ≤ ≤ − ( ) 2 2 2 2 2 0 x y y x x y xy + = + − < 0 1 ; 1 0 x x y y = = = = : ( ) 2 2 2 2 2 2 x y y x x y xy + = + − < 1 2 x y = = )$*+# $ $ 25 6.5 5 0 x x − + = -KLM7N5Lc\ S 75<P9 !g ; GkR\79 1 5 1 0 5 1 5 5 x x t x t x = = = ⇔ ⇔ = = = V'S795S7@ -KL 2 6 7 0 3 2 3 0 x x x x − + > ⇔ > + − > !g ( ) 2 2 log 6 7 log( 3) 6 7 3 x x x x x x − + = − ⇔ − + = − 2 2( ) 7 10 0 5( / ) x loai x x x t m = ⇔ − + = ⇔ = V'S7\ $ − = + S ; ;S @X ;S @ >? − = ⇔ = ⇔ = + S ; ;S @X @ 9 9 S ; ;S @ >? = = = ; @ X X 9 @5 5 ; ; ; \ > > > = = = = ; l9:;m l9:;m X @ X S ; 5 \ ; ; > > > > $ $ -KLM7N5Lc ( ) 3 8 , x t + = <P9 ( ) 1 3 8 x t − = L!g 2 1 6 6 1 0 t t t t + = ⇔ − + = ( ) ( ) 3 8 3 8 3 8 1 1 3 8 3 8 3 8 x x t x x t + = + = + = ⇔ ⇔ = − = − + = − V' 1 1 x x = = − -KLSP9 4 3 5 2 3 1 10 log log 4 2 log log4 log10 log x x x x x + = − ⇔ = + 5 3 log4 log100 x x ⇔ = 5 3 3 2 4 100 4 ( 25) 0 x x x x ⇔ = ⇔ − = 0( ) 5( ) 5( / ) x loai x loai x t m = ⇔ = − = V': $ WDn$1 2 1; e 2 1 ln '( ) x f x x − = 2 '( ) 0 1; f x x e e = ⇔ = ∈ 2 2 1 2 ( ) , (1) 0, ( )f e f f e e e = = = V' 2 1; 1 ( ) max e f x e = <:" 2 1; ( ) 0 min e f x = <:31 &8./"@ABC0@.&-C D#EABC01 . 234565 678.49:; Cho hình chóp S.ABCD có áy ABCD là hình thang vuông ti A và B. Bit AB = BC = a, AD = 2a, SA ⊥ (ABCD), 45 0 .