I Robot Manipulators, New Achievements Robot Manipulators, New Achievements Edited by Aleksandar Lazinica and Hiroyuki Kawai In-Tech intechweb.org Published by In-Teh In-Teh Olajnica 19/2, 32000 Vukovar, Croatia Abstracting and non-prot use of the material is permitted with credit to the source. Statements and opinions expressed in the chapters are these of the individual contributors and not necessarily those of the editors or publisher. No responsibility is accepted for the accuracy of information contained in the published articles. Publisher assumes no responsibility liability for any damage or injury to persons or property arising out of the use of any materials, instructions, methods or ideas contained inside. After this work has been published by the In-Teh, authors have the right to republish it, in whole or part, in any publication of which they are an author or editor, and the make other personal use of the work. © 2010 In-teh www.intechweb.org Additional copies can be obtained from: publication@intechweb.org First published April 2010 Printed in India Technical Editor: Sonja Mujacic Cover designed by Dino Smrekar Robot Manipulators, New Achievements, Edited by Aleksandar Lazinica and Hiroyuki Kawai p. cm. ISBN 978-953-307-090-2 V Preface Robot manipulators are developing as industrial robots instead of human workers. Recently, the application elds of robot manipulators are increasing such as Da Vinci as a medical robot, ASIMO as a humanoid robot and so on. There are many research topics with respect to robot manipulators, e.g. motion planning, cooperation with a human, and fusion with external sensors like vision, haptic and force, etc. Moreover, these include both technical problems in the industry and theoretical problems in the academic elds. In this book we have collected the latest research issues from around the world. Thus, we believe that this book is useful and joyful for readers. We would like to thank all authors for their interesting contributions and the reviewers for their devoted works. Editors: Aleksandar Lazinica and Hiroyuki Kawai VI VII Contents Preface V 1. ModelingandControlofaNewRoboticDeburringSystem 001 JaeH.Chung 2. Trajectorytrackingcontrolforrobotmanipulatorswithno velocitymeasurementusingsemi-globallyandglobally asymptoticallystablevelocityobservers 017 FarahBouakrif 3. RoboticMachiningfromProgrammingtoProcessControl 035 ZengxiPanandHuiZhang 4. FuzzyOptimalControlforRobotManipulators 059 BasilM.Al-Hadithi,AgustínJiménezandFernandoMatía 5. DevelopmentofAdaptiveLearningControlAlgorithmfora two-degree-of-freedomSerialBallAndSocketActuator 081 HayderM.A.A.Al-AssadiandAhmedJaffar 6. Singularity-BasedCalibration–ANovelApproachfor Absolute-Accuracy-EnhancementofParallelRobots 093 PhilippLast,AnnikaRaatzandJürgenHesselbach 7. AdvancedNonlinearControlofRobotManipulators 107 AdelMerabetandJasonGu 8. ModellingofHDDheadpositioningsystemsregardedas robotmanipulatorsusingblockmatrices 129 TomaszTrawińskiandRomanWituła 9. MobileManipulation:ACaseStudy 145 A.HENTOUT,B.BOUZOUIA,I.AKLIandR.TOUMI 10. AConceptforIslesofAutomation 169 MikkoSallinenandTapioHeikkilä 11. StiffnessAnalysisforanOptimalDesignofMultibodyRoboticSystems 185 CarboneGiuseppe VIII 12. ConcurrentEngineeringofRobotManipulators 211 M.RezaEmamiandRobinChhabra 13. DesktopCartesian-TypeRobotwithAbilitiesof CompliantMotionandStick-SlipMotion 241 FusaomiNagata,ShintaroTani,TakanoriMizobuchi,TetsuoHase, ZenkuHagaandKeigoWatanabe 14. Kinematiccalibrationofarticulatedarmcoordinatemeasuring machinesandrobotarmsusingpassiveandactiveself-centering probesandmultiposeoptimizationalgorithmbasedin pointandlengthconstrains 255 JorgeSantolariaandJuanJoséAguilar 15. TwoCooperatingManipulatorswithFractionalControllers 279 N.M.FonsecaFerreira,J.A.TenreiroMachadoandJózsefK.Tar 16. MFR(Multi-purposeFieldRobot)basedonHuman-robot CooperativeManipulationforHandlingBuildingMaterials 289 SeungyeolLee 17. ASensorClassicationStrategyforRoboticManipulators 315 MiguelF.M.Lima,J.A.TenreiroMachadoandAntónioFerrolho 18. Passivity-basedVisualForceFeedbackControlfor Eye-to-HandSystems 329 HiroyukiKawai,ToshiyukiMuraoandMasayukiFujita 19. KinematicAnalysisof3-UCRParallelRobotLeg 343 ChengGangandGeShi-rong 20. DigitalControlofFreeFloatingSpaceRobotManipulators UsingTransposeofGeneralizedJacobianMatrix 361 ShinichiSagaraandYuichiroTaira 21. Kinematics,SingularityandDexterityAnalysisofPlanar ParallelManipulatorsBasedonDHMethod 387 SerdarKucuk 22. RobotManipulatorProbabilisticWorkspaceAppliedto RoboticAssistance 401 FernandoA.AuatCheein,FernandodiSciascio, JuanMarcosToiberoandRicardoCarelli 23. OntheDesignofHuman-SafeRobotManipulators 419 VincentDuchaine,NicolasLauzierandClémentGosselin 24. VibrationBasedControlforFlexibleLinkManipulator 435 TamerMansour,AtsushiKonnoandMasaruUchiyama IX 25. ControlofRoboticSystemswithFlexibleComponents usingHermitePolynomial-BasedNeuralNetworks 459 GerasimosG.Rigatos 26. Dimensionaloptimizationofcompletelyrestrained positioningcabledrivenparallelmanipulatorwithlargespan 487 XiaoQiangTangandRuiYao 27. Multi-CriteriaOptimizationManipulatorTrajectoryPlanning 503 E.J.SolteiroPires,P.B.deMouraOliveiraandJ.A.TenreiroMachado 28. OnDesigningCompliantActuatorsBasedOnDielectric ElastomersforRoboticApplications 523 GiovanniBerselli,GabrieleVassura,VincenzoParentiCastelliandRoccoVertechy 29. HybridControlTechniquesforStaticandDynamicEnvironments: aSteptowardsRobot-EnvironmentInteraction 551 FabrizioRomanelli 30. MaximalOperationalWorkspaceofParallelManipulators 577 E.Macho,O.AltuzarraandA.Hernandez 31. KinematicalandDynamicalModelsofKR6KUKARobot, includingthekinematiccontrolinaparallelprocessingplatform 601 JohnFaberArchilaDíaz,MaxSuellDutraand FernandoAugustodeNoronhaCastroPinto 32. ManipulatorDesignStrategyforaSpeciedTaskBased onHuman-RobotCollaboration 621 SeungnamYu,SeungwhanSuh,WoongheeSon,YoungsooKimandChangsooHan 33. PSPRDandPSPRD+IControlofRobotManipulators andRedundantManipulators 645 KiyotakaShimizu 34. 3DImagingSystemforTele-Manipulation 663 HidekiKakeya 35. Experimentalevaluationofoutput–feedbacktracking controllersforrobotmanipulators 679 JavierMoreno–Valenzuela,VíctorSantibáñezandRicardoCampa 36. HigherDimensionalSpatialExpressionofUpperLimb ManipulationAbilitybasedonHumanJointTorqueCharacteristics 693 MakotoSasaki,TakehiroIwami,KazutoMiyawaki,IkuroSato, GoroObinataandAshishDutta X [...]... Automation, Raleigh, North Carolina [11 ]Raibert, M.H & Craig J.J (19 81) Hybrid position/ force control of manipulator,” ASME Journal of Dynamics System, Measurements and Control, Vol .10 2, pp .12 6 -13 3 [12 ] Whitney, D E (19 87) Historical perspective and state of the art in robot force control, International Journal of Robotics Research, vol 6, no 1, pp 3 14 [13 ] Bopp, T (19 83) Robotic finishing applications:... for the new deburring tool 14 Robot Manipulators, New Achievements 0.0205 Robot with a integrated double pneumatic tool Position error -4 2 x 10 Material x position error y position (m) 0.0204 0 Position error y position error -2 0.0203 -4 x 10 -4 1 0.0202 Desirable cut depth 0.02 01 0 -6 -1 -2 Desired trajectory for deburring -8 -3 -4 0.02 0. 019 9 0.2 -10 0.25 0.3 x position (m) 0.35 0.4 0.45 -12 0 -5... sanding, grinding, Proceeding of the 13 th International Symposium on Industrial Robots [14 ] Gustaffson, L (19 83) Deburring with industrial, Robots, Technical report, Society of Manufacturing Engineers [15 ] Hogan, N (19 84) Impedance control of industrial robots, Journal of Robotics and Computer Integrated Manufacturing, Vol 1, No 1, pp.97 -11 3 [16 ] Wang, D & Cheah, C C (19 96) A robust learning control scheme... =1, 2, 3, 4) is set to zero The following is the additional parameters used for the integrated cylinder: P3 j 1 10 5 Pa , A1 A2 0.000256m 2 , A3 A4 0.00055m2 , n=0.8, Ff 1 , 2 10 N , Ff 3 , 4 15 N , M t 1 = M t 2 =0.01kg, M t 3 = M t 4 =0. 015 kg, and T3 j 293 K Modeling and Control of a New Robotic Deburring System Position error -4 2 x 10 Position error -5 4 x position error 0 x 10 ... the state vector xT r r into Eq (14 ), we have x Mt Xt Ct Fe Ft Rt Rt XtT T (18 ) T T Xt and the block partition of the state vector (19 ) 8 Robot Manipulators, New Achievements 1 1 xt 1 xr 1 n 2 , with 1 xr , 2 Xt , 3 Xt Xt 1 3 xtn xrn ... Air inlet and outlet Chamber 3 Air inlet and outlet P3 A3 X t3 M t3 Chamber 1 Travel direction P1 A1 X t1 P A1 1 P2 A2 M t1 Rod Fe1 Fig 1 Integrated double cylinder system Air M t2 Piston Fe 2 Xt2 Modeling and Control of a New Robotic Deburring System 3 The dynamics of the chambers can be written as [Sorli et al., 19 99] dV3 d (1) G3 3 V3 3 dt dt where G 3 is the entering air flow, 3 the air density... as: b =16 mm , vt =0.08 m / s , and Vt =30,000 RPM 12 Robot Manipulators, New Achievements Fig 5 depicts the deburring performance of the coordination controller designed for the robot with a single active pneumatic cylinder tool The following parameters were used for simulation: Chamber pressures P1s = P2 s = 1 10 5 Pa Piston areas As 1 = As 1 = 0.000256m 2 , Piston mass M ts = 0.01kg Chamber... simulation: m1 =16 kg, m2 =12 kg, l1 =0.5m, and l2 =0.7m where m1 and m2 are the masses of each link of the 2 DOF manipulator, l1 and l2 are the lengths of each link The feedback gains of the controller were chosen as following: f d 20 N , k p 1 diag [15 0, 15 0, 15 0], kd 1 diag[70, 70, 70], k p 2 diag [750, 750, 750], and kd 2 diag[230, 230, 230] where f d is the desired force, and k pi and kdi ( i 1, 2... 1 n 0 E1 0 Mn un C n which results in simpler state equations as following: 1 ( xr 1 ) 0 1 (t1 ) 0 1 0 n ( xrn ) n (tn ) 0 Xt 1 0 1 1 2 X 0 3 tn 0 1 I 1 ... design and experiment, IEEE Journal of Robotics and Automation, Vol 4, pp 699–705 [19 ] Acarman, T., Hatipoglu, C & Ozguner, U (20 01) A robust nonlinear controller design for a pneumatic actuator, American Control Conference, 20 01 Proceedings of the 20 01, 25-27 June 20 01, Vol.6, pp.4490 – 4495 16 Robot Manipulators, New Achievements Trajectory tracking control for robot manipulators with no velocity measurement . n n n n n tn t nnrnn r u u I I X X t t x x 1 1 1 1 1 1 11 11 3 2 1 0 0 00 00 00 00 0 0 )( )( )(0 0)( . (24) To derive the decoupling. n n n n n tn t nnrnn r u u I I X X t t x x 1 1 1 1 1 1 11 11 3 2 1 0 0 00 00 00 00 0 0 )( )( )(0 0)( . (24) To derive the decoupling. direction Air Air inlet and outlet 22 AP 33 AP 11 AP 11 AP 22 AP 4t M 3t M 1t M 4t X 3t X 1t X 2t X Chamber 3 Chanmber 2 Chamber 1 Rod Piston 2t M 1e F 2e F Fig. 1. Integrated double cylinder system