BDHSG Toán 9 Ngày 22 tháng 09 năm 2011 Chuyên đề: PHƯƠNG TRÌNH VÔ TỈ. I. PHƯƠNG PHÁP 1: NÂNG LUỸ THỪA f x f x g x g x f x g x ≥ = ⇔ ≥ = g x f x g x f x g x ≥ = ⇔ = f x f x g x h x g x f x g x f x g x h x ≥ + = ⇔ ≥ + + = n n f x f x g x g x n N f x g x ≥ = ⇔ ≥ ∈ = n n g x f x g x n N f x g x ≥ = ⇔ ∈ = n n f x g x f x g x n N + + = ⇔ = ∈ n n f x g x f x g x n N + + = ⇔ = ∈ Bài 1: !"#$%&'($! ) ) + = − *⇔ ) ) ) ) ) ) ) ) − ≥ ≥ ≥ ⇔ ⇔ = + = − − = x⇔ = Bài 2: !"#$%&'($! x x− + = *+,- x x− + = x x⇔ + = =⇔ = −= ≥ ⇔ =−− ≥ ⇔ =+ ≥ x x x x xx x xx x Bài 3: !"#$%&'($! x x x+ − − = − *+,- x x x+ − − = − x x x⇔ + = − + − x x x x x x x − ≥ ⇔ − ≥ + = − + − + − − GV: Trần Công Tiến Trang 1 BDHSG Toán 9 x x x x ≤ ⇔ + = − + x x x x x ≤ ⇔ + ≥ + = − + x x x x x x x − ≤ ≤ − ≤ ≤ ⇔ ⇔ ⇔ = = + = = − Bài 4: !"#$%&'($! x x− − − = *. x x x − ≥ ⇔ ≥ − ≥ ( ) ( ) / x x x x x x x x x ⇔ − − − + = ⇔ − − + = = − = ⇔ ⇔ − = − + = 0&!1 23&+4"1,)5 Bài 5. !"#$%&'($! x x x− = + HD:.6 x≤ ≤ 6!4- &47,!8&"#$%4"#$% x x x+ + − = x x − ⇔ + = ⇔ = ÷ Bài 6. !"#$%&'($!9+: / x x x+ = − − HD:.6 x ≥ − !"#$%&'($!&"#$%4"#$% ( ) / / ; x x x x x x x x = + + = + + = ⇔ ⇔ − − = + + = − Bài 7. !"#$%&'($!9+: ( ) ( ) / x x x x x+ + = + + HD: & ( ) x x x⇔ + − = ⇔ = Bài 8.23<=$>:?$ !"#$%&'($! ) ) @− = − *+,- ) ) @− = − ⇔ ) @ ) @ ) ) )@ @ @) @ ≥ ≥ ⇔ − = − + − + = A0:@5 !"#$%&'($!2B$%!=@ A0:@C @ ) @ + = .D:6=$4E,-$%!=@)F@⇔ @ @ + F@ G0:@H@ GF@ ⇔@ I⇔ @ < ≤ G0:@J@ GI@ ⇔@ F⇔@IA -@>KA0:@IA!8L,J@I !"#$%&'($!,-@M&$%!=@ @ ) @ + = GV: Trần Công Tiến Trang 2 BDHSG Toán 9 A0:AJ@I!8L,@H !"#$%&'($!2B$%!=@ Bài 9.23<=$>:?$ !"#$%&'($!2N@>3&!+@9O mxx −=− Bài 10.23<=$>:?$&!P8&!+@9O@ !"#$%&'($! ) ) @ @− = − *.D:6=$)F A0:@J !"#$%&'($!2B$%!=@ A0:@5 !"#$%&'($!&'Q&!3$! ) ) − = ⇒,-!+$%!=@) 5R) 5 A0:@H !"#$%&'($!47,!8&"#$%4"#$%2N ) @ ) @ − + − = ) @ ) @ − = ⇔ = − G0:J@I !"#$%&'($!,-!+$%!=@) 5@S) 5 @− G0:@H !"#$%&'($!,-@M&$%!=@)5@ III-Bài tập áp dụng: Bài 1:,T, !"#$%&'($!9+: x x+ − = x x+ − − = x x+ − − = x x x+ + = + ) ) + = − − ) ) )+ − − = − ) ) ) ) / − − − − + + = ; x − − = /5 x x− x − + = / x− + = ; x− − = ; x x+ = − x x+ + − = x x− − = − Bài 2 !"#$%&'($! + x x− = − < x x− + = , x x+ + = U x x+ + − = P x x− + − = V x x+ − − = % / x x+ = − + ! x x x+ − + = + x x− − = Bài 3(@@4E !"#$%&'($!9+:,-$%!=@ x x m x x− + − = + − Bài 4!8 !"#$%&'($! x x m− − = + !"#$%&'($!6!@5 < (@@4E !"#$%&'($!,-$%!=@ Bài 5!8 !"#$%&'($! x mx x m+ − = − + !"#$%&'($!6!@5 < WN%T&'X$38,Y+@&!( !"#$%&'($!,-$%!=@ Bài 6: ,T, !"#$%&'($!9+: + / x x− − − = U / x x x− − − + − = − % x x x x − − = − − < x − = P / x x x− − − + − = − ! x x+ − − = , x x− + = V x x x x+ − = − − x x− + + = GV: Trần Công Tiến Trang 3 BDHSG Toán 9 II. PHƯƠNG PHÁP 2: ĐƯA VỀ PHƯƠNG TRÌNH TRỊ TUYỆT ĐỐI I-KIẾN THỨC: Z[U\$%!]$%4^$%&!_,9+: f x g x f x f x g x f x g x f x g x f x = ≥ = ⇔ = ⇔ = − < II-BÀI TẬP: Bài 1: !"#$%&'($! ) ) ) ;− + + = *⇔ ) ; )− = − ⇔`)A`5;A) A0:)J⇒A)5;A)2B$%!=@ A0:) ≥ ⇒)A5;A)⇔)5&!8@7$W?a)5 Bài 2: !"#$%&'($! ) ) ) ) ) ) + + + + + − + = + − + * ⇔ ) ) ) ) ) / ) ) + ≥ + + + + + + − + + = + − + + ⇔ ) ) ` ) ` ` ) ` ≥ − + + + + − = + − .L&a5 ) + aF⇒ !"#$%&'($!47,!8&'Q&!3$! a ` a ` ` a `+ + − = − A0:IaJaGGAa5Aa⇔a5A>8K A0:IaIaGGAa5aA⇔a5 A0:aHaGGaA5aA2B$%!=@ WNa5⇔)G5/⇔)5;&!8@7$W?a)5; Bài 3: !"#$%&'($! x x x x− + − + + + − = *. x ≥ / x x x x⇔ − + − + + − + − + = x x⇔ − + + − + = x⇔ − = x⇔ = !8@7$W?a)5 Bài 4: !"#$%&'($! x x x x+ − + − − = *. x ≥ & x x x x⇔ − + − + + − − − + = x x⇔ − + + − − = 0: x > & x x⇔ − + + − − = x⇔ = b8K 0: x ≤ & x x⇔ − + + − − = x⇔ = b:B$4c$%2N x∀ W?a&? $%!=@,Y+ !"#$%&'($!>3 { } ` S x R x= ∈ ≤ ≤ III-Bài tập áp dụng: ,T, !"#$%&'($!9+: x x+ + = x x− + = / x x x− + = − x x x+ + = + x x x x− + + + + = x x x x− + − − + = GV: Trần Công Tiến Trang 4 BDHSG Toán 9 / ; ; x x x x x x− + + + + = − + ; / x x x x− + + − + = / x x x x+ − + − − = x x x x− − − + − − = x x x x+ − + + + − + = x x x x− + − + + + − = x x x x+ − + + − = =−−−+−++ xxxx x x x− + + = ;x x x− + + = x x x+ + + + = ; =−−++ xx / x x x x x + + − + − − = x x x− + = − / x x x x− + − − + − − − + = ; x x+ − − = III. PHƯƠNG PHÁP 3: ĐẶT ẨN PHỤ 1. Phương pháp đặt ẩn phụ thông thường .O2N$!D: !"#$%&'($!2B2B&dR4E%,!c$%&+,-&!E4L& ( ) t f x= 23,!ce4D: 6=$,Y+ t $0: !"#$%&'($!<+$4f:&'Q&!3$! !"#$%&'($!,!_+@M&<0$ t g:+$&'h$%!#$ &+,-&!E%4"1, !"#$%&'($!4-&!P8 t &!(2=,4L& !\)P@$!"i!83$&83$j Bài 1. !"#$%&'($! x x x x− − + + − = HD:Điều kiện x ≥ !?$)k& x x x x− − + − = .L& t x x= − − &!( !"#$%&'($!,-UK$% t t t + = ⇔ = !+a238&(@4"1, x = Bài 2. !"#$%&'($! x x x− − = + HD:.D:6=$ x ≥ − .L& t x t= + ≥ &!( t x − = !+a238&+,- !"#$%&'($!9+: ; t t t t t t t − + − − − = ⇔ − − + = t t t t⇔ + − − − = +&(@4"1,<O$$%!=@>3 R R S t t= − ± = ± *8 t ≥ $l$,!d$!?$,T,%T&'X R t t= − + = + m4-&(@4"1,,T,$%!=@,Y+ !"#$%&'($!> vaø x x= − = + Cách khác: +,-&!E<($! !"#$%!+20,Y+ !"#$%&'($!2N4D:6=$ x x− − ≥ +4"1, x x x− − − = R&m4-&+&(@4"1,$%!=@&"#$%_$% GV: Trần Công Tiến Trang 5 BDHSG Toán 9 .#$%$$!n&>3&+4L& y x− = + 234"+2D!=4O)_$%(Xem phần đặt ẩn phụ đưa về hệ) Bài 3. !"#$%&'($!9+: x x+ + − = *.D:6=$ x ≤ ≤ .L& y x y= − ≥ &!( !"#$%&'($!&'Q&!3$! y y y y y+ + = ⇔ − − + = 2N y ≤ y y y y⇔ + − − − = R (loaïi)y y + − + ⇔ = = m4-&+&(@4"1,,T,%T&'X,Y+ x − = Bài 4 !"#$%&'($!9+: ( ) ( ) x x x= + − − HD:. x ≤ ≤ .L& y x= − &!( !"#$%&'($!&'Q&!3$! ( ) ( ) y y y y x − + − = ⇔ = ⇔ = Bài 5. !"#$%&'($!9+: x x x x x + − = + HD:.D:6=$ x− ≤ < !+,!+20,!8)&+$!?$4"1, x x x x + − = + .L& t x x = − R&+%4"1, Bài 6. !"#$%&'($! x x x x+ − = + * x = 6!B$% !>3$%!=@R!+,!+20,!8)&+4"1, x x x x − + − = ÷ .L&&5 x x − R+,- t t+ − = ⇔ t x ± = ⇔ = Bài 7. !"#$%&'($! ; x x x x+ + + + + = *.L&a5 x x+ + S y ≥ !"#$%&'($!,-UK$%a Ga5 y y − = ⇔ = y⇔ = WNa5 x x⇔ + + = x x = − ⇔ = − b3$%!=@,Y+ !"#$%&'($!47,!8 Nhận xét.O2N,T,!4L&o$ !\$!"&'l$,!c$%&+,!d%g:a0&4"1,@M&>N <34#$ %$R4B6! !"#$%&'($!4O2N t >Kg:T6!-% 2. Đặt ẩn phụ đưa về phương trình thuần nhất bậc 2 đối với 2 biến : !c$%&+47<0&,T,!% !"#$%&'($! u uv v α β + + = <]$%,T,! pk& v ≠ !"#$%&'($!&'Q&!3$! u u v v α β + + = ÷ ÷ v = &![&'q,&0 GV: Trần Công Tiến Trang 6 BDHSG Toán 9 T,&'"r$%!1 9+:,s$%4"+2D4"1, ( ) ( ) ( ) ( ) a A x bB x c A x B x+ = u v mu nv α β + = + !c$%&+!7a&!+a,T,<E:&!_,t)R)<Q,T,<E:&!_,2B&d&!(9u$!?$4"1, !"#$%&'($!2B&d&!P8UK$%$3a a) . Phương trình dạng : ( ) ( ) ( ) ( ) a A x b B x c A x B x+ = !"2?a !"#$%&'($! ( ) ( ) Q x P x α = ,-&!E%<]$% !"#$% !T &'l$$0: ( ) ( ) ( ) ( ) ( ) ( ) P x A x B x Q x aA x bB x = = + p:n& !T&&m4^$%&!_, ( ) ( ) x x x x+ = + − + ( ) ( ) ( ) x x x x x x x x x+ + = + + − = + + − + ( ) ( ) x x x x x+ = − + + + ( ) ( ) x x x x x+ = − + + + 7a&K8'+$!v$% !"#$%&'($!2B&dUK$%&'l$2wU\$!" x x x− + = + .E,-@M& !"#$%&'($!4x R,!c$%&+ !,!h$!=9O+R<R,9+8,!8 !"#$%&'($!<?,!+ at bt c+ − = %i$%!=@4x j Bài 1. !"#$%&'($! ( ) x x+ = + HD:.L& S u x u v x x v= + ≥ = − + ≥ !"#$%&'($!&'Q&!3$! ( ) u v u v uv u v = + = ⇔ = (@4"1, x ± = Bài 2. !"#$%&'($! x x x x− + = − + + **y&!na ( ) ( ) ( ) x x x x x x x x x+ + = + + − = + + − + +20& ( ) ( ) ( ) ( ) x x x x x x x x α β + + + − + = − + + − + .z$%$!n&20&'T2N&+4"1, ( ) ( ) ( ) ( ) x x x x x x x x− + + + − + = − + + − + .L& S u x x u v x x v = + + ≥ = − + ≥ ÷ ÷ !"#$%&'($!&'Q&!3$!:G25 uv u v⇒ = m4{a&+9u&(@4"1,) GV: Trần Công Tiến Trang 7 BDHSG Toán 9 Bài 3: !"#$%&'($!9+: x x x+ − = − *.6 x ≥ !?$)k&+20& ( ) ( ) ( ) ( ) x x x x x x α β − + + + = − + + .z$%$!n&20&'T2N&+4"1, ( ) ( ) ( ) ( ) x x x x x x− + + + = − + + .L& R u x v x x= − ≥ = + + > R&+4"1, / v u u v uv v u = + = ⇔ = +4"1, x = ± Bài 4. !"#$%&'($! ( ) x x x x− + + − = *!?$)k&.L& y x= + &+<0$ &&'l$2D &&!:f$$!n&<?,4O2N)23a x y x x y x x xy y x y = − + − = ⇔ − + = ⇔ = − &,-$%!=@ R x x= = − Bài 5: !"#$%&'($! ( ) x x+ = + *. x ≥ − & x x x x⇔ + − + = + .L& R u x u v v x x = + ≥ = − + !"#$%&'($!&'Q&!3$!:25: G2 ⇔ ( ) ( ) u v u v− − = u v v u = ⇔ = 0::52 / ; x x x x x⇔ + = − + ⇔ − + = 2B$%!=@ 0:25: ; x x x x x x x = − ⇔ − + = + ⇔ − − = ⇔ = + >3$%!=@ b).Phương trình dạng : u v mu nv α β + = + !"#$%&'($!,!8QUK$%$3a&!"r$%6!-i !T&!=$i!#$UK$%&'l$R$!"%$0:&+<($! !"#$%!+20&!(4"+2D4"1,UK$%&'l$ Bài 1. !"#$%&'($! x x x x+ − = − + *+4L& ( ) R S u x u v u v v x = ≥ ≥ = − 6!4- !"#$%&'($!&'Q&!3$! u v u v+ = − !+a:G2:25 ( ) ( ) u v u v+ − Bài 2. !"#$%&'($!9+: x x x x x+ + − = + + *.6 x ≥ ($! !"#$%20&+,- ( ) ( ) ( ) ( ) ( ) ( ) x x x x x x x x x x+ − = + ⇔ + − = + − − GV: Trần Công Tiến Trang 8 BDHSG Toán 9 +,-&!E4L& u x x v x = + = − 6!4-&+,-!= u v uv u v u v − = = − ⇔ + = *8 R u v ≥ ( ) u v x x x + + = ⇔ + = − Bài 3. !"#$%&'($! / x x x x x− + − − − = + *.6 x ≥ !:aE$20<($! !"#$%&+4"1, ( ) ( ) x x x x x− + = − − + Nhận xét : !B$%&z$&K9O R α β 4E ( ) ( ) x x x x x α β − + = − − + + 2?a&+6!B$%&!E4L& u x x v x = − − = + !"$%@+a@|$&+,- ( ) ( ) ( ) ( ) ( ) ( ) ( ) x x x x x x x x x− − + = + − + = + − − +20&>K !"#$%&'($! ( ) ( ) x x x x x x− − + + = − − + .0$4{a<3&8T$ 4"1,%g:a0& 3. Phương pháp đặt ẩn phụ không hoàn toàn m$!v$% !"#$%&'($!&w,! ( ) ( ) x x x+ − + − + = R ( ) ( ) x x x x+ − + − + = !+&'E$23'c&%h$&+9u4"1,$!v$% !"#$%&'($!2B&d6!B$%&f@&!"r$%,!c&$38R4M 6!-,Y+ !"#$%&'($!UK$%$3a !\&!:M,238 !"#$%&'($!&w,!@3&+):n& !T& m4-,!c$%&+@N4&(@,T,!% !"#$%&'($!UK$%$3a!"#$% !T %4"1,&!E !=$g:+,T,2wU\9+: Bài 1. !"#$%&'($! ( ) x x x x+ − + = + + *.L& t x= + S t ≥ R&+,- ( ) t t x t x t x = − + − + = ⇔ = − Bài 2 !"#$%&'($! ( ) x x x x+ − + = + *.L& R t x x t= − + ≥ !4- !"#$%&'($!&'Q&!$! ( ) x t x+ = + ( ) x x t⇔ + − + = {a%r&+&!l@<N&R4E4"1, !"#$%&'($!<?,&!P8&,- ∆ ,!}$ ( ) ( ) ( ) ( ) t x x x t x t x t x t x = − + − + + − = ⇔ − + + − = ⇔ = − Bài 3: !"#$%&'($! ( ) x x x x+ + = + + *.L& S t x t= + ≥ GV: Trần Công Tiến Trang 9 BDHSG Toán 9 !"#$%&'($!&'Q&!3$!& )G&G)5 ⇔ &)&5 t x t = ⇔ = 0:&5) x x⇔ + = WB>e0:&5 x x⇔ + = ⇔ = ± W?a x = ± 4. Đặt nhiều ẩn phụ đưa về tích p:n& !T&&m@M&9O!=i4K9Oi4x ,!c$%&+,-&!E&K8'+4"1,$!v$% !"#$%&'($!2B &d@36!%$-,!c$%&+>K4L&$!D:o$ !\23&(@@Og:+$!=%v+,T,o$ !\4E4"+ 2D!= p:n& !T&&m4^$%&!_, ( ) ( ) ( ) ( ) a b c a b c a b b c c a+ + = + + + + + + R+,- ( ) ( ) ( ) ( ) a b c a b c a b a c b c+ + = + + ⇔ + + + = m$!?$)k&$3a&+,-&!E&K8'+$!v$% !"#$%&'($!2B&d,-,!_+,~$<?,<+ ; ; x x x x x+ − − − + − + = / x x x x+ + − + − − − = Bài 1. !"#$%&'($! x x x x x x x= − − + − − + − − *. x ≤ .L& S S S u x u v x v w x w = − ≥ = − ≥ = − ≥ R&+,- ( ) ( ) ( ) ( ) ( ) ( ) u v u w u uv vw wu v uv vw wu u v v w w uv vw wu v w u w + + = − = + + − = + + ⇔ + + = − = + + + + = R%!=&+ 4"1, / u x= ⇔ = Bài 2. !"#$%&'($!9+: x x x x x x x− + − − = + + + − + *+4L& a x b x x c x x d x x = − = − − = + + = − + R6!4-&+,- a b c d x a b c d + = + ⇔ = − − = − Bài 3. ,T, !"#$%&'($!9+: / x x x x x+ + − − + = − *.L& ( ) S a x x a b b x x = + + ≥ = − + +4"1,!= !"#$%&'($! / / a b x a b x − = − − = − m4-&+,-+ < 5+< ⇔ +<+G<5 a b a b = ⇔ = − 0:+5< x x x x x⇔ + + = − + ⇔ = &!8@7$ GV: Trần Công Tiến Trang 10 . BDHSG Toán 9 Ngày 22 tháng 09 năm 2011 Chuyên đề: PHƯƠNG TRÌNH VÔ TỈ. I. PHƯƠNG PHÁP 1: NÂNG LUỸ THỪA f x f x g x. !"#$%&'($!47,!8,-$%!=@>3 x x = − = 5.2 Giải phương trình vô tỉ bằng cách đưa về hệ đối xứng loại II +!7a4&(@$%:z$%O,,Y+$!v$%<3&8T$%