Engineering Mathematics 4 Episode 12 pptx

40 206 0
Engineering Mathematics 4 Episode 12 pptx

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

INTEGRATION USING PARTIAL FRACTIONS 429 Problem 9. Determine:  1 x 2  a 2  dx Let 1 x 2  a 2  Á A x  a C B x C a Á Ax C a CBx a x C ax  a Equating the numerators gives: 1 Á Ax Ca CBx  a Let x D a,thenA D 1 2a ,andletx Da, then B D 1 2a Hence  1 x 2 a 2  dx Á  1 2a  1 xa  1 xCa  dx D 1 2a [ lnx  a  lnx C a ] C c D 1 2a ln  x − a x Y a  Y c Problem 10. Evaluate:  4 3 3 x 2  4 dx, correct to 3 significant figures From Problem 9,  4 3 3 x 2  4 dx D 3  1 22 ln  x 2 x C2  4 3 D 3 4  ln 2 6  ln 1 5  D 3 4 ln 5 3 D 0 .383, correct to 3 significant figures. Problem 11. Determine:  1 a 2  x 2  dx Using partial fractions, let 1 a 2  x 2  Á 1 a xa C x Á A a x C B a Cx Á Aa C x C Ba  x a xa C x Then 1 Á Aa C x CBa x Let x D a then A D 1 2a .Letx Da then B D 1 2a Hence  1 a 2  x 2  dx D  1 2a  1 a x C 1 a Cx  dx D 1 2a [lna x Clna Cx] Cc D 1 2a ln  a Y x a − x  Y c Problem 12. Evaluate:  2 0 5 9 x 2  dx, correct to 4 decimal places From Problem 11,  2 0 5 9 x 2  dx D 5  1 23 ln  3 Cx 3 x  2 0 D 5 6  ln 5 1  ln 1  D 1.3412, correct to 4 decimal places Now try the following exercise Exercise 175 Further problems on inte- gration using partial frac- tions with quadratic factors 1. Determine  x 2  x  13 x 2 C 7x  2 dx  lnx 2 C 7 C 3 p 7 tan 1 x p 7 lnx  2 C c  In Problems 2 to 4, evaluate the definite inte- grals correct to 4 significant figures. 2.  6 5 6x 5 x  4x 2 C 3 dx [0.5880] 3.  2 1 4 16 x 2  dx [0.2939] 4.  5 4 2 x 2  9 dx [0.1865] 51 The t D tan  2 substitution 51.1 Introduction Integrals of the form  1 a cos  Cb sin  C c dÂ, where a, b and c are constants, may be determined by using the substitution t D tan  2 . The reason is explained below. If angle A in the right-angled triangle ABC shown in Fig. 51.1 is made equal to  2 then, since tangent D opposite adjacent ,ifBC D t and AB D 1, then tan  2 D t . By Pythagoras’ theorem, AC D p 1 Ct 2 C BA t 2 1 √ 1+ t 2 q Figure 51.1 Therefore sin  2 D t p 1 Ct 2 and cos  2 D 1 p 1 Ct 2 Since sin 2x D 2sinx cos x (from double angle formulae, Chapter 26), then sin  D 2sin  2 cos  2 D 2  t p 1 Ct 2  1 p 1 Ct 2  i.e. sin q = 2t .1 Y t 2 / 1 Since cos 2x D cos 2  2  sin 2  2 D  1 p 1 Ct 2  2   t p 1 Ct 2  2 i.e. cos q = 1 − t 2 1 Y t 2 2 Also, since t D tan  2 , dt d D 1 2 sec 2  2 D 1 2  1 Ctan 2  2  from trigonomet- ric identities, i.e. dt d D 1 2 1 Ct 2  from which, dq = 2dt 1 Y t 2 3 Equations (1), (2) and (3) are used to determine integrals of the form  1 a cos  Cb sin  C c d where a, b or c may be zero. 51.2 Worked problems on the t = tan q 2 substitution Problem 1. Determine:  d sin  If t D tan  2 then sin  D 2t 1 Ct 2 and d  D 2 dt 1 Ct 2 from equations (1) and (3). Thus  d sin  D  1 sin  d THE t D tanÂ/2 SUBSTITUTION 431 D  1 2t 1 Ct 2  2 dt 1 Ct 2  D  1 t dt D ln t Cc Hence  d sin  D ln  tan  2  C c Problem 2. Determine:  dx cos x If tan x 2 then cos x D 1 t 2 1 Ct 2 and d x D 2 dt 1 Ct 2 from equations (2) and (3). Thus  dx cos x D  1 1 t 2 1 Ct 2  2 dt 1 Ct 2  D  2 1 t 2 dt 2 1 t 2 may be resolved into partial fractions (see Chapter 7). Let 2 1 t 2 D 2 1 t1 Ct D A 1 t C B 1 Ct D A1 Ct CB1 t 1  t1 Ct Hence 2 D A1 Ct CB1 t When t D 1, 2 D 2A, from which,A D 1 When t D1, 2 D 2B, from which,B D 1 Hence  2 dt 1 t 2 D  1 1 t C 1 1 C t dt Dln1 t Cln1 Ct Cc D ln  1 Ct 1 t  C c Thus  dx cos x D ln      1 Y tan x 2 1 − tan x 2      Y c Note that since tan  4 D 1, the above result may be written as:  dx cos x D ln      tan  4 C tan x 2 1 tan  4 tan x 2      C c D ln  tan  p 4 Y x 2  Y c from compound angles, Chapter 26, Problem 3. Determine:  dx 1 Ccos x If tan x 2 then cos x D 1 t 2 1 Ct 2 and d x D 2 dt 1 Ct 2 from equations (2) and (3). Thus  dx 1 Ccos x D  1 1 Ccos x dx D  1 1 C 1 t 2 1 Ct 2  2 dt 1 Ct 2  D  1 1 Ct 2  C1  t 2  1 Ct 2  2 dt 1 Ct 2  D  dt Hence  dx 1 Ccos x D t C c D tan x 2 Y c Problem 4. Determine:  d 5 C4cos If t D tan  2 then cos  D 1 t 2 1 Ct 2 and d x D 2 dt 1 Ct 2 from equations (2) and (3). Thus  d 5 C4cos D   2 dt 1 Ct 2  5 C4  1 t 2 1 Ct 2  D   2 dt 1 Ct 2  51 Ct 2  C41  t 2  1 Ct 2 D 2  dt t 2 C 9 D 2  dt t 2 C 3 2 D 2  1 3 tan 1 t 3  C c, 432 ENGINEERING MATHEMATICS from 12 of Table 49.1, page 418. Hence  dq 5 Y 4cosq D 2 3 tan −1  1 3 tan q 2  Y c Now try the following exercise Exercise 176 Further problems on the t = tan q 2 substitution Integrate the following with respect to the variable: 1.  d 1 Csin     2 1 Ctan  2 C c    2.  dx 1 cos x C sin x    ln      tan x 2 1 Ctan x 2      C c    3.  d˛ 3 C2cos˛  2 p 5 tan 1  1 p 5 tan ˛ 2  C c  4.  dx 3sinx  4cosx    1 5 ln      2tan x 2  1 tan x 2 C 2      D c    51.3 Further worked problems on the t = tan q 2 substitution Problem 5. Determine:  dx sin x Ccos x If tan x 2 then sin x D 2t 1 Ct 2 ,cosx D 1 t 2 1 Ct 2 and dx D 2 dt 1 Ct 2 from equations (1), (2) and (3). Thus  dx sin x Ccos x D  2 dt 1 Ct 2  2t 1 Ct 2  C  1 t 2 1 Ct 2  D  2 dt 1 Ct 2 2t C 1 t 2 1 Ct 2 D  2 dt 1 C2t t 2 D  2 dt t 2  2t  1 D  2 dt t 1 2  2 D  2 dt  p 2 2  t 1 2 D 2  1 2 p 2 ln  p 2 Ct 1 p 2 t 1  C c (see problem 11, Chapter 50, page 429), i.e.  dx sin x Ccos x D 1 p 2 ln      p 2 − 1 Y tan x 2 p 2 Y 1 − tan x 2      Y c Problem 6. Determine:  dx 7 3sinx C6cosx From equations (1) and (3),  dx 7 3sinx C 6cosx D  2 dt 1 Ct 2 7 3  2t 1 Ct 2  C 6  1 t 2 1 Ct 2  D  2 dt 1 Ct 2 71 Ct 2  32t C 61 t 2  1 Ct 2 D  2 dt 7 C7t 2  6t C 6 6t 2 D  2 dt t 2  6t C 13 D  2 dt t  3 2 C 2 2 D 2  1 2 tan 1  t  3 2  C c THE t D tanÂ/2 SUBSTITUTION 433 from 12, Table 49.1, page 418. Hence  dx 7 3sinx C6cosx D tan −1    tan x 2 − 3 2    Y c Problem 7. Determine:  d 4cos C 3sin From equations (1) to (3),  d 4cos C3sin D  2 dt 1 Ct 2 4  1 t 2 1 Ct 2  C 3  2t 1 Ct 2  D  2 dt 4 4t 2 C 6t D  dt 2 C3t  2t 2 D 1 2  dt t 2  3 2 t  1 D 1 2  dt  t  3 4  2  25 16 D 1 2  dt  5 4  2   t  3 4  2 D 1 2     1 2  5 4  ln        5 4 C  t  3 4  5 4   t  3 4             C c from problem 11, Chapter 50, page 429, D 1 5 ln      1 2 C t 2 t      C c Hence  d 4cos C3sin D 1 5 ln      1 2 Y tan q 2 2 − tan q 2      Y c or 1 5 ln      1 Y 2tan q 2 4 − 2tan q 2      Y c Now try the following exercise Exercise 177 Further problems on the t = tan q=2 substitution In Problems 1 to 4, integrate with respect to the variable. 1.  d 5 C4sin    2 3 tan 1    5tan x 2 C 4 3    C c    2.  dx 1 C2sinx    1 p 3 ln      tan x 2 C 2  p 3 tan x 2 C 2 C p 3      C c    3.  dp 3 4sinp C 2cosp    1 p 11 ln      tan p 2  4  p 11 tan p 2  4 C p 11      C c    4.  d 3 4sin    1 p 7 ln      3tan  2  4  p 7 3tan  2  4 C p 7      C c    5. Show that  dt 1 C3cost D 1 2 p 2 ln      p 2 Ctan t 2 p 2 tan t 2      Cc 6. Show that  /3 0 3 d cos  D 3.95, correct to 3 significant figures. 7. Show that  /2 0 d 2 Ccos  D  3 p 3 52 Integration by parts 52.1 Introduction From the product rule of differentiation: d dx u v D v du dx C u d v dx , where u and v are both functions of x. Rearranging gives: u d v dx D d dx u v v du dx Integrating both sides with respect to x gives:  u d v dx dx D  d dx u v dx   v du dx dx i.e.  u d v dx dx D u v   v du dx dx or  udv = uv −  v du This is known as the integration by parts for- mula and provides a method of integrating such products of simple functions as  xe x dx,  t sin t dt,  e  cos  d and  x ln x dx. Given a product of two terms to integrate the initial choice is: ‘which part to make equal to u’ and ‘which part to make equal to d v’. The choice must be such that the ‘u part’ becomes a constant after successive differentiation and the ‘d v part’ can be integrated from standard integrals. Invariable, the following rule holds: ‘If a product to be integrated contains an algebraic term (such as x, t 2 or 3Â)then this term is chosen as the u part. The one exception to this rule is when a ‘ln x ’ term is involved; in this case ln x is chosen as the ‘u part’. 52.2 Worked problems on integration by parts Problem 1. Determine  x cos x dx From the integration by parts formula,  u dv D uv   v du Let u D x, from which du dx D 1, i.e. d u D dx and let d v D cos x dx, from which v D  cos x dx D sin x. Expressions for u, d u and v are now substituted into the ‘by parts’ formula as shown below. u x dv cos x dx = = u (x) v (sin x) v (sin x) − − ∫ ∫ ∫ ∫ du (dx) i.e.  x cos x dx D x sin x  cos x C c D x sin x Y cos x Y c [This result may be checked by differentiating the right hand side, i.e. d dx x sin x C cos x C c D [xcos x Csin x 1]  sin x C 0 using the product rule D x cos x, which is the function being integrated] Problem 2. Find:  3te 2t dt Let u D 3t, from which, du dt D 3, i.e. d u D 3 dt and let d v D e 2t dt, from which, v D  e 2t dt D 1 2 e 2t Substituting into  u dv D uv   v du gives:  3te 2t dt D 3t  1 2 e 2t     1 2 e 2t  3 d t D 3 2 te 2t  3 2  e 2t dt D 3 2 te 2t  3 2  e 2t 2  C c INTEGRATION BY PARTS 435 Hence  3te 2t dt = 3 2 e 2t  t − 1 2  Y c, which may be checked by differentiating. Problem 3. Evaluate   2 0 2 sin  d  Let u D 2Â, from which, du d D 2, i.e. du D 2 d  and let d v D sin  d , from which, v D  sin  d Dcos  Substituting into  u d v D uv   v du gives:  2 sin  d  D 2Âcos Â   cos Â2 d Â D2 cos  C 2  cos  d D2 cos  C 2sin C c Hence   2 0 2 sin  d  D [ 2 cos  C 2sin ]  2 0 D  2   2  cos  2 C 2sin  2   [0 C2sin0] D 0 C 2 0 C0 D 2 since cos  2 D 0and sin  2 D 1 Problem 4. Evaluate:  1 0 5xe 4x dx, correct to3significant figures Let u D 5x, from which du dx D 5, i.e. du D 5 dx and let d v D e 4x dx, from which, v D  e 4x dx D 1 4 e 4x Substituting into  u d v D uv   v du gives:  5xe 4x dx D 5x  e 4x 4     e 4x 4  5 d x D 5 4 xe 4x  5 4  e 4x dx D 5 4 xe 4x  5 4  e 4x 4  C c D 5 4 e 4x  x  1 4  C c Hence  1 0 5xe 4x dx D  5 4 e 4x  x  1 4  1 0 D  5 4 e 4  1  1 4    5 4 e 0  0  1 4  D  15 16 e 4     5 16  D 51.186 C0.313 D 51.499 D 51.5, correct to 3 significant figures. Problem 5. Determine:  x 2 sin x dx Let u D x 2 , from which, du dx D 2x,i.e.d u D 2x dx, and let d v D sin x dx, from which, v D  sin x dx Dcos x Substituting into  u dv D uv   v du gives:  x 2 sin x dx D x 2 cos x   cos x2x dx Dx 2 cos x C 2   x cos x dx  The integral,  x cos x dx, is not a ‘standard inte- gral’ and it can only be determined by using the integration by parts formula again. From Problem 1,  x cos x dx D x sin x C cos x Hence  x 2 sin x dx Dx 2 cos x C2fx sin x C cos xgCc Dx 2 cos x C2x sin x C 2cosx C c D .2 − x 2 / cos x Y 2x sin x Y c In general, if the algebraic term of a product is of power n, then the integration by parts formula is applied n times. Now try the following exercise Exercise 178 Further problems on inte- gration by parts Determine the integrals in Problems 1 to 5 using integration by parts. 436 ENGINEERING MATHEMATICS 1.  xe 2x dx  e 2x 2  x  1 2  C c  2.  4x e 3x dx   4 3 e 3x  x C 1 3  C c  3.  x sin x dx [x cos x Csin x C c] 4.  5 cos 2 d  5 2   sin 2 C 1 2 cos 2  C c  5.  3t 2 e 2t dt  3 2 e 2t  t 2  t C 1 2  C c  Evaluate the integrals in Problems 6 to 9, correct to 4 significant figures. 6.  2 0 2xe x dx [16.78] 7.   4 0 x sin 2x d x [0.2500] 8.   2 0 t 2 cos t d t [0.4674] 9.  2 1 3x 2 e x 2 dx [15.78] 52.3 Further worked problems on integration by parts Problem 6. Find:  x ln x dx The logarithmic function is chosen as the ‘u part’ Thus when u D ln x,then du dx D 1 x ,i.e.du D dx x Letting d v D x dx gives v D  x dx D x 2 2 Substituting into  u d v D uv   v du gives:  x ln x dx D ln x  x 2 2     x 2 2  dx x D x 2 2 ln x  1 2  x dx D x 2 2 ln x  1 2  x 2 2  C c Hence  x ln x dx = x 2 2  ln x − 1 2  Y c or x 2 4 .2lnx − 1/ Y c Problem 7. Determine:  ln x dx  ln x dx is the same as  1 ln x dx Let u D ln x, from which, du dx D 1 x ,i.e.du D dx x and let d v D 1 d x, from which, v D  1 dx D x Substituting into  u dv D uv   v du gives:  ln x dx D ln xx   x dx x D x ln x   dx D x ln x x C c Hence  ln xdx= x .ln x − 1/ Y c Problem 8. Evaluate:  9 1 p x ln x dx, correct to 3 significant figures Let u D ln x, from which d u D dx x and let d v D p x dx D x 1 2 dx, from which, v D  x 1 2 dx D 2 3 x 3 2 Substituting into  u dv D uv   v du gives:  p x ln x dx D ln x  2 3 x 3 2     2 3 x 3 2  dx x  D 2 3 p x 3 ln x  2 3  x 1 2 dx D 2 3 p x 3 ln x  2 3  2 3 x 3 2  C c D 2 3 p x 3  ln x  2 3  C c Hence  9 1 p x ln x dx D  2 3 p x 3  ln x  2 3  9 1 INTEGRATION BY PARTS 437 D  2 3 p 9 3  ln 9  2 3    2 3 p 1 3  ln 1  2 3  D  18  ln 9  2 3    2 3  0  2 3  D 27.550 C0.444 D 27.994 D 28.0, correct to 3 significant figures. Problem 9. Find:  e ax cos bx dx When integrating a product of an exponential and a sine or cosine function it is immaterial which part is made equal to ‘u’. Let u D e ax , from which du dx D ae ax , i.e. du D ae ax dx and let dv D cos bx d x, from which, v D  cos bx d x D 1 b sin bx Substituting into  u d v D uv   v du gives:  e ax cos bx dx D e ax   1 b sin bx     1 b sin bx  ae ax dx D 1 b e ax sin bx  a b   e ax sin bx dx  1  e ax sin bx dx is now determined separately using integration by parts again: Let u D e ax then du D ae ax dx,andlet d v D sin bx dx, from which v D  sin bx dx D 1 b cos bx Substituting into the integration by parts formula gives:  e ax sin bx dx D e ax    1 b cos bx      1 b cos bx  ae ax dx D 1 b e ax cos bx C a b  e ax cos bx dx Substituting this result into equation (1) gives:  e ax cos bx dx D 1 b e ax sin bx  a b   1 b e ax cos bx C a b  e ax cos bx dx  D 1 b e ax sin bx C a b 2 e ax cos bx  a 2 b 2  e ax cos bx dx The integral on the far right of this equation is the same as the integral on the left hand side and thus they may be combined.  e ax cos bx dx C a 2 b 2  e ax cos bx d x D 1 b e ax sin bx C a b 2 e ax cos bx i.e.  1 C a 2 b 2   e ax cos bx d x D 1 b e ax sin bx C a b 2 e ax cos bx i.e.  b 2 C a 2 b 2   e ax cos bx d x D e ax b 2 b sin bx C a cos bx Hence  e ax cos bx dx D  b 2 b 2 C a 2  e ax b 2  b sin bx C a cos bx D e ax a 2 Y b 2 .b sin bx Y a cos bx/ Y c Using a similar method to above, that is, integrating by parts twice, the following result may be proved:  e ax sin bx dx = e ax a 2 Y b 2 .a sin bx − b cos bx/ Y c 2 Problem 10. Evaluate   4 0 e t sin 2t d t, correct to 4 decimal places 438 ENGINEERING MATHEMATICS Comparing  e t sin 2t d t with  e ax sin bx dx shows that x D t, a D 1andb D 2. Hence, substituting into equation (2) gives:   4 0 e t sin 2t d t D  e t 1 2 C 2 2 1sin2t 2cos2t   4 0 D   e  4 5  sin 2   4   2cos2   4      e 0 5 sin 0  2cos0  D   e  4 5 1 0     1 5 0  2  D e  4 5 C 2 5 D 0 .8387, correct to 4 decimal places Now try the following exercise Exercise 179 Further problems on inte- gration by parts Determine the integrals in Problems 1 to 5 using integration by parts. 1.  2x 2 ln x dx  2 3 x 3  ln x  1 3  C c  2.  2ln3x dx [2xln 3x  1 Cc] 3.  x 2 sin 3x dx  cos 3x 27 2 9x 2  C 2 9 x sin 3x C c  4.  2e 5x cos 2x dx  2 29 e 5x 2sin2x C 5cos2x Cc  5.  2 sec 2  d [2[ tan   lnsec Â] Cc] Evaluate the integrals in Problems 6 to 9, correct to 4 significant figures. 6.  2 1 x ln x dx [0.6363] 7.  1 0 2e 3x sin 2x dx [11.31] 8.   2 0 e t cos 3t d t [1.543] 9.  4 1 p x 3 ln x dx [12.78] 10. In determining a Fourier series to repre- sent fx D x in the range  to , Fourier coefficients are given by: a n D 1     x cos nx dx and b n D 1     x sin nx dx where n is a positive integer. Show by using integration by parts that a n D 0 and b n D 2 n cos n 11. The equations: C D  1 0 e 0.4 cos 1.2 d and S D  1 0 e 0.4 sin 1.2 d are involved in the study of damped oscillations. Determine the values of C and S.[C D 0.66, S D 0.41] [...]... to C4 1 2 R.m.s deviation 4 1 D 4 1 1 5 D 4 1 5 D 4 2x 2 1 5 D 2 1 dx 3 1 4x 4 4x 2 C 1 dx 1 1 4x 5 5 5 D y 2 dx 1 4 4 5 4x 3 Cx 3 5 4 5 D 1 [ 737.87 5 D 4 1 4 3 4 C4 3 4 15 1 3C 3 1 [738. 34] 5 147 .67 D 12. 152 D 12. 2, correct to 3 significant figures Determine the r.m.s values of: (a) y D 3x from x D 0 to x D 4 (b) y D t2 from t D 1 to t D 3 (c) y D 25 sin  from  D 0 to  D 2 25 (a) 6.928 (b) 4. 919... 54. 9 t y D 3et /4 1 2. 34 0 3.0 1 3.85 2 4. 95 3 6.35 4 8.15 Since all the values of y are positive the area required is wholly above the t-axis Since y D x 2 C 5 then x 2 D y 5 and p xD y 5 The area enclosed by the curve y D x 2 C 5 (i.e p x D y 5 , the y-axis and the ordinates y D 5 and y D 14 (i.e area ABC of Fig 54. 9) is given by: 4 4 3 3et /4 d t D 1 4 1 1 D 12[ et /4 ]4 1 D 12 e D 12 2.7183 14 et /4. .. ordinates y3 , y4 and y5 , and so on Then /3 p 4 cos3 x d x (Use 6 intervals) 0 [0.799] y y1 y = a + bx + cx 2 y2 y3 b −d Figure 53.3 0 d x y dx ³ a d, y1 D a bd C cd2 4 1 1 d y1 C 4y2 C y3 C d y3 C 4y4 C y5 3 3 C 1 d y2n 3 1 C 4y2n C y2nC1 44 4 ENGINEERING MATHEMATICS Thus, from equation (5): 3 2 1 p d x ³ 0.5 [ 2.0000 C 1.1 547 x 3 1 y y = f (x ) C 4 1.6330 C 1.2 649 C 2 1 .41 42 D y1 0 y2 y3 y4 y2n + 1 a... 4 s Since 2t2 C 5 is a quadratic expression, the curve v D 2t2 C 5 is a parabola cutting the v-axis at v D 5, as shown in Fig 54. 4 The distance travelled is given by the area under the v/t curve (shown shaded in Fig 54. 4) By integration, shaded area y = 2x + 3 12 4 v dt D 10 0 8 4 D 6 2t2 C 5 d t 0 4 D 2 2t3 C 5t 3 4 0 3 0 1 Figure 54. 3 2 3 4 5 D x i.e 24 3 C5 4 0 distance travelled = 62.67 m 45 0 ENGINEERING. .. 5 dy y 5 yD5 4 D 12 1.9395 D 23.27 square units x y x dy D Area D 1 D 14 yD 14 y dt Hence area D 0 3 x3 C 5x 3 0 D 24 square units D When x D 3, y D 32 C 5 D 14, and when x D 0, y D 5 y D x3 2x 2 8x D x x 2 2x Dx xC2 x 8 4 When y D 0, then x D 0 or x C 2 D 0 or x 4 D 0, i.e when y D 0, x D 0 or 2 or 4, which means that the curve crosses the x-axis at 0, 2 and 45 4 ENGINEERING MATHEMATICS 4 Since the curve... interval from t D 1 s to t D 5 s [ 140 m] 4 x3 2x 2 8x d x 0 D x4 4 2x 3 3 0 8x 2 2 x4 4 54. 4 The area between curves 2 2x 3 3 8x 2 2 4 0 The area enclosed between curves y D f1 x and y D f2 x (shown shaded in Fig 54. 11) is given by: 2 2 D 6 42 3 3 1 D 49 square units 3 b shaded area D b f2 x d x f1 x d x a a b D f2 x / − f1 x / dx a Now try the following exercise y Exercise 1 84 Further problems on areas under... answer correct to 4 significant figures /2 With 6 intervals, each will have a width of 2 0 , 6 rad (or 15° ) and the ordinates occur at 0, i.e 12 5 , , , , and Corresponding values of 12 6 4 3 12 2 NUMERICAL INTEGRATION 1 are shown in the table below: 1 C sin x 44 1 /3p 3 sin  d  (Use 6 intervals) 0 [0.672] 1 1 C sin x x 1 .4 4 e x2 dx (Use 7 intervals) 0 0 12 [0. 843 ] 1.0000 (or 15° ) 0.7 944 0 (or 30° ) 0.66667... 0 and x D 5 (see Fig 56 .4) then: y = x2 + 4 A 0 D C 1 2 3 4 5 x Figure 56.5 y y = 2x 10 10 5 Revolving the shaded area shown in Fig 56.5 about the x-axis 360° produces a solid of revolution given by: 4 0 1 2 3 4 5 x Volume D 1 −5 x2 C 4 2 d x 1 4 x 4 C 8x 2 C 16 d x D −10 Figure 56 .4 4 y2 d x D 1 D x5 8x 3 C C 16x 5 3 4 1 VOLUMES OF SOLIDS OF REVOLUTION D [ 2 04. 8 C 170.67 C 64 6 7 y D 3x 2 8 yD 9 0.2... 81 4 D 2 5x 2 2 3 1 12 1 or 21.08 square units 12 15 3 4 Problem 4 Determine the area enclosed by the curve y D 3x 2 C 4, the x-axis and ordinates x D 1 and x D 4 by (a) the trapezoidal rule, (b) the mid-ordinate rule, (c) Simpson’s rule, and (d) integration AREAS UNDER AND BETWEEN CURVES 45 1 (c) By Simpson’s rule, x 0 1.0 1.5 2.0 2.5 3.0 3.5 4. 0 y 4 7 10.75 16 22.75 31 40 .75 52 y y= 3x 2 area D +4. .. +4 1 3 width of interval first + last ordinates C4 40 sum of even ordinates C2 50 sum of remaining odd ordinates Selecting 6 intervals, each of width 0.5, gives: 30 area D 20 1 0.5 [ 7 C 52 C 4 10.75 C 22.75 3 C 40 .75 C 2 16 C 31 ] D 75 square units 10 (d) By integration, shaded area 4 4 y dx D 0 1 2 3 4 1 x 4 3x 2 C 4 d x D 1 Figure 54. 6 D [x 3 C 4x ]4 1 D 75 square units Integration gives the precise . gives:  5xe 4x dx D 5x  e 4x 4     e 4x 4  5 d x D 5 4 xe 4x  5 4  e 4x dx D 5 4 xe 4x  5 4  e 4x 4  C c D 5 4 e 4x  x  1 4  C c Hence  1 0 5xe 4x dx D  5 4 e 4x  x  1 4  1 0 D  5 4 e 4  1. ordinates y 3 , y 4 and y 5 , and so on. Then  b a y dx ³ 1 3 dy 1 C 4y 2 C y 3  C 1 3 dy 3 C 4y 4 C y 5  C 1 3 dy 2n1 C 4y 2n C y 2nC1  44 4 ENGINEERING MATHEMATICS y y 1 y 2 y 3 y 4 y 2 n +. 2, page 44 0. Thus, from equation (5):  3 1 2 p x dx ³ 1 3 0.25 [ 2.0000 C1.1 547  C 4 1.7889 C1.5119 C1.3333 C 1.2060 C21.6330 C 1 .41 42 C1.2 649   D 1 3 0.25[3.1 547 C23.36 04 C 8.6 242 ] D

Ngày đăng: 13/08/2014, 09:20

Tài liệu cùng người dùng

Tài liệu liên quan