1. Trang chủ
  2. » Giáo án - Bài giảng

De, Dap an HK1-LNQ-lop12

5 108 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 164,85 KB

Nội dung

          3 2 3 2 y x x = − +    !"#$% &' &'##(!)#*#+,  !"#$% 9 7 y x = +  -%.!)#*#+/ 2 0 mx y − + = 01. 234565 678.49:;   Cho hình chóp S.ABCD có áy ABCD là hình thang vuông ti A và B. Bit AB = BC = a, AD = 2a, SA ⊥ (ABCD), 45 0 . a) Tính th tích kh i chóp S.ABCD theo a. b) Xác !nh tâm "#$"mt c%u i qua 4 im S, A, B, C. c) &'()*+,-"./012((SCD).  <=#2'>?7@ A#$B# ( ) 2 2 2 2 2 0 2 x y y x x y xy + ≤ ≤ + −     !"#$$ !# $%&'() *+,-./0 !1   2C !"#$%&  25 6.5 5 0 x x − + =  ( ) 2 log 6 7 log( 3) 0. x x x − + − − =  3-%#$D(E#$FE ( ) 2 1 x e f x x = + $ 1 [0;2]     24C !"#$%&  ( ) ( ) 3 8 3 8 6 x x + + − =  4 3 1 10 log log 4 2 log . x x x + = −   3-% #$ D( E#$FE ln ( ) x f x x = $ 1 2 1; e      GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG  GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG    !"# $–%&'( !"# $%$  56(7 8./.69  )*%)+!,-  )&./   !"# $#%&'( HIJ;9@@G;9@;   !&'     ()$*+#       $ $  -KLM7N C(1 lim , lim x x y y →+∞ →−∞ = +∞ = −∞  O& 2 0 ' 3 6 , ' 0 2 x y x x y x =  = − = ⇔  =   7P#$Q<# ( ;0) −∞  (2; ) +∞ 5#$ <#9:; R1S L 795' - 7;5.&S - 7;5' - 7G;          66- S G ∞ 9;R ∞  '/ R9G9R   '  ;R ∞     G ∞  G;  RL.& '' 6 6, '' 0 1 y x y x = − = ⇔ = 5'//>+E&<ST&#$@ 7PU@:9          RL f(x)=x^3-3x^2+2 -2 -1 1 2 3 4 5 -3 -2 -1 1 2 3 4 5 x y  LV.&D2SA#               W3#, &'<7'/S5X,'/S7Y     2 1 3 6 9 3 x x x x = −  − = ⇔  =      R(S7G@7P '7YSRZD1% &'$[#(+ R(S787P '7YSG;\ V' D'7YSG;\      +/'7SR; ]^#. ( ) 3 2 2 3 2 2 3 0 x x mx x x x m − + = + ⇔ − − =      2 0 3 0 (*) x x x m =  ⇔  − − =   +/018. 23]_,;#3 23<9 0 (0) 0 g ∆ >  ⇔  ≠  ( 2 ( ) 3 g x x x m = − −  9 4 0 m m  > −  ⇔   ≠         ( ::;<=21  , ( ; 2) ' ( ; 2) ' B B C C B x mx B d C x mxC d = + ∈      = + ∈   ( , B C x x D#3 _  3 . B C B C x x x x m + =   = −   2 2 2 2 2 ( ) ( ) ( 1). ( ) 4 B C B C B C B C BC x x m x x m x x x x   = − + − = + + −             [ ] 2 0( ) 9 17 3 ( 1). 9 4 3 ( / ) 8 9 17 ( / ) 8 m loai BC m m m t m m t m   =  − +  = ⇔ + + = ⇔ =   − −  =    V' 9 17 8 9 17 8 m m  − + =    − − =                   )$ )$ )$  A D B C S M I             C,#`a6 46MD#,  0 45 SBA = SA AB a  = =    2 ( ). 3 2 2 ABCD BC AD AB S a + = =     3 . 1 1 . . 3 2 S ABCD ABCD V S SA a = =       ( ) BC SAB BC SB ⊥  ⊥   b654[#%1a+!(@#,&=#a54565[# B$cd&2e5!)#<fa   -f!g 1 3 2, 3 2 2 a AC a SC a R IS SC= =  = = =     2 2 4 3 mc S R a π π = =     . . . 3 1 . . ( ,( )) ( ,( )) 3 S MCD S MCD M SCD SCD SCD V V V S d M SCD d M SCD S Λ Λ = =  =     ( ) 3 . 1 1 . . 3 3 4 S MCD MCD ABCD MBC MAD a V SA S SA S S S Λ Λ Λ = = − − =     -f!g 2, 5 CD a SD a SCD = =  ∆ &=#1 2 1 6 . 2 2 SCD a S SC CD Λ  = =      . 3 3 ( ,( )) 2 6 S MCD SCD V a d M SCD S Λ  = =         $ M:3, ( ) ( ) ( ) 2 2 2 2 2 2 2 2 1 3 3 x y y x xy x y xy x y xy xy x y xy + + = = + − − + −  h S 0 ≥ 5' 0 ≥   2 x y xy + ≥  9 ≤ S' ≤  2 ( ) 1 4 4 x y + =  Lc:5Sij7 2 1 , 0; 1 3 4 t t t   ∈   −             j/7 2 2 1 0, 0; (1 3 ) 4 t t   > ∀ ∈   −   7PWj#$ 1 0; 4       5 j979:j 1 4       7;  9 ≤ j ≤ ;' 2 0 2 1 3 xy xy ≤ ≤ −   ( ) 2 2 2 2 2 0 x y y x x y xy  + =   + −  < 0 1 ; 1 0 x x y y = =     = =   : ( ) 2 2 2 2 2 2 x y y x x y xy + = + − < 1 2 x y  = =            )$*+#          $ $  25 6.5 5 0 x x − + = -KLM7N5Lc\ S 75<P9 !g  ; GkR\79     1 5 1 0 5 1 5 5 x x t x t x  = = =   ⇔  ⇔    = = =     V'S795S7@   -KL 2 6 7 0 3 2 3 0 x x x x  − + > ⇔ > +  − >      !g ( ) 2 2 log 6 7 log( 3) 6 7 3 x x x x x x − + = − ⇔ − + = −    2 2( ) 7 10 0 5( / ) x loai x x x t m =  ⇔ − + = ⇔  =   V'S7\         $ − = + S ; ;S @X ;S @ >?     − = ⇔ = ⇔ = + S ; ;S @X @ 9 9 S ; ;S @ >?     = = = ; @ X X 9 @5   5 ; ; ; \ > > >     = = = = ; l9:;m l9:;m X @ X S ; 5     \ ; ; > > > >          $ $ -KLM7N5Lc ( ) 3 8 , x t + = <P9 ( ) 1 3 8 x t  − =     L!g  2 1 6 6 1 0 t t t t + = ⇔ − + =     ( ) ( ) 3 8 3 8 3 8 1 1 3 8 3 8 3 8 x x t x x t  + = +  = + =   ⇔  ⇔    = − = −    + = −    V' 1 1 x x =   = −         -KLSP9   4 3 5 2 3 1 10 log log 4 2 log log4 log10 log x x x x x + = − ⇔ = +     5 3 log4 log100 x x ⇔ = 5 3 3 2 4 100 4 ( 25) 0 x x x x ⇔ = ⇔ − =    0( ) 5( ) 5( / ) x loai x loai x t m =   ⇔ = −   =  V':           $ WDn$1 2 1; e      2 1 ln '( ) x f x x − =    2 '( ) 0 1; f x x e e   = ⇔ = ∈       2 2 1 2 ( ) , (1) 0, ( )f e f f e e e = = =     V' 2 1; 1 ( ) max e f x e     = <:" 2 1; ( ) 0 min e f x     = <:31    &8./"@ABC0@.&-C D#EABC01  . 234565 678.49:;   Cho hình chóp S.ABCD có áy ABCD là hình thang vuông ti A và B. Bit AB = BC = a, AD = 2a, SA ⊥ (ABCD), 45 0 .

Ngày đăng: 01/11/2014, 06:00

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN

w