1. Trang chủ
  2. » Giáo án - Bài giảng

đề thi DH toán khối A

60 190 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 60
Dung lượng 389,77 KB

Nội dung

30 ĐỀ ÔN THI ĐẠI HỌC KHÓA 2007-2008 *** ĐỀ SỐ 1 Câu I. 1. Viết phương trình đường thẳng vuông góc với đường thẳng 0453:)( = − − Δ yx và tiếp xúc với đồ thò hàm số: 23 23 +−= xxy 2. Tìm GTLN và GTNN của hàm số: 2 312 xxy −+= Câu II. 1. Giải phương trình: 1 1cossin2 12sinsin23sin2 2 −= + +−+ xx xxx 2. Giải phương trình: 234413 2 −=−−−−+− xxxx 3. Giải bất phương trình: 08256 2 >−+−+− xxx Câu III. 1. Cho tam giác ABC có A(-1;3) ;đường cao BH có phương trình : x - y = 0; đường phân giác trong CK có phương trình : x+3y+2=0. Lập phương trình các cạnh của tam giác ABC. 2. Viết phương trình của đường thẳng qua điểm M(0;1;1) vuông góc với đường thẳng 1 x1 y2 z (d ): 311 −+ == và cắt đường thẳng 2 xyz20 (d ): x10 + −+= ⎧ ⎨ += ⎩ 3. Cho lăng trụ đứng ABC.A ' B ' C ' có đáy ABC là tam giác cân với AB = AC = a và góc BAC = 120 0 , cạnh bên BB ' = a. Gọi I là trung điểm của CC ' . Tính cosin của góc giữa hai mặt phẳng (ABC) và (AB ' I). Câu IV. 1. Tính tích phân : ∫ + = 2 0 4 cos1 2sin π dx x x I 2. Tìm hệ số của số hạng chứa x 43 trong khai triển 21 32 5 1 ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ + x x Câu V. 1.Tìm giới hạn của hàm số: 1 57 lim 2 3 1 − −−+ → x xx x 2.Tìm m để 034cossin82cos 2 ≥+−− mxxx với mọi ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ ∈ 4 ;0 π x Keát quaû ñeà 1 Caâu I Caâu II Caâu III Caâu IV Caâu V 1. 27 61 3 5 ; 27 29 3 5 +−=+−= xyxy 1. π π 2 4 5 kx += 1. (AC): x+y-2=0 (BC): x-7y-18=0 (AB): 3x-y+6=0 1. 4 π =I 1. 12 7 2. 2min;4 −== yMaxy 2. 2 = x 2 1 1 1 1 .2 − − = − − = zyx 2. 1330 2. 4 1 −≤m 3. 53 ≤ < x 3. 10 30 cos = ϕ ĐỀ SỐ 2 Câu I. 1. Xác đònh m để hàm số 424 22 mmmxxy ++−= có cực đại, cực tiểu lập thành một tam giác đều 2. Tìm GTLN và GTNN của hàm số : 1sinsin 1sin 2 + + + = x x x y Câu II. 1. Giải phương trình: xx x x xxx cossin cos2 sin22 )cos(sincos 1 − += − 2. Giải phương trình: 0)4(log)2(log2 2 33 =−+− xx 3. Giải bất phương trình: 2 243 2 < +++− x xx Câu III. 1. Trong mp(Oxy) cho parabol (P) : xy 2 2 = và hai điểm A(2;-2) ; B(8;4). Gọi M là điểm thuộc cung nhỏ AB của (P) . Xác đònh M sao cho tam giác AMB có diện tích lớn nhất. 2. Cho hai đường thẳng (d 1 ) và (d 2 ) có phương trình là: ⎩ ⎨ ⎧ =+− =+− 0104 0238 :)( 1 zy zx d và 2 x2z30 (d ): y2z20 − −= ⎧ ⎨ + += ⎩ Tính khoảng cách giữa (d 1 ) và (d 2 ) . 3. Cho hình chóp S.ABCD có đáy ABC là tam giác đều cạnh a và cạnh bên SA vuông góc với mặt phẳng đáy (ABC) . Tính khoảng cách từ điểm A tới mặt phẳng (SBC) theo a, biết rằng SA= a6 2 Câu IV. 1. Tính tích phân : dxxI ∫ −= 1 0 32 )1( 2. Biết tổng hệ số của ba số hạng đầu tiên trong khai triển n x xx ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ + 15 28 1 3 bằng 79. Tìm số hạng không chứa x. Câu V. 1. Cho tập hợp {} 9;8;7;6;5;4;3;2;1=A . Từ tập A có thể lập được bao nhiêu số có sáu chữ số khác nhau sao cho các số này chia hết cho 5 và có đúng 3 chữ số lẻ? 2. Tìm m để phương trình sau có nghiệm: 02 2 sin 4 1 2cos 4 cos 4 sin =++−+ mxxxx Keát quaû ñeà 2 Caâu I Caâu II Caâu III Caâu IV Caâu V 1. 3 3=m π π π π 2 12 5 2 12 11 .1 kx kx +−= += 1. M(1/2;1) 1. 16 3 π 1. 2880 2. M=1; m=0 2. 3;23 =+= xx 2. 23 2. 792 2. 02 ≤ ≤ − m 01 3 4 7 9 .3 <≤−∨≤< xx 3. 2 2a ĐỀ SỐ 3 Câu I. 1. Cho hàm số 1 2 2 − −+ = mx mxx y . Xác đònh m để hàm số có cực đại, cực tiểu với hoành độ thỏa mãn 2121 4 xxxx =+ 2. Tìm GTLN và GTNN của hàm số: 1 2(1 sin2 cos4 ) (cos4 cos8 ) 2 yxxxx =+ − − Câu II. 1. Giải phương trình: 1)1(sin 22 =++ xtgxtgx 2. Giải hệ phương trình : ⎪ ⎩ ⎪ ⎨ ⎧ =+ = ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ + ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ 6)( 12 2 32 xyxy y x y x 3. Giải bất phương trình: 1213 −>−−+ xxx Câu III. 1. Viết phương trình các cạnh ABCΔ biết tọa độ của chân ba đường cao kẻ từ các đỉnh A,B,C là A ' (-1;-2); B ' (2;2); C ' (-1;2) 2. Lập phương trình mặt phẳng chứa đường thẳng (d): ⎩ ⎨ ⎧ =−− =−+− 02 0308118 zyx zyx và có khoảng cách đến điểm A(-1,3,-2) bằng 29 3. Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a , SA vuông góc với mặt phẳng (ABCD) và SA= a.Gọi E là trung điểm của cạnh CD. Tính theo a khoảng cách từ điểm S đến đường thẳng BE. Câu IV. 1. Tính diện tích hình phẳng giới hạn bởi các đường 1,54,22 22 =++=+−= yxxyxxy 2. Cho khai triển n x x ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ + 3 2 3 3 . Biết tổng hệ số của ba số hạng đầu tiên trong khai triển trên bằng 631. Tìm hệ số của số hạng có chứa x 5 . Câu V. 1. Cho tập hợp {} 9;8;7;6;5;4;3;2;1;0=A . Từ tập A có thể lập được bao nhiêu số có sáu chữ số khác nhau sao cho luôn có mặt hai chữ số 0 và 3? 2. Đònh m để phương trình : m xx gxtgxxx =++++++ ) cos 1 sin 1 cot( 2 1 1cossin có nghiệm ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ∈ 2 ;0 π x Keát quaû ñeà 3 Caâu I Caâu II Caâu III Caâu IV Caâu V 1. 2 1 =m π π π π 2 6 5 2 6 .1 kx kx += += 1. x+3y+7=0 x-y+3=0 2x+y-6=0 1. 4 9 1. 42.000 2. M=5; m=1 2. (2;1), (-2;-1) 2. 3x-4y+2z-10=0 2x-3y+4z-10=0 2. 673.596 )12(2.2 +≥m 3. 2 3 1 <≤ x 3. 5 53 a ĐỀ SỐ 4 Câu I. 1. Cho hàm số 122 24 +−+−= mmxxy . Xác đònh m sao cho đồ thò hàm số cắt trục hoành tại bốn điểm có các hoành độ lập thành một cấp số cộng. 2. Viết phương trình đường thẳng qua A(-6;5) và tiếp xúc với đồ thò của hàm số 2 2 − + = x x y Câu II. 1. Giải phương trình: 34cos333sin.cos43cos.sin4 33 =++ xxxxx 2. Giải bất phương trình: 32 1 3 log)2 2 2 1 4( 3 1 log + ≥+ + − + x xx 3. Giải phương trình: 0)(log).211( 2 2 =−−++− xxxx Câu III. 1. Cho đường tròn 0562:)( 22 =++−+ yxyxC . Viết phương trình tiếp tuyến của (C) song song với đường thẳng 012:)( =−+ yxd . Tìm tọa độ các tiếp điểm. 2. Lập phương trình của đường thẳng ( Δ ) đi qua điểm A(3,2,1) song song với mặt phẳng (P): x+y+z-2 = 0 và vuông góc với đường thẳng xy10 (d): 4y z 1 0 + −= ⎧ ⎨ + += ⎩ 3. Hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a , tâm O , SA vuông góc với mặt phẳng (ABCD) và SA = a . Gọi I là trung điểm của SC và M là trung điểm của AB . Tính khoảng cách từ điểm I đến đường thẳng CM. Câu IV. 1. Tính diện tích hình phẳng giới hạn bởi các đường 51 2 +=−= xy và xy 2. Tìm các số nguyên dương m, n thỏa mãn: 3:5:5 1 1 : 1 : 1 1 = − ++ + + m n C m n C m n C Câu V. 1. Tìm GTLN và GTNN của hàm số: xxxxy 923 234 +−−= với ]2;2[ − ∈ x 2. Tìm m để phương trình sau có 4 nghiệm phân biệt: 0log2)34(log 2 22 2 =−+− mxx Keát quaû ñeà 4 Caâu I Caâu II Caâu III Caâu IV Caâu V 1. 9 5 ;5 == mm 1. 24 π π k x +−= 28 π π k x += 1. 2x+y+6=0; (-1;-4) 2x+y-4=0 ; (3;-2) 1. 3 73 1.M=14; m= -7 2. 2 7 4 1 ;1 +−=−−= xyxy 2. 02 ≤≤− x 2. 2 1 3 2 5 3 − − = − − = − zyx 2. m=3 n=6 2. 10 < < m 3. 2 51− =x 3. 10 30a ĐỀ SỐ 5 Câu I. Cho hàm số : y = 3x - x 3 có đồ thò là (C) 1) Khảo sát và vẽ đồ thò (C) của hàm số . 2) Tìm trên đường thẳng y = 2 các điểm kẻ được 3 tiếp tuyến đến đồ thò (C) . Câu II. 1. Giải phương trình: )42cos32cos7(2cos)1sin4(sin2 242 −+=− xxxxx 2. Giải bất phương trình: xx x 7 2 2 )12( 2 log 3 1 8 +≤ + 3. Giải hệ phương trình: ⎩ ⎨ ⎧ =+ +−=− 16 )2)(log(log 33 22 yx xyxyyx Câu III. 1. Cho tam giác ABC có hai cạnh AB, AC lần lượt có phương trình là 02 = − + yx và 0362 = + + yx , cạnh BC có trung điểm M(-1;1). Viết phương trình đường tròn ngoại tiếp tam giác ABC 2. Trong Kg(Oxyz) cho đường thẳng : 13 (): 34 1 x yz d −+ == và điểm A(1;2;1) Tính khoảng cách từ điểm A đến đường thẳng (d) 3. Tứ diện SABC có ABC là tam giác vuông cân đỉnh B và AC = 2a , cạnh SA vuông góc với mặt phẳng (ABC) và SA = a. Gọi O là trung điểm của AC . Tính khoảng cách từ O đến (SBC) Câu IV. 1. Tính tích phân: ∫ − = 2 3 2 2 1xx dx I 2. Giải bất phương trình: 0 4 5 2 2 3 1 4 1 ≤−− −−− xxx ACC Câu V. 1. Tìm GTLN và GTNN của hàm số: 2 4)2( xxy −+= 2. Cho bất phương trình : 0324 ≤+−− mm xx (1) Tìm m để bất phương trình (1) có nghiệm. Keỏt quaỷ ủe 5 Caõu I Caõu II Caõu III Caõu IV Caõu V 1. Tửù giaỷi k k k x += += += 3 x 6 x 24 .1 9 4 ) 4 9 ( ) 4 1 .(1 2 2 =+ ++ y x 1. 12 1. 0;33 == mM 1 3 2 2.2 0 0 0 > < x x x 2. 1 2 1 x 2. 26 347 2. x=5,6,7,8,9, 10,11 2. 2m 3. x=y=2 3. 6 6a [...]... trình các cạnh tam giác ABC 2 Cho hai điểm A( 0;0;-3), B(2;0;-1) và mặt phẳng (P): 3 x − 8y + 7z − 1 = 0 Tìm điểm C ∈ (P ) sao cho tam giác ABC đều 3 Cho hình chóp tứ giác SABCD có đáy ABCD là hình thoi cạnh a, góc ABC bằng 600 Chiều cao a 3 SO c a hình chóp bằng , trong đó O là giao điểm c a hai đường chéo đáy Gọi M là trung 2 điểm cạnh AD, (α ) là mặt phẳng đi qua BM, song song với SA, cắt SC tại K... y2 + = 1 và Parabol: y 2 = 12 x 8 6 2 Lập phương trình đường thẳng đi qua điểm A( -1;2;-3), vuông góc với véc tơ a = (6;−2;−3) và cắt x −1 y +1 z − 3 = = đường thẳng (d): 3 2 −5 3 Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, AB = a, BC = b, cạnh SA vuông góc với đáy và SA = 2a Gọi M là trung điểm c a SC Chứng minh rằng tam giác AMB cân tại M và tính diện tích tam giác AMB theo a Câu IV 1 Lập... với nhau Câu IV 1 Tính diện tích hình phẳng giới hạn bởi parabol y = x 2 − 2 x và hai tiếp tuyến c a đường cong đó đi qua điểm A( 2;-9) 2 Cho tập hợp A = {0;1;2;3;4;5;6;7; ;8;9} Từ A có thể lập được bao nhiêu số : a) Có sáu chữ số khác nhau sao cho luôn có mặt hai chữ số 0 và 3 b) Có bảy chữ số khác nhau sao cho luôn có mặt hai chữ số 2 và 5 Câu V 4 1 Tìm giá trò lớn nhất và giá trò nhỏ nhất c a hàm... điểm A( ; ) Viết phương trình 2 2 đường thẳng qua A và cắt (C) theo một dây cung có độ dài 10 2 Lập phương trình mặt cầu đi qua 2 điểm A( 2,6,0), B(4,0,8) và có tâm thuộc đường thẳng x −1 y z + 5 (d) có phương trình : = = 1 −1 2 3 Cho hình chóp SABC có đáy ABC là tam giác đều cạnh a , SA = SB = SC, khoảng cách từ S đến mặt phẳng (ABC) bằng h Tìm hệ thức liên hệ gi a a, h để hai mặt phẳng (SAB) và (SAC)... OA, OB, OC vuông góc với nhau từng đôi một, sao cho OA = a, OB = b, OC = 6 (a, b>0 ) Tính thể tích tứ diện OABC theo a và b Với giá trò nào c a a và b thì thể tích ấy đạt giá trò lớn nhất, tính giá trò lớn nhất đó khi a+ b=1 Câu IV 1 Xét miền (D) giới hạn bởi các đường cong y2 = 6x và x2 + y2 = 16 Tính thể tích khối tròn xoay tạo thành khi quay miền đó một vòng quanh trục Oy n ⎛ 1 ⎞ 2 Tìm giá trò c a. .. kỳ trên (H) đến hai tiệm cận là một số không đổi ⎧2 x + y + z + 1 = 0 2 Trong Kg(Oxyz) cho đường thẳng Δ : ⎨ và mặt phẳng (P): 4x-2y+z-1=0 ⎩x + y + z + 2 = 0 1 Cho Hypebol (H): Viết phương trình hình chiếu vuông góc c a đường thẳng Δ trên mặt phẳng (P) 3 Tứ diện SABC có tam giác ABC vuông tại B , AB = 2a, BC = a 3 , SA ⊥ ( ABC ) , SA = 2a Gọi M là trung điểm c a AB Tính khoảng cách từ A đến (SMC) Câu... đường thẳng : Δ : x − y − 2 = 0 x−2 y −3 z +4 x +1 y − 4 z − 4 ; (d 2 ) : 2 Cho hai đường thẳng (d1 ) : = = = = 2 3 −5 3 −1 −2 Lập phương trình đường vuông góc chung c a (d1) và (d2) 3 Tứ diện ABCD có ABC là tam giác đều cạnh a , AD vuông góc với BC , AD = a và khoảng cách từ D đến BC là a Tính khoảng cách gi a hai đường thẳng AD và BC Câu IV 2 Giải phương trình: π 4 tg2 x dx (1 + tg2 x)2 cos2 x 0 1 Tính... phương trình tổng quát c a tất cả các tiếp tuyến chung c a (C1) và (C2) ⎧x + y − z = 0 2 Trong Kg(Oxyz) cho đường thẳng (d) có phương trình : ⎨ và ba điểm :A( 2;0;1); ⎩2 x − y = 0 B(2;-1;0); C(1;0;1) Tìm trên đường thẳng (d) điểm S sao cho : SA + SB + SC đạt giá trò nhỏ nhất 3 Cho hình thoi ABCD tâm O, cạnh bằng a và AC = a Từ trung điển H c a cạnh AB dựng SH ⊥ ( ABCD ) với SH = a Tính khoảng cách từ O... tứ diện ABCD với AB = AC = a, BC = b Hai mặt phẳng (BCD) và (ABC) vuông góc với nhau và góc BDC = 900 Xác đònh tâm và tính bán kính mặt cầu ngoại tiếp ABCD theo a và b Câu IV 1 Gọi (D) là miền giới hạn bởi các đường y = 0 và y = 2x - x2 Tính thể tích vật thể được tạo thành do quay (D) : quanh Ox ; quanh Oy 0 1 2 2005 2 Tính tổng : S = C 2005 + 2C 2005 + 3C 2005 + + C 2005 Câu V 1 Cho tập hợp A = {... sau có nghiệm duy nhất: 2 2 ⎧ ⎪(x − 2) + y = m ⎨ 2 2 ⎪x + (y − 2) = m ⎩ Câu III 1 Cho M(3,1) Tìm phương trình đường thẳng qua M và cắt hai n a trục Ox, Oy tương ứng tại A và B sao cho ( OA + OB ) đạt giá trò bé nhất 2 Trong Kg(Oxyz) cho tam giác ABC với A( 2,5,7), B(0,-1,-1),C(3,1,-2) Viết phương trình chính tắc c a đường vuông góc hạ từ điểm A xuống trung tuyến xuất phát từ đỉnh C 3 Cho tứ diện OABC . có đáy ABC là tam giác cân với AB = AC = a và góc BAC = 120 0 , cạnh bên BB ' = a. Gọi I là trung điểm c a CC ' . Tính cosin c a góc gi a hai mặt phẳng (ABC) và (AB ' I). Câu. vuông góc c a đường thẳng Δ trên mặt phẳng (P). 3. Tứ diện SABC có tam giác ABC vuông tại B , AB = 2a, BC = a 3, ()SA ABC ⊥ , SA = 2a. Gọi M là trung điểm c a AB. Tính khoảng cách từ A đến (SMC). 1 x yz d −+ == và điểm A( 1;2;1) Tính khoảng cách từ điểm A đến đường thẳng (d) 3. Tứ diện SABC có ABC là tam giác vuông cân đỉnh B và AC = 2a , cạnh SA vuông góc với mặt phẳng (ABC) và SA = a. Gọi O là

Ngày đăng: 27/10/2014, 21:00

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN

w