Baigiangtoanhoc.com Sưu tầm Page 1 Trung tâm luyện thi EDUFLY-0987708400 5 ĐỀ ÔN THI KÌ I TOÁN 8 ĐỀ SỐ 01 Bài 1: (1,5 điểm) 1. Làm phép chia : 2 2 1 : 1x x x 2. Rút gọn biểu thức: 22 x y x y Bài 2: (2,5 điểm) 1. Phân tích đa thức sau thành nhân tử: a) x 2 + 3x + 3y + xy b) x 3 + 5x 2 + 6x 2. Chứng minh đẳng thức: (x + y + z) 2 – x 2 – y 2 – z 2 = 2(xy + yz + zx) Bài 3: (2 điểm) Cho biểu thức: Q = 37 2 1 2 1 xx xx 1. Thu gọn biểu thức Q. 2. Tìm các giá trị nguyên của x để Q nhận giá trị nguyên. Bài 4: (4 điểm) Cho tam giác ABC vuông ở A, đường cao AH. Kẻ HD AB và HE AC ( D AB, E AC). Gọi O là giao điểm của AH và DE. 1. Chứng minh AH = DE. 2. Gọi P và Q lần lượt là trung điểm của BH và CH. Chứng minh tứ giác DEQP là hình thang vuông. 3. Chứng minh O là trực tâm tam giác ABQ. 4. Chứng minh S ABC = 2 S DEQP . HẾT ĐỀ SỐ 02 Bài 1: ( 1,0 điểm) Thực hiện phép tính: 1. 2 2 3 5xx 2. 32 12 18 :2x y x y xy Bài 2: (2,5 điểm) 1. Tính giá trị biểu thức : Q = x 2 – 10x + 1025 tại x = 1005 Phân tích các đa thức sau thành nhân tử: 2. 2 82x 3. 22 69x x y Bài 3: (1,0 điểm) Tìm số nguyên tố x thỏa mãn: 2 4 21 0xx Bài 4: (1,5 điểm) Cho biểu thức A= 2 2 1 1 1 2 2 4 x x x x ( với x 2 ) 1. Rút gọn biểu thức A. 2. Chứng tỏ rằng với mọi x thỏa mãn 22x , x -1 phân thức luôn có giá trị âm. Bài 5. (4 điểm) Cho tam giác ABC có ba góc nhọn, trực tâm H. Đường thẳng vuông góc với AB kẻ từ B cắt đường thẳng vuông góc với AC kẻ từ C tại D. 1. Chứng minh tứ giác BHCD là hình bình hành. 2. Gọi M là trung điểm BC, O là trung điểm AD. Chứng minh 2OM = AH. Baigiangtoanhoc.com Sưu tầm Page 2 Trung tâm luyện thi EDUFLY-0987708400 2. Gọi G là trọng tâm tam giác ABC. Chứng minh ba điểm H, G, O thẳng hàng. HẾT ĐỀ SỐ 03 Bài 1. (2 điểm) 1. Thu gọn biểu thức : 3 2 2 4 3 23 10 3 5 10 x y x y xy x y 2. Tính nhanh giá trị các biểu thức sau: a) A = 85 2 + 170. 15 + 225 b) B = 20 2 – 19 2 + 18 2 – 17 2 + . . . . . + 2 2 – 1 2 Bài 2: (2điểm) 1. Thực hiện phép chia sau một cách hợp lí: (x 2 – 2x – y 2 + 1) : (x – y – 1) 2. Phân tích đa thức sau thành nhân tử: x 2 + x – y 2 + y Bài 3. (2 điểm) Cho biểu thức: P = 22 8 1 1 : 16 4 2 8x x x x 1. Rút gọn biểu thức P. 2. Tính giá trị của biểu thức P tại x thỏa mãn x 2 – 9x + 20 = 0 Bài 4: ( 4 điểm) Cho hình vuông ABCD, M là là trung điểm cạnh AB , P là giao điểm của hai tia CM và DA. 1.Chứng minh tứ giác APBC là hình bình hành và tứ giác BCDP là hình thang vuông. 2.Chứng minh 2S BCDP = 3 S APBC . 3.Gọi N là trung điểm BC,Q là giao điểm của DN và CM. Chứng minh AQ = AB. ĐỀ SỐ 04 Bài 1: (2 điểm) 1. Thu gọn biểu thức sau: A = 3x(4x – 3) – ( x + 1) 2 –(11x 2 – 12) 2. Tính nhanh giá trị biểu thức: B = (15 4 – 1).(15 4 + 1) – 3 8 . 5 8 Bài 2: (2 điểm) 1. Tìm x biết : 5(x + 2) – x 2 – 2x = 0 2. Cho P = x 3 + x 2 – 11x + m và Q = x – 2 Tìm m để P chia hết cho Q. Bài 3: (2điểm) 1. Rút gọn biểu thức: 22 32 44 2 x xy y x x y 2. Cho M = 2 2 1 1 4 2 2 4 xx x x x a) Rút gọn M b) Tìm các giá trị nguyên của x để M nhận giá trị nguyên. Bài 4. Cho tam giác ABC vuông ở A, đường cao AH. 1. Chứng minh AH. BC = AB. AC . 2.Gọi M là điểm nằm giữa B và C. Kẻ MN AB , MP AC ( N AB, P AC) . Tứ giác ANMP là hình gì ? Tại sao? 3. Tính số đo góc NHP ? Baigiangtoanhoc.com Sưu tầm Page 3 Trung tâm luyện thi EDUFLY-0987708400 4. Tìm vị trí điểm M trên BC để NP có độ dài ngắn nhất ? ĐỀ SỐ 5 A. PHẦN TRẮC NGHIỆM: ( 2điểm) Chọn đáp án đúng nhất rồi đánh dấu X vào ô vuông đứng trước câu trả lời: Câu 1: Biểu thức nào dưới đây là bình phương thiếu của hiệu hai biểu thức x và 2y: x 2 + 2xy + 4y 2 . x 2 – 2xy + 4y 2 . x 2 – 4xy + 4y 2 . x 2 + 4xy + 4y 2 Câu 2: Đa thức x 2 + 6xy 2 + 9y 4 chia hết cho đa thức nào dưới đây ? x + 3y x – 3y x + 3y 2 x – 3y 2 Câu 3: Biểu thức 2 13 4 xx x không xác định được giá trị khi x bằng: 1 3 4 2 ; – 2 Câu 4: Cho hai phân thức đối nhau A B và A B . Khẳng định nào dưới đây là sai ? A B + A B = 0 A B – A B = 0 A B : A B = – 1 A B . A B = 2 2 A B Câu 5: Cho tam giác ABC có BC = 6cm . Khi đó độ dài đường trung bình MN bằng: 12 cm. 6 cm 3cm Không xác định được. Câu 6: Cho hình thang cân ABCD có hai đáy AD và BC. Khẳng định nào dưới đây là sai ? 0 180BAD CDA . 0 180BAD CBA . 0 180BCD CDA ABC BCD Câu 7: Hình nào sau đây có 4 trục đối xứng: hình vuông. hình thoi. hình chữ nhật. hình thang cân. Câu 8: Tam giác ABC vuông ở A có AB = 6cm, BC = 10cm. Diện tích của tam giác bằng: 60 cm 2 48 cm 2 30 cm 2 24 cm 2 B. PHẦN BÀI TẬP: (8 điểm) Bài 1: (1,5 điểm) 1. Tính giá trị biểu thức sau bằng cách hợp lí nhất: 126 2 – 26 2 2. Tính giá trị biểu thức x 2 + y 2 biết x + y = 5 và x.y = 6 Bài 2: (1,5 điểm) Tìm x biết: 1. 5( x + 2) + x( x + 2) = 0 2. (2x + 5) 2 + (4x + 10)(3 – x) + x 2 – 6x + 9 = 0 Bài 3: (1,5 điểm) Cho biểu thức P = 22 4 . 4 3 2 xx xx ( với x 2 ; x 0) 1. Rút gọn P. 2. Tìm các giá trị của x để P có giá trị bé nhất. Tìm giá trị bé nhất đó. Bài 4: (3,5 điểm) Cho tam giác ABC vuông tại A có ( AB < AC). Phân giác góc BAC cắt đường trung trực cạnh BC ở điểm D. Kẻ DH vuông góc AB và DK vuông góc AC. 1. Tứ giác AHDK là hình gì ? Chứng minh. 2. Chứng minh BH = CK. 3. Giả sử AC = 8cm và BC = 10 cm. Gọi M là trung điểm BC. Tính diện tích của tứ giác BHDM. Baigiangtoanhoc.com Sưu tầm Page 4 Trung tâm luyện thi EDUFLY-0987708400 // // / / H Q P O E D C B A _ _ // // G H D M O C B A SÁU BÀI TOÁN HÌNH HỌC ÔN THI KÌ I Bài 1: Cho tam giác ABC vuông ở A, đường cao AH. Kẻ HD AB và HE AC ( D AB , E AC). Gọi O là giao điểm của AH và DE. 1. Chứng minh AH = DE. 2. Gọi P và Q lần lượt là trung điểm của BH và CH. Chứng minh tứ giác DEQP là hình thang vuông. 3. Chứng minh O là trực tâm tam giác ABQ. 4. Chứng minh S ABC = 2 S DEQP . BÀI GIẢI. 1. Chứng minh AH = DE. Tam giác ABC vuông ở A nên 0 90BAC HD AB (gt) 0 90ADH , HE AC (gt) 0 90AEH , Tứ giác ADHE có ba góc vuông nên nó là hình chữ nhật. Do đó: AH = DE (đpcm). 2. Chứng minh tứ giác DEQP là hình thang vuông. Ta có: OD = OH (tính chất đường chéo hình chữ nhật ADHE) PD = PH = 1 2 BH (tính chất trung tuyến của tam giác vuông ứng với cạnh huyền) Vậy : OP là đường trung trực DH. Do đó: ODP OHP (tính chất đối xứng) Mà 0 90OHP nên 0 90ODP DP DE. Chứng minh tương tự: EQ DE. Suy ra: DP // EQ . Vậy tứ giác DEQP là hình thang vuông. (đpcm) 3. Chứng minh O là trực tâm tam giác ABQ. Tam giác AHC có O là trung điểm AH (tính chất đường chéo hình chữ nhật ADHE),Q là trung điểm CH nên OQ là đường trung bình tam giác AHC. Do đó: OQ // AC. Mà AC AB nên QO AB. Tam giác ABQ có AH , QO là hai đường cao của tam giác cắt nhau ở O. Do đó O là trực tâm của tam giác ABQ. 4. Chứng minh S ABC = 2 S DEQP . S DEQP = 1 . 2 DP EQ DE = 1 . 2 2 2 BH CH AH = 11 22 BC AH = 1 2 ABC S Suy ra: S ABC = 2 S DEQP (đpcm) Bài 2: Cho tam giác ABC có ba góc nhọn,trực tâm H. Đường thẳng vuông góc với AB kẻ từ B cắt đường thẳng vuông góc với AC kẻ từ C tại D. 1. Chứng minh tứ giác BHCD là hình bình hành. 2. Gọi M là trung điểm BC, O là trung điểm AD. Chứng minh OM BC và 2OM = AH. 3. Gọi G là trọng tâm tam giác ABC. Chứng minh ba điểm H, G, O thẳng hàng. BÀI GIẢI: 1.Chứng minh tứ giác BHCD là hình bình hành. H là trực tâm tam giác ABC nên BH AC , CH AB. Mà CD AC , BD AB (gt) suy ra: BH // CD, CH // BD. Do đó BHCD là hình bình hành. Baigiangtoanhoc.com Sưu tầm Page 5 Trung tâm luyện thi EDUFLY-0987708400 _ _ // // G H D M O C B A O P N M H F E D C B A _ _ - // // Q P N M D C B A 2. Chứng minh 2OM = AH Tứ giác BHCD là hình bình hành , M là trung điểm BC Suy ra M cũng là trung điểm HD, mà O là trung điểm AD nên OM là đường trung bình tam giác AHD. Do đó: OM // AH và AH = 2 OM. AH BC nên OM BC. 3. Chứng minh ba điểm H, G, O thẳng hàng. Tam giác ABC có AM là đường trung tuyến, G là trọng tâm nên GM = 1 3 AM. AM lại là đường trung tuyến của tam giác AHD (vì M là trung điểm HD) nên G là trọng tâm của AHD. HO là đường trung tuyến của AHD ( vì OA = OD) nên HO đi qua G. Vậy ba điểm H, G, O thẳng hàng. Bài 3: Cho tam giác ABC nhọn, M, N, P lần lượt là trung điểm của các cạnh AB, AC và BC. 1. Các tứ giác BMNC và BMNP là hình gì? Tại sao? 2. Gọi H là trực tâm tam giác ABC; D, E, F lần lượt là trung điểm của BH, CH, AH. Chứng minh DN = ME. 3. Gọi O là giao điểm ME và DN. Chứng minh ba điểm P, O, F thẳng hàng. Hướng dẫn sơ lược: 1. Tứ giác BMNC là hình thang, tứ giác BMNP là hình bình hành (dùng đường trung bình tam giác) 2. Dùng đường trung bình để có MN // DE (cùng song song BC) MN = DE (cùng bằng 1 2 BC ) MDEN là hình bình hành. DE//BC, MD//AH, AH BC MN MD MDEN là hình chữ nhật DN = ME 3. Chứng minh DPNF là hình bình hành đường chéo PF đi qua trung điểm O của DN ba điểm P, O, F thẳng hàng. Bài 4. Cho hình vuông ABCD, M là là trung điểm cạnh AB , P là giao điểm của hai tia CM và DA. 1.Chứng minh tứ giác APBC là hình bình hành và tứ giác BCDP là hình thang vuông. 2. Chứng minh 2S BCDP = 3 S APBC . 3. Gọi N là trung điểm BC, Q là giao điểm của DN và CM. Chứng minh AQ = AB. Hướng dẫn sơ lược 1. Chứng minh AMP = BMC (g.c.g) AP = BC, có AP// BC từ đó suy ra APBC là hình bình hành. Dễ dàng chứng minh BCDP là hình thang vuông. 2. S BCDP = S ABP + S ABC + S ADC ; S APBC = S ABP + S ABC Chú ý: ABP = BAC = DCA nên S ABP = S ABC = S ADC Từ đó: S BCDP = 3S ABP , S APBC = 2 S ABP 3 2 BCDP APBC S S 2S BCDP = 3 S APBC Lưu ý: Nếu học kịp diện tích các hình có thể sử dụng công thức tính nhanh hơn. Baigiangtoanhoc.com Sưu tầm Page 6 Trung tâm luyện thi EDUFLY-0987708400 P H N M C B A 3. Chứng minh DN CM ,sử dụng tính chất đường trung tuyến của tam giác vuông ứng với cạnh huyền suy ra AQ = AD. AD = AB từ đó suy ra đpcm Bài 5: Cho tam giác ABC vuông ở A, đường cao AH. 1. Chứng minh AH. BC = AB. AC . 2. Gọi M là điểm nằm giữa B và C . Kẻ MN AB , MP AC ( N AB, P AC) . Tứ giác ANMP là hình gì ? Tại sao? 3. Tính số đo góc NHP ? 4. Tìm vị trí điểm M trên BC để NP có độ dài ngắn nhất ? Hướng dẫn. 1. Xử dụng công thức tính diện tích tam giác và công thức tính diện tích tam giác vuông rồi suy ra kết quả. 2. Xử dụng dấu hiệu nhận biết tứ giác có ba góc vuông để suy ra Tứ giác ANMP là hình chữ nhật. 3Đặt thêm giao điểm O của AM và NP, sử dụng tính chất trong tam giác vuông MHA để có HO = 1 2 AM , AM = NP từ đó được HO = 1 2 NP tam giác NHP vuông 4. NP = AM, NP ngắn nhất AM ngắn nhất . Lập luận AM khi M trùng H BÀI TẬP TỰ KIỂM TRA NĂNG LỰC Bài 6 . Cho tam giác ABC , M là trung điểm AC, N là trung điểm AB. Trên đường thẳng BM lấy điểm P sao cho M là trung điểm BP. Trên đường thẳng CN lấy điểm Q sao cho N là trung điểm QC. 1. Chứng minh tứ giác ABCP, ACBQ là hình bình hành. 2. Chứng minh ba điểm Q, A, P thẳng hàng. 3. Tìm điều kiện cho tam giác ABC để tứ giác APCB là hình thoi. 4. Tìm điều kiện cho tam giác ABC để tứ giác BCPQ là hình thang cân. . Baigiangtoanhoc.com Sưu tầm Page 1 Trung tâm luyện thi EDUFLY-0 987 7 084 00 5 ĐỀ ÔN THI KÌ I TOÁN 8 ĐỀ SỐ 01 B i 1: (1,5 i m) 1. Làm phép chia : 2 2 1 : 1x. Page 2 Trung tâm luyện thi EDUFLY-0 987 7 084 00 2. G i G là trọng tâm tam giác ABC. Chứng minh ba i m H, G, O thẳng hàng. HẾT ĐỀ SỐ 03 B i 1. (2 i m) 1. Thu gọn biểu thức : 3 2 2 4 3 23 10. giác BHDM. Baigiangtoanhoc.com Sưu tầm Page 4 Trung tâm luyện thi EDUFLY-0 987 7 084 00 // // / / H Q P O E D C B A _ _ // // G H D M O C B A SÁU B I TOÁN HÌNH HỌC ÔN THI KÌ I Bài