1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Robot Manipulators, New Achievements part 1 pot

45 251 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 45
Dung lượng 1,01 MB

Nội dung

I Robot Manipulators, New Achievements Robot Manipulators, New Achievements Edited by Aleksandar Lazinica and Hiroyuki Kawai In-Tech intechweb.org Published by In-Teh In-Teh Olajnica 19/2, 32000 Vukovar, Croatia Abstracting and non-prot use of the material is permitted with credit to the source. Statements and opinions expressed in the chapters are these of the individual contributors and not necessarily those of the editors or publisher. No responsibility is accepted for the accuracy of information contained in the published articles. Publisher assumes no responsibility liability for any damage or injury to persons or property arising out of the use of any materials, instructions, methods or ideas contained inside. After this work has been published by the In-Teh, authors have the right to republish it, in whole or part, in any publication of which they are an author or editor, and the make other personal use of the work. © 2010 In-teh www.intechweb.org Additional copies can be obtained from: publication@intechweb.org First published April 2010 Printed in India Technical Editor: Sonja Mujacic Cover designed by Dino Smrekar Robot Manipulators, New Achievements, Edited by Aleksandar Lazinica and Hiroyuki Kawai p. cm. ISBN 978-953-307-090-2 V Preface Robot manipulators are developing as industrial robots instead of human workers. Recently, the application elds of robot manipulators are increasing such as Da Vinci as a medical robot, ASIMO as a humanoid robot and so on. There are many research topics with respect to robot manipulators, e.g. motion planning, cooperation with a human, and fusion with external sensors like vision, haptic and force, etc. Moreover, these include both technical problems in the industry and theoretical problems in the academic elds. In this book we have collected the latest research issues from around the world. Thus, we believe that this book is useful and joyful for readers. We would like to thank all authors for their interesting contributions and the reviewers for their devoted works. Editors: Aleksandar Lazinica and Hiroyuki Kawai VI VII Contents Preface V 1. ModelingandControlofaNewRoboticDeburringSystem 001 JaeH.Chung 2. Trajectorytrackingcontrolforrobotmanipulatorswithno velocitymeasurementusingsemi-globallyandglobally asymptoticallystablevelocityobservers 017 FarahBouakrif 3. RoboticMachiningfromProgrammingtoProcessControl 035 ZengxiPanandHuiZhang 4. FuzzyOptimalControlforRobotManipulators 059 BasilM.Al-Hadithi,AgustínJiménezandFernandoMatía 5. DevelopmentofAdaptiveLearningControlAlgorithmfora two-degree-of-freedomSerialBallAndSocketActuator 081 HayderM.A.A.Al-AssadiandAhmedJaffar 6. Singularity-BasedCalibration–ANovelApproachfor Absolute-Accuracy-EnhancementofParallelRobots 093 PhilippLast,AnnikaRaatzandJürgenHesselbach 7. AdvancedNonlinearControlofRobotManipulators 107 AdelMerabetandJasonGu 8. ModellingofHDDheadpositioningsystemsregardedas robotmanipulatorsusingblockmatrices 129 TomaszTrawińskiandRomanWituła 9. MobileManipulation:ACaseStudy 145 A.HENTOUT,B.BOUZOUIA,I.AKLIandR.TOUMI 10. AConceptforIslesofAutomation 169 MikkoSallinenandTapioHeikkilä 11. StiffnessAnalysisforanOptimalDesignofMultibodyRoboticSystems 185 CarboneGiuseppe VIII 12. ConcurrentEngineeringofRobotManipulators 211 M.RezaEmamiandRobinChhabra 13. DesktopCartesian-TypeRobotwithAbilitiesof CompliantMotionandStick-SlipMotion 241 FusaomiNagata,ShintaroTani,TakanoriMizobuchi,TetsuoHase, ZenkuHagaandKeigoWatanabe 14. Kinematiccalibrationofarticulatedarmcoordinatemeasuring machinesandrobotarmsusingpassiveandactiveself-centering probesandmultiposeoptimizationalgorithmbasedin pointandlengthconstrains 255 JorgeSantolariaandJuanJoséAguilar 15. TwoCooperatingManipulatorswithFractionalControllers 279 N.M.FonsecaFerreira,J.A.TenreiroMachadoandJózsefK.Tar 16. MFR(Multi-purposeFieldRobot)basedonHuman-robot CooperativeManipulationforHandlingBuildingMaterials 289 SeungyeolLee 17. ASensorClassicationStrategyforRoboticManipulators 315 MiguelF.M.Lima,J.A.TenreiroMachadoandAntónioFerrolho 18. Passivity-basedVisualForceFeedbackControlfor Eye-to-HandSystems 329 HiroyukiKawai,ToshiyukiMuraoandMasayukiFujita 19. KinematicAnalysisof3-UCRParallelRobotLeg 343 ChengGangandGeShi-rong 20. DigitalControlofFreeFloatingSpaceRobotManipulators UsingTransposeofGeneralizedJacobianMatrix 361 ShinichiSagaraandYuichiroTaira 21. Kinematics,SingularityandDexterityAnalysisofPlanar ParallelManipulatorsBasedonDHMethod 387 SerdarKucuk 22. RobotManipulatorProbabilisticWorkspaceAppliedto RoboticAssistance 401 FernandoA.AuatCheein,FernandodiSciascio, JuanMarcosToiberoandRicardoCarelli 23. OntheDesignofHuman-SafeRobotManipulators 419 VincentDuchaine,NicolasLauzierandClémentGosselin 24. VibrationBasedControlforFlexibleLinkManipulator 435 TamerMansour,AtsushiKonnoandMasaruUchiyama IX 25. ControlofRoboticSystemswithFlexibleComponents usingHermitePolynomial-BasedNeuralNetworks 459 GerasimosG.Rigatos 26. Dimensionaloptimizationofcompletelyrestrained positioningcabledrivenparallelmanipulatorwithlargespan 487 XiaoQiangTangandRuiYao 27. Multi-CriteriaOptimizationManipulatorTrajectoryPlanning 503 E.J.SolteiroPires,P.B.deMouraOliveiraandJ.A.TenreiroMachado 28. OnDesigningCompliantActuatorsBasedOnDielectric ElastomersforRoboticApplications 523 GiovanniBerselli,GabrieleVassura,VincenzoParentiCastelliandRoccoVertechy 29. HybridControlTechniquesforStaticandDynamicEnvironments: aSteptowardsRobot-EnvironmentInteraction 551 FabrizioRomanelli 30. MaximalOperationalWorkspaceofParallelManipulators 577 E.Macho,O.AltuzarraandA.Hernandez 31. KinematicalandDynamicalModelsofKR6KUKARobot, includingthekinematiccontrolinaparallelprocessingplatform 601 JohnFaberArchilaDíaz,MaxSuellDutraand FernandoAugustodeNoronhaCastroPinto 32. ManipulatorDesignStrategyforaSpeciedTaskBased onHuman-RobotCollaboration 621 SeungnamYu,SeungwhanSuh,WoongheeSon,YoungsooKimandChangsooHan 33. PSPRDandPSPRD+IControlofRobotManipulators andRedundantManipulators 645 KiyotakaShimizu 34. 3DImagingSystemforTele-Manipulation 663 HidekiKakeya 35. Experimentalevaluationofoutput–feedbacktracking controllersforrobotmanipulators 679 JavierMoreno–Valenzuela,VíctorSantibáñezandRicardoCampa 36. HigherDimensionalSpatialExpressionofUpperLimb ManipulationAbilitybasedonHumanJointTorqueCharacteristics 693 MakotoSasaki,TakehiroIwami,KazutoMiyawaki,IkuroSato, GoroObinataandAshishDutta X [...]... Automation, Raleigh, North Carolina [11 ]Raibert, M.H & Craig J.J (19 81) Hybrid position/ force control of manipulator,” ASME Journal of Dynamics System, Measurements and Control, Vol .10 2, pp .12 6 -13 3 [12 ] Whitney, D E (19 87) Historical perspective and state of the art in robot force control, International Journal of Robotics Research, vol 6, no 1, pp 3 14 [13 ] Bopp, T (19 83) Robotic finishing applications:... for the new deburring tool 14 Robot Manipulators, New Achievements 0.0205 Robot with a integrated double pneumatic tool Position error -4 2 x 10 Material x position error y position (m) 0.0204 0 Position error y position error -2 0.0203 -4 x 10 -4 1 0.0202 Desirable cut depth 0.02 01 0 -6 -1 -2 Desired trajectory for deburring -8 -3 -4 0.02 0. 019 9 0.2 -10 0.25 0.3 x position (m) 0.35 0.4 0.45 -12 0 -5... sanding, grinding, Proceeding of the 13 th International Symposium on Industrial Robots [14 ] Gustaffson, L (19 83) Deburring with industrial, Robots, Technical report, Society of Manufacturing Engineers [15 ] Hogan, N (19 84) Impedance control of industrial robots, Journal of Robotics and Computer Integrated Manufacturing, Vol 1, No 1, pp.97 -11 3 [16 ] Wang, D & Cheah, C C (19 96) A robust learning control scheme... =1, 2, 3, 4) is set to zero The following is the additional parameters used for the integrated cylinder: P3 j  1 10 5 Pa , A1  A2  0.000256m 2 , A3  A4  0.00055m2 , n=0.8, Ff 1 , 2  10 N , Ff 3 , 4  15 N , M t 1 = M t 2 =0.01kg, M t 3 = M t 4 =0. 015 kg, and T3 j  293 K Modeling and Control of a New Robotic Deburring System Position error -4 2 x 10 Position error -5 4 x position error 0 x 10 ... the state vector    xT r r into Eq (14 ), we have x   Mt Xt  Ct  Fe  Ft  Rt  Rt XtT  T (18 )  T T Xt and the block partition of the state vector (19 ) 8 Robot Manipulators, New Achievements  1        1   xt 1   xr 1      n            2  , with  1  xr     ,  2  Xt     ,  3         Xt  Xt 1  3  xtn   xrn         ... Air inlet and outlet Chamber 3 Air inlet and outlet P3 A3 X t3 M t3 Chamber 1 Travel direction P1 A1 X t1 P A1 1 P2 A2 M t1 Rod Fe1 Fig 1 Integrated double cylinder system Air M t2 Piston Fe 2 Xt2 Modeling and Control of a New Robotic Deburring System 3 The dynamics of the chambers can be written as [Sorli et al., 19 99] dV3 d (1) G3   3  V3 3 dt dt where G 3 is the entering air flow,  3 the air density... as: b =16 mm , vt =0.08 m / s , and Vt =30,000 RPM 12 Robot Manipulators, New Achievements Fig 5 depicts the deburring performance of the coordination controller designed for the robot with a single active pneumatic cylinder tool The following parameters were used for simulation: Chamber pressures P1s = P2 s = 1 10 5 Pa   Piston areas As 1 = As 1 = 0.000256m 2 ,  Piston mass M ts = 0.01kg  Chamber... simulation: m1 =16 kg, m2 =12 kg, l1 =0.5m, and l2 =0.7m where m1 and m2 are the masses of each link of the 2 DOF manipulator, l1 and l2 are the lengths of each link The feedback gains of the controller were chosen as following: f d  20 N , k p 1  diag [15 0, 15 0, 15 0], kd 1  diag[70, 70, 70], k p 2  diag [750, 750, 750], and kd 2  diag[230, 230, 230] where f d is the desired force, and k pi and kdi ( i  1, 2...   1       n   0  E1      0  Mn  un  C n   which results in simpler state equations as following:   1 ( xr 1 )  0   1 (t1 )    0 1                 0   n ( xrn )  n (tn )    0        Xt 1     0 1  1              2           X     0 3     tn       0 1     I 1  ... design and experiment, IEEE Journal of Robotics and Automation, Vol 4, pp 699–705 [19 ] Acarman, T., Hatipoglu, C & Ozguner, U (20 01) A robust nonlinear controller design for a pneumatic actuator, American Control Conference, 20 01 Proceedings of the 20 01, 25-27 June 20 01, Vol.6, pp.4490 – 4495 16 Robot Manipulators, New Achievements Trajectory tracking control for robot manipulators with no velocity measurement .                                                                                                                                                          n n n n n tn t nnrnn r u u I I X X t t x x                       1 1 1 1 1 1 11 11 3 2 1 0 0 00 00 00 00 0 0 )( )( )(0 0)(         . (24) To derive the decoupling.                                                                                                                                                          n n n n n tn t nnrnn r u u I I X X t t x x                       1 1 1 1 1 1 11 11 3 2 1 0 0 00 00 00 00 0 0 )( )( )(0 0)(         . (24) To derive the decoupling. direction Air Air inlet and outlet 22 AP 33 AP 11 AP 11 AP 22 AP 4t M 3t M 1t M 4t X 3t X 1t X 2t X Chamber 3 Chanmber 2 Chamber 1 Rod Piston 2t M 1e F 2e F Fig. 1. Integrated double cylinder system

Ngày đăng: 11/08/2014, 23:21

TỪ KHÓA LIÊN QUAN