Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 14 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
14
Dung lượng
1,17 MB
Nội dung
EM 1110-2-6054 1 Dec 01 7-7 68.9 MPa (10 ksi), the Category C curve will be used to determine the approximate number of cycles to failure at the detail (this does not imply that the entire structure will fail). By projecting lines on the S r -N curve shown in Figure 6-22, it can be determined that the number of cycles to failure is approximately 12.5 million. With the measured frequency of vibration equal to 5 Hz, it would take approximately 694 hours (29 days) of vibration at this stress range to exceed the fatigue strength of the riveted connection. But because this new mode of vibration has only recently been observed, it is probable that not many cycles have accumulated to date. In fact, unless the gates in this assumed example are allowed to vibrate for extended periods, it may take up to 3-1/2 years before fatigue cracks develop if vibrations are limited to 1/2 hour per day while the gates are being adjusted. (4) The recommended action to address this assumed condition would consist of three steps: • Minimize the occurrence of gate vibrations by operating outside the range causing vibration. • Reduce the inspection interval to approximately 1 year and inspect a greater number of gates to ensure that similar vibration is not occurring. • Begin engineering studies to determine solutions to reduce the stresses caused by these vibrations. c. Fracture evaluation example. (1) During an inspection, a 9-cm (3.5-in.) crack was found on the downstream flange of a horizontal girder on a tainter gate. The crack is an edge crack similar to that shown in Figure 6-10. Prior to the inspection, no indication of damage had been reported. Since the cracked girder is a main framing element of the tainter gate, an immediate assessment of its critical nature is required. The crack is near the midlength of the girder. The girder flange is 35.6 cm (14 in.) wide and 3.8 cm (1.5 in.) thick. (2) To evaluate this crack, a fracture analysis must be conducted. For this example, a linear-elastic fracture mechanics (LEFM) analysis will be used. The first step in performing the analysis is to obtain data on the three key parameters necessary for any fracture analysis: the crack size and geometry, the nominal stress in the member or component σ, and the critical stress intensity factor, K Ic or K c . (3) The crack size and the geometry have already been determined from the inspection. For an LEFM analysis, the nominal member stress is required. For this case, the nominal girder flange stress can be deter- mined from a plane frame analysis similar to that used in the design of tainter gate girders. An analysis showed that the nominal girder flange stress in the vicinity of the crack was 117.2 MPa (17 ksi) in tension. (4) The next step in the analysis is to determine the fracture toughness. A review of the hypothetical design documents indicated that the gate had been fabricated from A36 steel. Since K Ic testing (ASTM E399) of mild steels at reasonable service temperatures is impractical if not impossible, the fracture toughness will be determined from correlations with CVN data. As a first estimate, published CVN data for A36 steel will be used. This can be only an estimate, since K Ic values can vary significantly for the same type of steel. K Ic is also very dependent on temperature, so a minimum operating temperature for the structure must be established. Based on A36 steel CVN data (Barsom and Rolfe 1987), Figure 7-4 shows the approximation of K Ic as a function of temperature. The curve on the left is calculated from the two-stage CVN-K Id -K Ic correlation (valid for the lower shelf and the lower end of the transition region; see paragraph 7-1b), and the curve on the right is from the upper shelf CVN-K Ic correlation (Equation 7-3). The heavy line of each curve indicates the range in which the correlations are valid, as discussed in paragraph 7-1. The minimum service temperature for this example is -31.6 °C (-25 °F). Since neither curve is valid at this temperature, an estimate for K Ic is determined by linear interpolation between the two correlations as indicated by the dashed line in Figure 7-4. This interpolation indicates that K Ic is approximately 62.6 Mpa- m (57 ksi- .in ) at -31.6 °C (-25 °F). Conservatively, an estimate of K Ic of 55 MPa- m (50 ksi- .in ) is selected for use in the analysis. EM 1110-2-6054 1 Dec 01 7-8 Figure 7-4. CVN-K Ic correlations (°C = 5/9 (°F – 32); 1 ksi- .in = 1.099 MPa- m ) (5) Since the crack size and geometry of detail are known and the stress level and material fracture toughness have been estimated, the crack can be evaluated for fracture by calculating the stress intensity factor and comparing to the fracture toughness. For a single-edge crack perpendicular to the stress field in a finite- width plate, the stress intensity factor incorporating a factor of safety (FS), K If , is given by • b FSa k FSa 1.12 = K If πσ (7-7) where a = crack size k = function of a and b b = half-width of the plate (Tabulated values for k and stress intensity factor formulas for other crack geometries are given in Chapter 6.) For a factored crack length-to-plate half-width ratio of (a × FS)/b = (3.5 × 2)/7 = 1.0, k = 2.55, then in ksi288m- MPa2502.55)2()09.0()2.117(12.1 = = = K If • π (7-8) Since K If is greater than K Ic = 54.95 MPa- m (50 ksi- in. ), an unsafe condition exists for plane-strain condi- tions. Checking the plane strain assumption with Irwin's β factor from Equation 2-2: 0.4 > 1.3 248 55 0.038 1 2 = = Ic β (7-9) EM 1110-2-6054 1 Dec 01 7-9 Since β Ic > 0.4, the plane-strain condition assumption is not valid and the fracture toughness is represented by the critical stress intensity factor K c . Using Equation 7-6 to estimate K c (even though there is considerable deviation from plane strain condition) gives () () ()() () () 22 22 2 2 1 1.4 1 + 1.4 1.29 10,072 MPa- m 8,324 ksi- in. 55 100 MPa- m 91 ksi- in. 250 MPa- m 228 ksi- in. 2 clc Ic c If c K K + = = K = K < = K β =⋅ (7-10) (6) Since K c is less than K If , an unsafe condition exists. This indicates that an immediate repair plan should be developed and implemented. If the repair will be costly and/or substantially affect the function of the project, a more accurate analysis should be made. The analysis was based on an estimation of K Ic that may not accurately reflect the plane-strain fracture toughness of the material, and the approximation of K c from K Ic introduces more uncertainty in the estimation of the fracture toughness of the girder flange. A more exact analysis would require having tests conducted on the girder material so that a more accurate value of K c may be obtained. A CTOD test, which can be used to estimate K c (Equation 7-5), would likely be most appropriate because of the uncertainty in correlating CVN data at the service temperature. Alternatively, an elastic-plastic fracture assessment can be performed as outlined in Chapter 6. d. Lock gate fracture example. Cracks of various shapes were revealed on two tension members on a lock gate by nondestructive testing inspection. One member has the cross-sectional dimensions of 10 cm (4 in.) thick by 30.5 cm (12 in.) wide. The other member is 2.5 cm (1 in.) thick by 30.5 cm (12 in.) wide. The crack types and shapes include single-edge crack; through-thickness center crack; surface crack along the 0.3-m (12-in.) side (a/2c = 0.1 and 0.2), and embedded circular cracks. The material properties at the minimum service temperature of –1.1 °C (30 °F) were determined by material testing and are summarized as follows: σ ys = offset yield strength of 345 MPa (50 ksi) ! ult = 552 MPa (80 ksi) E = 206,840 MPa (30,000 ksi) K Ic = 66 MPa- m (60 ksi- .in ) K Id = 44 MPa- m (40 ksi- .in ) " crit = critical CTOD value of 0.0052 cm (0.002 in.) (static) " crit = 0.0025 cm (0.001 in.) (dynamic) From structural analysis, the maximum applied tensile stress is 207 MPa (30 ksi). For each cracked member, the critical crack size will be determined for each cracking condition under static loading and dynamic loading, respectively: (1) Example for 10-cm (4-in.) by 30-cm (12-in.) plate: EM 1110-2-6054 1 Dec 01 7-10 . = = K t = 2 ys Ic 2 Ic 360 345 66 10 11 σ β β Ic < 0.4; therefore, LEFM is applicable. (a) Single-edge crack (see Figure 6-10): 1.12 I a Kak b σπ = where σ is the nominal stress. a C = 1.12 k b π in Equation 6-1 Assume (/) 1.0k a b = . The critical discontinuity size is calculated as )in (1.02 cm592 121 1 2 = . K = a Ic cr σπ (Equation 6-2 with no factor of safety) (a/b) = 0.17 and k(a/b) = 1.06; therefore, iteration is needed for a cr and k(a/b). After iteration, a cr = 2.34 cm (0.92 in.) (k(a/b) = 1.05). With FS = 2.0, a cr = 0.5 (2.34) = 1.17 cm (0.46 in.) for dynamic loading: )in230( cm 58.0 121 50 . . = . K . = a Id 2 cr σπ (b) Through-thickness center crack (Figure 6-8). Calculate the stress intensity factor: 2b a a 2b a = K I π π πσ tan Assume tan 1.0 2b a = a2b π π 1 3.23 cm (1 27 in ) 2 tan 1 02 2 2 Ic cr K = = . . a ba = . ab πσ π π After iteration, a cr = 3.1 cm (1.22 in.). With FS = 2.0, a cr = 3.1/2 = 1.55 cm (0.61 in.) and for dynamic loading, 05 0.71 cm (0 28 in ) 2 Id cr . K = = . . a πσ EM 1110-2-6054 1 Dec 01 7-11 (c) Surface crack along the 30.5-cm (12-in.) side (2c is the length of the surface crack along the slope of the component; see Figure 6-15): • /2ac = 0.1 112 207 06 345 IK ys a = . KM Q = = . σπ σ σ where Q is the flow shape parameter defined by Figure 6-14 and M k is a variable that describes the effect of a/t on K I . From Figure 6-14, Q = 1.02, assume M k = 1.0 )in04(1 cm 2.64 121 . . = . K Q = a Ic 2 cr σπ (a/t = 0.26; M k = 1.0) With FS = 2.0, a cr = 2.64/2 = 1.32 cm (0.52 in.), and for dynamic loading, 05 0.58 cm (0 23 in ) 112 2 Ic cr . Q K = = . . a . πσ • a/2c = 0.2 From Figure 6-14, Q = 1.24, assume M k = 1.0 3.2 cm (1 23 in.) 112 2 Ic cr Q K = = . a . πσ (a/t = 0.32; M k = 1.0) With FS = 2.0, a cr = 3.2/2 = 1.6 cm (0.63 in.), and for dynamic loading, 2 05 0.71 cm (0 28 in ) 112 Ic cr . Q K = = . . a . πσ (d) Embedded circular crack (see Figure 6-14). Q a = K I πσ a/2c = 0.5; from Figure 6-14, Q = 2.4 with FS = 2.0, 05 2 Ic cr . Q K = a πσ = 3.89 cm (1.53 in.) EM 1110-2-6054 1 Dec 01 7-12 and for dynamic loading: 2 05 Ic cr . Q K = a πσ = 1.73 cm (0.68 in.). (2) Example for 2.5-cm (1-in.) by 30-cm (12-in.) plate: = K t = ys Ic 2 Ic 345 66 025.0 11 2 σ β = 1.46. # Ic > 0.4; therefore, elastic-plastic fracture mechanics is applicable. Determine the allowable discontinuity parameter m a (paragraph 6-5b). C = a y crit m ε δ (Equation 6-4) where ε y is the yield strain of the material , = E = ys y 843206 345 σ ε = 0.0017 60 345 207 . = = ys σ σ From Figure 6-20, C = 0.44 For static loading 0017.0 00520 440 . . = a m =1.32 cm (0.52 in.) For dynamic loading . . = a m 0017.0 00250 440 = 0.65 cm (0.26 in.) Critical crack lengths can be determined for various crack shapes from the allowable discontinuity parameter a m (paragraph 6-5b). 7-3. Example Fatigue Analysis This example shows how to apply fatigue analysis to determine expected life given an initial flaw size a i . For this case, consider an initial surface flaw of the type shown in Figure 6-15 with a/2c = 0.25. The member is a 10-cm- (4-in ) thick plate of ASTM A572/572M Grade 345 (50) steel. The critical stress intensity factor (fracture toughness) K Ic of this steel is 66 MPa- m (60 ksi- .in ) at the minimum service temperature. a. The maximum stress level is 207 MPa (30 ksi) and the minimum stress is zero. A curve relating the initial surface flaw size a i to number of cycles to failure N p will be developed. From Figure 6-15 [...]... in.)) was found 7- 5 Structural Steels Used on Older Hydraulic Steel Structures Steel standards for the period when many hydraulic steel structures were constructed are of interest from both a structural evaluation and a repair and maintenance standpoint In a structural evaluation, the characteristics of corrosion resistance, fracture resistance, crack propagation rate, and stability of properties with... weldability of steels is also of interest since welding will likely be considered for repair and maintenance procedures even for riveted structures However, at the time the gates were constructed, these properties probably were not determined or even much considered 7- 18 EM 1110-2-6054 1 Dec 01 Figure 7- 9 Curves for fatigue life of a flange with a double-edge crack (1 in = 2.54 cm; 1 ksi = 6.89 MPa) 7- 19... curve for stress range of 124 MPa (18 ksi) is shown in Figure 7- 9a Figure 7- 9b shows the relationship between stress and critical crack length The remaining life of the girder flange plate for various stress ranges is also shown in Figure 7- 9c c Surface crack Figure 7- 10 shows a crack assumed to have initiated in the diagonal bracing member from a surface crack at the corner of the bracket It is assumed... propagated through the thickness of the bracing member and then grew toward the edge of the flange plate A single-edge crack condition similar to the first example case was developed The fracture and fatigue analysis of this example consists of three propagation steps (1) The first step is to analyze the crack propagation of a hemispheric surface crack having an initial radius of 1.6 mm (1/16 in.) When the... to analyze crack growth of the edge crack The total remaining life of the diagonal bracing member from the initial hemispheric surface crack can be determined by adding the three propagation lives The calculated crack growth curve for a stress range of 124 MPa (18 ksi) is shown in Figure 7- 11a The total remaining life and critical crack length are also shown in Figure 7- 11b and c for stress ranges... crack breaks through the surface on the other side of the plate (i.e., the radius of hemispheric crack becomes the same as the plate thickness of 9.5 mm (3/8 in.)), a through-thickness crack condition is reached (2) The second step is to analyze crack growth of a plate containing a through-thickness crack Once the through-thickness crack reaches the edge of the plate, the single-edge crack condition is... The inspection schedule can be determined from the fatigue life curve of the single-edge crack in the primary member The maximum stress range is assumed as 124 MPa (18 ksi) The procedure is shown in the following steps (1) Determine critical crack length: acr = 2.26 cm (0.89 in.) (paragraph 7- 4a) (2) Determine crack length when repair is needed (Figure 6-23): ar = 2.26/2 = 1.13 cm (0.45 in.) (FS =... considered 7- 18 EM 1110-2-6054 1 Dec 01 Figure 7- 9 Curves for fatigue life of a flange with a double-edge crack (1 in = 2.54 cm; 1 ksi = 6.89 MPa) 7- 19 EM 1110-2-6054 1 Dec 01 Figure 7- 10 A stiffening member with a crack (1 in = 2.54 cm) 7- 20 . src=" 374 1FNPtR0AQOvk6fDhwz/7sz9rOwCA1snTAw88sH37dtsBALROnp 577 rnTTz/ddgAArZOno0eP7tixw3YAAK2Tp0ceecRGAIBNZy3BDduyRfHaa6/NzVmZGgA2k3GdDXHkyJEQgtABAK2Tp6WlJYsmA4DWydb//u//mpgMAFonW3ffffdb3/pW2wEAtE62LJoMAFonW9/97nff8Y532A4AoHXy9NRTT51yyim2AwBonTwdPXr0oosush0AQOvkyaLJAKB1Mjc/P28jAIDWydDS0lIIYcuWLTYFAGidDMULRAAAWidPP/jBD0xMBgCtk619+/ZZNBkAtE7OzjrrLBsBALROnhYXF88++2zbAQC0Tp6effbZN73pTbYDAGidPB0+fNjcZADQOtnav3//mr92cXGxWJMbbrjBlgeAQUWv17MVRrxNi+KVV16xliAATALjOiNm0WQA0Do5s2gyAGidnFk0GQC0TiaWlpaOHTvWd+Pi4uKpp55q4wCA1plur 776 6q/8yq88/PDDfbcfPXr0nHPOsX0AQOtMt09+8pOLi4v33Xdf3+ 179 uyxaDIAaJ3pdv/993/rW98KIdx+++19//T 973 /foskAoHWm22WXXfbd7343hPDYY4/1nXh16NCh8847zyYCAK0zxQ4dOnTWWWe1Wq0Qwj//8z/X/+mZZ5554xvfaBMBgNaZYvFMqyuvvDKEMDhlx0KCAKB1ctBoNMKPTtk5ePBgCGF+ft7GAYAJ4XpY69t8RRFCSFe/Onjw4Pbt221SAJgcxnXW5Zprrgm1KTvPPvvsueeea7MAgNbJxBVXXBFqU3Yef/zxM88802YBAK2TiXjpq6997Wvxf48ePbp161abBQC0Tia2bdsWQnj++eeXlpZCCPv27du5c6fNAgBaJx/XX399COEf//EfQwgvvfSSk7AAQOtkJU7Z2bNnT7BoMgBMHuecr9fS0tIZZ5xx5plnPvfcc0VRHDhwIB7YAgAmgXGd9Zqfnz/ttNOef /75 uJCgRZMBQOvk5uqrrw4h/Nmf/VmwaDIAaJ38xCk7t912m00BAJPGfJ0ROHLkyI//+I+HEM4999zHH3/cBgGAyWFcZwS2bNmyffv2EMLpp59uawCA1slQPIwViwcA0Dq5ueqqq0IIFk0GAK2Tp1g5b3nLW2wKANA6GdqyZctf/dVffeADH7ApAGCiOA8LAMiZcR0AQOsAAGgdAACtAwCgdQAAtA4AgNYBALQOAIDWAQDQOgAAWgcAQOsAAGgdAACtAwBoHQAArQMAoHUAALQOAIDWAQDQOgAAWgcA0DoAAFoHAEDrAABoHQAArQMAoHUAALQOAKB1AAC0DgCA1gEA0DoAAFoHAEDrAABaBwBA6wAAaB0AAK0DAKB1AAC0DgCA1gEAtA4AgNYBANA6AABaBwBA6wAAaB0AAK0DAGgdAACtAwCgdQAAtA4AgNYBANA6AABaBwCYmdZZXFwsRuqGG25Y 872 54IILio137Ngxv3gAmBFFr9ezFQCAXDmGBQBoHQAArQMAoHUAALQOAIDWAQDQOgCA1gEA0DoAAFoHAEDrAABoHQAArQMAoHUAAK0DAKB1AAC0DgCA1gEA0DoAAFoHAEDrAABaBwBA6wAAaB0AAK0DAKB1AAC0DgCA1gEAtA4AgNYBANA6AABaBwBA6wAAaB0AQOsAAGgdAACtAwCgdQAAtA4AgNYBANA6AIDWAQDQOgAAWgcAQOsAAGgdAACtAwCgdQAArQMAoHUAALQOAIDWAQDQOgAAWgcAQOsAAFoHAEDrAABoHQAArQMAoHUAALQOAIDWAQC0DgCA1gEA0DoAAFoHAEDrAABoHQBA6wAAaB0AAK0DAKB1AAC0DgCA1gEA0DoAgNYBANA6AABaBwBA6wAAaB0AAK0DAKB1AACtAwCgdQAAtA4AgNYBANA6AABaBwBA6wAAWgcAQOsAAGgdAACtAwCgdQAAtA4AgNYBALQOAIDWAQDQOgAAWgcAQOsAAGgdAEDrAABoHQAArQMAoHUAALQOAIDWAQDQOgCA1gEA0DoAAFoHAEDrAABoHQAArQMAoHUAAK0DAKB1AAC0DgCA1gEA0DoAAFoHAEDrAABaBwBA6wAAaB0AAK0DAKB1AAC0DgCA1gEAtA4AgNYBANA6AABaBwBA6wAAaB0AQOsAAGgdAACtAwCgdQAAtA4AgNYBANA6AIDWAQDQOgAAWgcAQOsAAGgdAACtAwCgdQAArQMAoHUAALQOAIDWAQDQOgAAWgcAQOsAAFoHAEDrAABoHQAArQMAoHUAALQOAKB1AAC0DgCA1gEA0DoAAFoHAEDrAABoHQBA6wAAaB0AAK0DAKB1AAC0DgCA1gEA0DoAgNYBANA6AABaBwBA6wAAaB0AAK0DAKB1AACtAwCgdQAAtA4AgNYBANA6AABaBwBg81qnmBhHjhxZw/1fXFwsJt7i4qLnNwAUvV7PVgAAcuUYFgCgdQAAtA4AgNYBANA6AABaBwBA6wAAWgcAQOsAAGgdAACtAwCgdQAAtA4AgNYBALQOAIDWAQDQOgAAWgcAQOsAAGgdAACtAwBoHQAArQMAoHUAALQOAIDWAQDQOgAAWgcA0DoAAFoHAEDrAABoHQAArQMAoHUAAK0DAKB1AAC0DgCA1gEA0DoAAFoHAEDrAABaBwBA6wAAaB0AAK0DAKB1AAC0DgCA1gEAtA4AgNYBANA6AABaBwBA6wAAaB0AAK0DAGgdAACtAwCgdQAAtA4AgNYBANA6AABaBwDQOgAAWgcAQOsAAGgdAACtAwCgdQAArQMAoHUAALQOAIDWAQDQOgAAWgcAQOsAAFoHAEDrAABoHQAArQMAoHUAALQOAIDWAQC0DgCA1gEA0DoAAFoHAEDrAABoHQAArQMAaB0AAK0DAKB1AAC0DgCA1gEA0DoAAFoHANA6AABaBwBA6wAAaB0AAK0DAKB1AACtAwCgdQAAtA4AgNYBANA6AABaBwBA6wAAWgcAQOsAAGgdAACtAwCgdQAAtA4AgNYBALQOAIDWAQDQOgAAWgcAQOsAAGgdAACtAwBoHQAArQMAoHUAALQOAIDWAQDQOgAAWgcA0DoAAFoHAEDrAABoHQAArQMAoHUAgNk1ZxNkoyiKMf/EV155ZcuWLbY8AFqHMdm9e/eOHTvG9uOEDgBahzE5cuRICGHHjh3btm2zNQAgMV8nE0tLSyGErVu32hQAoHWyNTdnoA4AtE6OHnroIRsBALROto4ePdpoNGwHANA6eXr88cdPPfVU2wEAtE6ennzyybPOOst2AACtk6ennnrqwgsvtB0AQOvkaf/+/TYCAGidnF100UU2AgBonQzFhQQBAK2Tp3iBiPn5eZsCALROhn7wgx8EV+Icr3e9613FcJ544onst8bnPve5Yq2+/OUvezrFdyzDb7Spe3Qf//jHi3X74Ac/6HnC2rikQA4ef/xxG2HMu6Unn3zywQcffPvb337ST56Fi5TddtttX/nKVz70oQ+t4WuNR0bf+c53tm/fvm/fviwf3R133LF79+4dO3as55t4O4fWmWmHDx++5JJLbIdx7pZOO+20Xbt22RSx/J599tlrr71WtazHLbfccs0112zbti2/h7a0tHT48OFLL73UBfvYLI5h5eDhhx9+wxveYDuMc7d09dVX2w718hM663Tvvff+8i//cpYPbe/evRdeeKHQQeuwLi+88IJFk8e8W7riiitsB+U3KnFsbOfOnVk+ultvvfUjH/mI3zJah3X 57/ /+b4smj3m39J73vMemiL75zW8qv3WKk3VynY9SVZVpxWgd1suiyePfLTlkE8WpGMpvnf7iL/7immuuyfgZ8u53v9tvmU3kAGomLJo8NnEOqe0QPfDAAybrrN+ePXv+7u/+LsuHdvvtt5usw6YzrpPD2yYbYZwynkO6BrfeeqvJOuv/Ez58+LDJOqB1OCGLJo95a2c8h3QN9uzZY7LOOj3wwAMZT9bpdrsm66B1WK9nn302WGVrXPKeQ7paJuuMxK233prrUdGDBw+GEEzWYdM5hjr1nn76aRthbEzWqbv77rtN1lm/jCfr3HvvvSbroHUYzXvr 973 vfbbDeHzzm9/Mdbe0Bt/4xjdM1ln/3+/hw4d/7ud+LstHZ7IOE8IxrKm3b9++M844w3YY227JZJ1k7969Juus0wMPPLBz585cRz663e6VV17pt4zWYb1++MMfvu1tb7MdRujVV1/94he/uLi4OLhbmsHJOkeOHPmN3/iNwQuuxakYJusM6emnn/7EJz4RzySou/XWW6+99tppf3R/8id/8vWvf33ZZ0iWV/hC6zBu//mf/9lsNm2HUbnpppve8Y53/MEf/MFVV13Vt2fKeA7piXz1q189//zzq6q 677 77vvGNb9T/aWFh4S1veYvJOid17NixT3/60zt37vzLv/zL66+/vu9f9+zZc9lll03vo/unf/qns8466/d///c/9rGPxbhJ7r33XtckRuswGs8888yav3ZpaalYk8Exj2y8+OKLzz333Kc//ekXXnjh85//fN9uadZW1rn66qv/4z/+Y+/evSGEj 370 o/XFnG688cYMBiTG4MiRI7t27VpaWjrnnHNuueWW+nyvDNYU3r9//2OPPXbzzTeHEH7913+ 977 3Bdddd5wnAROgx5UIIjz32mO0wWq+99tpb3/rW+rZ98cUXQwivvPLKbG6Qr3zlKyGESy65JG2fEMLu3bs9VYZ34MCBEMLb3va29Cy6/fbbd+7cmceju/jii0MIN998c/2l6cCBA37vTALjOtMtDhq/8Y1vtClGa25ubt++fSGESy+99NixY+H4HNKZXVnnk5/85DnnnLN 379 54JOvf/u3fgsk6q7Rt27Yvf/nL9fHCr33ta9mMjd1yyy31wb/HH388mKzDxNA6ObC03UY 477 zzfuu3fuv555//oz/6o5DLHNL1xN8999yTdma7d+8OVutevd/+7d8+++yzb7zxxpgCe/funerJOnXz8/PxSNZnP/vZOOZnsg6To4gjjUypxcXF 97/ //X6JG+TYsWNnnHHG 977 3vQMHDlxwwQUPPvjgeeedN8sb5MYbb/zsZz97ySWXvPTSSz/90z992223eZKs1sGDB7dv337mmWf+/d///fnnn//aa6/ldMJ5o9G4/ /77 d+/e/Yd/+Ief+cxnPv7xj/uNo3VY3X538DXx61//+sc+9jG/xDHsmZ5//vnMdktrexKeffbZcd7JzTffbObp2nzpS1/63d/93RDCzp07H3300Zwe2tLS0tlnn33KKae88MILBw4ccAyLCeEY1tS49NJL+07pDCEcOHBg165dNs7G2bZt2x//8R8///zzGS/4Nry5ubmHH344fnzRRRd5eqzNZz7zmXe+850hhPyOis7Pz990000vvPBCMFmHiXrtsgmmwhe/+MWFhYWHHnqo7+XjkUceOf30022fDfV7v/d799 577 2/+5m/aFHFn1u12v/3tb9uTrScZu91us9n81V/91fwe3Yc//OFf+7VfM5eLieIY1hR48skn3/Wud4UQLr744rjSSdJsNnfs2PHVr37VVgKAZTmGNQV27doVE+e+++6L5z8n//Iv//L+ 97/ fJgIArTPF7rrrrosvvvj8888Px9c1SV5++WXbBwC0znR 773 vfG0K46qqrQgjdbjfdHsd4ZvwsaADQOpmIS7B/61vfSrccOnQoWDQZALROHnbu3BlC2Lt3b9+UHYsmA4DWycGWLVvi4ao0ZeeJJ54I1ukHAK2TjU984hOhNmXnf/7nf2wTANA6+Wg0GqE2ZefAgQPnnHOOzQIAK7CW4DQ5duzY6 173 uhBCvDDT5ZdfHn50tjIA0Me4zjSZm5trtVohhHhNopdeeukNb3iDzQIAWicfV155ZQjhvvvuCyE88cQTH/7wh20TANA6+fjQhz4UQrj99tuDRZMBQOvkJ15c+rHHHjt48GAI4Sd/8idtEwDQOlmJh7FuuummEMLb3/52GwQAtE5W4oWx4mEsAGBlzjmfPgcPHty+fXv82K8PALROhk 477 bQ4MdmvDwBW5hjWVLriiitCCBZNBgCtk6drrrkmhHD22WfbFACgdTL0nve8J4SwZcsWmwIAtE6G5ufnG43Gpz71KZsCAFZmbjIAkDPjOgCA1gEA0DoAAFoHAEDrAABoHQAArQMAaB0AAK0DAKB1AAC0DgCA1gEA0DoAAFoHANA6AABaBwBA6wAAaB0AAK0DAKB1AAC0DgCgdQAAtA4AgNYBANA6AABaBwBA6wAAaB0AQOsAAGgdAACtAwCgdQAAtA4AgNYBALQOAIDWAQDQOgAAWgcAQOsAAGgdAACtAwBoHQAArQMAoHUAALQOAIDWAQDQOgAAWgcA0DoAAFoHAEDrAABoHQAArQMAoHUAALQOAKB1AAC0DgCA1gEA0DoAAFoHAEDrAABoHQBA6wAAaB0AAK0DAKB1AAC0DgCA1gEAtA4AgNYBANA6AABaBwBA6wAAaB0AAK0DAGgdAACtAwCgdQAAtA4AgNYBANA6AABaBwDQOgAAWgcAQOsAAGgdAACtAwCgdQAAtA4AoHUAALQOAIDWAQDQOgAAWgcAQOsAAGgdAEDrAABoHQAArQMAoHUAALQOAIDWAQC0DgCA1gEA0DoAAFoHAEDrAACsz1w2j+SGG25ot9t+o9Putddem5ubsx0AGJWi1+vZCgBArhzDAgC0DgCA1gEA0DoAAFoHAEDrAABoHQBA6wAAaB0AAK0DAKB1AAC0DgCA1gEA0DoAgNYBANA6AABaBwBA6wAAaB0AAK0DAKB1AACtAwCgdQAAtA4AgNYBANA6AABaBwBA6wAAWgcAQOsAAGgdAACtAwCgdQAAtA4AoHUAALQOAIDWAQDQOgAAWgcAQOsAAGgdAEDrAABoHQAArQMAoHUAALQOAIDWAQDQOgCA1gEA0DoAAFoHAEDrAABoHQAArQMAoHUAAK0DAKB1AAAm2dw4f9gFF1zw2GOP2egz7sEHH9y1a5ftAMB4FL1ez1YAAHLlGBYAoHUAALQOAIDWAQDQOgAAWgcAQOsAAFoHAEDrAABoHQAArQMAoHUAALQOAIDWAQC0DgCA1gEA0DoAAFoHAEDrAABoHQAArQMAaB0AAK0DAKB1AAC0DgCA1gEA0DoAAFoHANA6AABaBwBA6wAAaB0AAK0DAKB1AACtAwCgdQAAtA4AgNYBANA6AABaBwBA6wAAWgcAQOsAAGgdAACtAwCgdQAAtA4AgNYBALQOAIDWAQDQOgAAWgcAQOsAAGgdAACtAwBoHQAArQMAoHUAALQOAIDWAQDQOgAAWgcA0DoAAFoHAEDrTLnFxcVi4y0uLg55f2644YZiM1xwwQWeDABMi6LX69kKAECujOsAADmbswk2wrFjxw4dOrTar9q6devc3Ib8Ro4cObK0tLT +77 Nly5b5+Xm/XwCmiGNYG+KWW2657rrrVvtV//qv/7pjx46NuD+XX 375 XXfdtf7vc8kll/zDP/yD3y8AWmfWXX755Y1G4 3Of+ 9yE3J9TTz31wQcfPO+88/xqAJg15utsiEceeeSDH/zghNyZI0eOHD58+Kd+6qf8XgDQOoymLZ599tnJaYvvfOc727dv37Jli18NAFqHEfiv//qvN7/5zZPTFvfdd1+j0fB7AUDrMBq33XbbFVdcMTn352//9m+vueYavxcAtA6j0e12J2eyTghh/ /79 G3R6FwBMPudhbcA2LYoDBw5s27ZtEu7MwYMHt2/f7rcMwMwyrjP6tgghTEjohBDuvffeSy65xO8FAK3DaHz729++8MILJ+f+3HPPPb/0S7/k9wKA1mE07rzzzquuumpy7s9ErfQDAFpn6j388MMf+MAHJuTOTNpKPwCgdabbkSNHnnnmmZ07d07I/Zm0lX4AQOtMt6eeemqi2uKuu+6aqJV+AEDrTJOlpaW+W+68887LLrtsU+7MsWPHjhw50nfjnj17fuEXfsFvCgCtw6rDYteuXTt27OjLiz 179 vziL/7i+O/Pc889t3Xr1ve 973 19tz/00EOTM3kIALTOdHj66ae3bt165plnvvTSS3/6p3+66W2xZ8+en/mZn9mxY8f+/fsXFxfT7ZO20g8AbArrJq/asWPHjh49esopp/zET/zE0tLSK6+8EifoLC0tnXHGGa+99trc3Nw 478 +rr746Nzf3ve9 974 wzzjj33HMfffTReAfuuOOOL3zhC48++qhfGQCzzLjOqs3NzW3ZsmVubu7OO+8MIVx//fXx9gceeGDnzp1jDp0Qwutf//q5ubn5+fl2u71///7bbrst3n7HHXdce+21fl8AzDjjOuvy7ne/+9///d/j1a8+9alPnXLKKV/60pc2684cOXJk69atp5xyyqFDh+bm5rZu3fo3f/M3u3bt8msCYJYZ11mXe+65J4Tw+c9/PoRw9913b+6KyVu2bLnxxhtfeOGFP//zP4+rCE7OSj8AsFmM66zX5Zdfftddd+3evfuyyy 578 cUX5+fnN/HOHDt2bH5+/uWXX969e/dHPvKR73//+35BAGgdrbMucUpyCOFNb3rTJLTF/fff32g0Qggf/ehH//qv/9ovCIAZ5xjWes3Pz//O7/xOCOG 973 3vJNyfn//5n3/nO98ZQrj44ov9dgBA64zAF77whde//vXXXXfdhNyfffv2hRBarZZfDQA4hgUA5My4DgCgdQAAtA4AgNYBANA6AABaBwBA6wAAWgcAQOsAAGgdAACtAwCgdQAAtA4AgNYBALQOAIDWAQDQOgAAWgcAQOsAAGgdAACtAwBoHQAArQMAoHUAALQOAIDWAQDQOgAAWgcA0DoAAFoHAEDrAABoHQAArQMAoHUAAK0DAKB1AAC0DgCA1gEA0DoAAFoHAEDrAABaBwBA6wAAaB0AAK0DAKB1AAC0DgCA1gEAtA4AgNYBANA6AABaBwBA6wAAaB0AAK0DAGgdAACtAwCgdQAAtA4AgNYBANA6AABaBwDQOgAAWgcAQOsAAGgdAACtAwCgdQAArQMAoHUAALQOAIDWAQDQOgAAWgcAQOsAAFoHAEDrAABoHQAArQMAoHUAALQOAIDWAQC0DgCA1gEA0DoAAFoHAEDrAABoHQAArQMAaB0AAK0DAKB1AAC0DgCA1gEA0DoAAFoHANA6AABaBwBA6wAAaB0AAK0DAKB1AACtAwCgdQAAtA4AgNYBANA6AABaBwDgROZsAk6qKAobAQCtQ856vZ6NAMA0vl13DAsAyJnWAQC0DgCA1gEA0DoAAFoHAEDrAABoHQBA6wAAaB0AAK0DAKB1AAC0DgCA1gEA0DoAgNYBANA6AABaBwBA6wAAaB0AAK0DAKB1AACtAwCgdQAAtA4AgNYBANA6AABaBwBA6wAAWgcAQOsAAGgdAACtAwCgdQAAtA4AoHUAALQOAMA0mrMJAGAjdLvdqqqazWZVVfGWZrPZaDRCCJ1Op/6ZzWYzhJA+bczKsmw2m/E+1O9kNoper+fpyEmeJYXnCczorrrRaHQ6nbS3brfbfTvpzRIb4kT77KqqNqsbMtBsNhcWFnLahdmHoXVGtldI78zSW6J0Y7PZLMsys7dKE7tvrn/Q6XTa7XZ8ez0hd7K+k0 675 LIs08f1YQDyToqqqsqyDMdHdOqjO4Mlt0LkjfDJGX96Tq/5WgetM8qtlF6n0uYqiqL+itZut9f/g+LOO77VbjQaaacejg+Y139Keke+Qfv7+MoYX6zr/+td9azts9OTf+N2wyf60XHkKcVB+nOojz/1/RMnfSkzroPWYZn+KMuy1+ulD+qtE9Vbp9VqSYFNVJZl/WBHfZRlzLvqwXf5K39OPWQH0xZG8oIfjOugdVjh1SEetEqHsUbeOvV9c31AZZLFIaU07cPba5jwVzPjOmgdTriVYnmcaFyn/lYpDv9k9oIC5PTOLadH5JxzGI04+zgcnxnQarXSIZL4CYMDOZt4uARghVezzB6RtQRhNOIITVmW8YP4YpGGbXq9ngM3gNbZFMZ1YGTqo75pao7Df8B0yW/Ou3EdAJgIk7NOY2YbVusAADnTOgAwEayWpHUAALQOAIDWAQC0DgCA1gEA0DoAAFoHAEDrAABoHQAArQMAZM51zplR9WvsVVXVbDabzWaj0bBlALQOTH3llGXZd2O6rm+v17OJAHLiGBZC50cURdHpdLrdrm0FkAfjOsyWGDrxiFX8IB23ike1yrIsy7LZbC4sLNhcwKy9G9Q6kEPrtNvtZf8p3t5utzudTiwhgJnSbrfjmz2tA9P9lzySzwHITzx8n+YvZsN8HWZUq9UqBuQ6fgswjFzPRdU6zKJOp5PfGxcAluUYFrMohU79nKxxrq+jtICJZb4OZPKXHGvD1ByA7N+MOYYF3jYB5EzrMNM2d25yWZZFUVi3EEDrAACskfk6zKKVlxMcp7IsXXAUYEMVrnTIyZ8lhefJiNUvy2XbAhP1gp/Z61JRFI5hMVu63W7f/Jhut9s5brO6x+8FmBBZnjnhGBaz+GeczjkfNJ7DWPVXkxUu0QXA+hnXgU3Qt5ihU7GASXt1yolxHWbLRB2EjiM6ZVlWVWWGMsAGMa4DExE9NgIwOTIbbNY6zJZOp7Py33CcqtxqtbFtkdYAABwHSURBVMYcOmYoA2gdGE1YNJvNuERyPS/i/xZF0Ww2xzzKEicmuxooMDkyO6qudZgtVVXFc6DKsoyXaIji/6YeWlhYGOe9iueFmaEMTAjHsGC636wsLCxUVVWPm1gbcY5wr9cb2xngaSwn5pehHWByXipzejjWw2WIZ4l1k0ctrZucNmx+a5UCU/qCH6ybDIxKfUXB+LEZygAjp3Vg09QPWo15hhCA1gE2gYV2ALQOZB46DmMBaB3Ik7OxALQO5Cye5FlVlaEdAK0D061+BlZdPIxl1g7ACFk3hSGeJdbX2ZitGpZbxCLeHi+BbisBE/LSNNWPyLgObIIV1l9Pl7CwlQBGQuvAJlhh/fUTHd4CQOtADtKhKzOUAbQO5CkewHLyOcBImHPKEM8Sc5NHrdvtxmNVJ9qwLgUKbNYLfjA3GbLU6XTGecxohfk6kTWUAUaWO944MkwU5/c8abVagweJ1nmmd7fbrapq8DvEs 676 +uakb54M7QCb8oIfjOtABjqdzshnw8TDUmVZtlqt+o1FUTSbzWazWb99GPEg1wpnpwMwDK3DTKuqqleznkGdsiybzWZVVfWLPKSiiv9ab6D6x8seq7LQDoDWgfU66byZVWVTs9ns+4apVMqyrI8kpY/jqE9ZloO5E8PL2VgAWgdWLY3fFD9qg+YCl2XZ1zqrYoYyMDZZjiVrHWZLq9WKWTPOV404X6d+e/rflQ+fxTwytAOMTZYvOFoHRpY1ZVnGimq3291ut9VqxaZpHpc+echjZ/HTtA7AejjnnCGeJdYSHE485zzO2qmfZx4PQvWN3Ax5Ymen04nzmhcWFmxhYKPF9TgyO+fcPowZbZ1Op9MXHydaHWeDqmjldZPX8JkAWkfroHX+r3LimeHhR2fhxY/H9kiHX7ArDu2sc51DAK0Ds9I6K09MnsDWCdZQBrTOOl5szU2G/xNXApzY+xacfA6M69UmM1qHmdPr9dKhq/qiyQsLCyNcWnAjXn2WXXIQAK0D/drtduybKbrDfmvA2GT2tkrrwHSIY1EujwVsqHgoP7MjWVqHGX3LUpxYp9OZwKuLp5ceh7GAjTaxB/S1DoxGPMF7Al964r2yjDKw0W+rHMOCqZemv8Rzr3q9Xho1iR9MZk+kK59P4LATgNaBCZLesqRzr9IVGCb8UgxZHkoH0DqwUVqtVrfb7Xa7qX5ardYk3+FGo2GtHQCtAyeRjmHFS3U2m810ltPkz4ZJa+34PQJoHTihwaZpNpupgSa5JNKdNGsHYBhzNgGzqdFoxLUE48GgFBBTscBgedyEzy4CmATGdZh17XZ76lYlbrfb8Qwys3YAtA4sr9vtDq4iOOETk+vSBCNHsgC0DiwTOsuetj1Fy/SlpQVNUgZYmfk6zKLUNH2hMF0Hs9rtdjxxrNvtZragO4DWgXVJgzrTfv3wOEO52WxO0TXbAbQObLg0CtJqteoHs5rN5nQNkLTb7aqqqqoqikLuAOuX5RX3tA6zKJ2+FEOh/k9TVwzxhKz4oKZ9mArQOhvB3GRmUU5NMBXrHwLTIstXEuM6zO57l8G3L1PaQPFKF8HQDjCK1xOtA5loNBqTMDVnJHUSzz9P85SdkwWsWTosnhPHsJhdnU6n1WrFJQTjBc/H+aPjB2VZFkWx/m8YV1IOjmQBDDCuw4xqtVrpvUv8IL6bGc+gSDr5a4RpsrCwUBSF5XYA+hjXYRZ1u92+QdrYHMsuprwRUouM9mpc8UEZ2gHQOsy6FDrpDPM8pvQ2Gg3XBAXQOvD/pSbIJg7M2gHQOrDMmjTZXEczTVI2tAOgdZhpgydVNpvNPI5kLSwsxG4b55llABPLeVjMqEaj0ev16pOUc1qFL64uWJZl7B4ArQOzWzzplKhOp5PNQnz1ScpWUgZmnGNY8H/iosM5PZz4XxN3AK0DZCheOCI4JwvQOjYB5KrdbsfQabVatgagdYA8cydkeuFiAK0Dq5Dx6dkxdAztAFoHZkKn0ymWk9Os5D7pnCzL7QBaB2ZdrsVjkjKgdWBWtNvtXq/X6/WqquoNyHXlvXhOVlVVjmQBWgdmRR5rBq4q8hzJArQOkLN4DCvjmUkAWgdmWqPRcE4WoHWAzHMnWG4H0DpAxgztAFoHyFn9Eui2BrDCmyKtA0yreGq9S6ADJ5LZSQxaB2b3TVtZlk5BB7KndWAWxdUFg1PQgRO/HdI6wHRrt9sxd8xTBvKmdWCmc8diysAg4zrA8rrdbqfTWXbCb6vVmsyJwI5kAYPMTQZO+OpQluWy5zdN7JukNHHHOVmA1oH8redQTmyFXq8XjwrV/2mFCTHd4zbxUbfb7XB8gAcgP1qHGVUURd9IRqvVWudbmfjlfa1TFEX832WHdprHbe4E4XjfiqIwcQfI782P1mGm/5hjYXQ6nVQk6y+GunpOLTsFOB322txXlnRZUKM7QH4vBXN+o8ymOPpSVVVRFCvEymp1Op2qquLLRLfbPelAUVzCeBLEiTtlWcbsi1cJBWa2deLR7TwY12FGLSws1N+4NJvNXq+3nh18PH87fs/4GtFsNhuNRq/Xi5N4yrKc8ICIDyHecwezYMZbJ6eHo3WYLd1utyiKoiharVb9jzkO8Kxz0szCwkJVVWmoptfr1f9pKt4kpQR0MAtmmfV1IIc/4GX/ktf/553BoZ+4nnJVVdZTBrQOkKeUOxbdgRl/W6h1YCr34r1eryzL3gnYRGlDBRdCh1mV2VHswos7J3+WFNk+TzqdTpxBHAcwxjmlJp7/NckbNp1H5rQsmB3pDz+bl/2iKIzrMKNarVZRFPFITXwTk5bbIaovumN0B5heWocZlY5Gp6GLcILl/mY8d2IOOi0LZuq10fWwIB9pzZtGo1GPHpK46I7TsgCtA9P6DiYO5MT1jvN7NzMSCwsLMXdcMAuyl+VroLnJDPEsyXFucqvVWnYIZ2yPdPLnJi+7xZrN5uRc1wIYuU6nE49Zm5sMeb53MStlBTFxLLoDTF/uGNdhmCjO+Jzzev2M88zqqRvXieLojrPQIVdZjuu4zjkzLacL+Y5HWZbNZjNO35E7kKvMZu1oHWb9HUzfjtxI58rildtbrVa8crtYhCxldkaq1mF2K8fsnDVbWFiIF4qvX9cdyIZrRDBzspyvE6fLDHIe1vCcmQX5cY0IyE3cVce/6viB9WOGZ90dyPJVMb8HpXXwV/1/b2XSZSJsltXmTgih2WzKHchAlmsJah1mWrr2p+WS15M78dC+3IGc3gFqHcihcvo+iJxYtAbtdjvljq0BTBpzkxniWZLpWoLxhPN2u93tduMAzzjXjMlgbnIfU5Uhm9f8kNfcZK3D7LZOCKHb7W7Wgnjx1SSzFfnkDmTwJtD1sCCfgCuKYtPXkMhs6eF0Zlar1fIcg2mUzjbI6gXfuA7DZEHG1znfrJGV/I5hJWl9DteRgCl9zQ/GdSAD6VyDZrNZ1DiTaP0ajUaaquyi6MCm0zqwfAOxHu12O27JsizlDrC5HMNiiGdJjsewTrQDHts553GUOI5/5Hqie5rkGC8U6ngWTL4srxGhdZjR1pmErZo+znvzpkfqWQRT9Ddrvg5MvU6nUx/acZxl46RrjZkOBWwKrcPM6Xa7rVarLMt0wnk81LIpp0lXVTULox3160g4HR3QOrCx4gIwy2ZH/bgSoxVnK6fVdwykAVoHNkTaxdYHVNJJQyGEMR9kmanpuo1GIw7wVFUVB9Ic0gK0DmyIwXOCGo1GWv7O9tlQqSzjMI8BHkDrwOgJms3VaDR6vV5agMcAD0yOLP8YtQ6zJQ3e9P09d7tdAbQpxRNn8DSbTbkDE/KHqXUgkz/jvktDpAvdjXlZP0dw6qdo2Rqw6bL8M9Q6zJwVrt 87/ sueZ3Yx4bVpt9txO7igBEzC36PWgam3sLAQD5r0NUdVVeP/I3fZhL5fSlmWRVFYgwcYIWv/M8SzxDUiNmarhhCqqpI7dekSWjYObO6rk2tEAKNhQnSfdrvd6/XM4AFGSOsAk1g8zkgHtA7kwNzkE2k0GumaEvEqWsZ4AK0D5JY7ac5yvKxEURSKB9A6ME3M1xmyeNKE5Vg8NgugdYCs1OcshxBM4gG0DpBn8fRN4lE8gNYBstI3iScWj80CaB2YUM7DGknxxIuambYMaB2YOOYmj6R44jwei/EAWgcmSFx/3bjOSIrHPB5A68DEiQdcjOuMsHgG5/E4qgUE1/5kqGeJa39uzFYNIZRlOf6Lq2ev2+3WB8xcQxTW8Ork2p+QoU6nY5G6PDQajfpiPK4hCjNuziZgNt+yrFA8BlrykH6PZVmWZRmnMBvggRlkXAfGYXBcIY06sKG5Y9oyYB4GQzxL8pqvU8+O0Q7htFqtONe4Pgun0+mkrKlPHDFfZ8y63W4c3QkhNI8zzAPLvuaHvObrhB6cTHzSs7K4E42DB2mLxcppNptxM5ZlWd+qfbcwBmVZ9p3n71cAg6/5Ob3sG9dhFsd1+gZ4qqqqn/i95oGWOH7T6/XiSUBpi8UJQPFfB8d16vwxjnOMJ61AGMVhHmNsEJyHBTmFTpqyOtrv3PcN2+12q9WKP2vZIyZxmMH0nXGKyw/WR3pi+qRrTdTn9JjfA1OfO95KMkwU5/c86RtWiXu79byVicM5MVyqqooDPCllBieIpNgyljAJ4khPfZAvjfQ4NY8ZfM0PeY3raB1munXSdZR6vd764yP1U/wmy57cXt+SRVFoncnv4ODwIlpnyh+O9XWYaWkqcavVGsl3i6MCMV8GD0u5+tVUiGNy9eObsUrDqE/cA8aUO96vMEwU5/c8qZ8KXje2gRbHsKZCX/QE56szG6/5wbgOZCANvcQ9WVp2RXlQFy8pGo6ftVd/tgRX2oJpyR3jOgwTxbPwPOl2u+Pcb1lLcEp1Op3BdQoM85DZa35wzjlMe9PE/3Y6nXh2cVpoZ5xXiPQ2Y0q12+2FhYX6soTxg8GT1YFJyR0vuAwTxTk9T+JblnSSeZ9xDrQ4DyuPdO47WT0YriOLF0njOjD1Rr6EILMpLkuYRnrSKgZpWcJxDhYCy+eOcR2GieL8rv05CW+7jevk/ba4zistU/cENq4DU6zdbssLNlS8Fmx9OaWiKFqtljEepkJ+K4FpHWZUp9OJu5++/B/JooJre+tPTuLJ6jF64oGtvktuObzFxMrvEL9jWAy1V87sGNYKF9o0N5kNMnhx9frb6PhO2pOBCXnND9YShIy5jAMbpNFoxInMMXpC7Soi6TSueE. src=" 374 1FNPtR0AQOvk6fDhwz/7sz9rOwCA1snTAw88sH37dtsBALROnp 577 rnTTz/ddgAArZOno0eP7tixw3YAAK2Tp0ceecRGAIBNZy3BDduyRfHaa6/NzVmZGgA2k3GdDXHkyJEQgtABAK2Tp6WlJYsmA4DWydb//u//mpgMAFonW3ffffdb3/pW2wEAtE62LJoMAFonW9/97nff8Y532A4AoHXy9NRTT51yyim2AwBonTwdPXr0oosush0AQOvkyaLJAKB1Mjc/P28jAIDWydDS0lIIYcuWLTYFAGidDMULRAAAWidPP/jBD0xMBgCtk619+/ZZNBkAtE7OzjrrLBsBALROnhYXF88++2zbAQC0Tp6effbZN73pTbYDAGidPB0+fNjcZADQOtnav3//mr92cXGxWJMbbrjBlgeAQUWv17MVRrxNi+KVV16xliAATALjOiNm0WQA0Do5s2gyAGidnFk0GQC0TiaWlpaOHTvWd+Pi4uKpp55q4wCA1plur 776 6q/8yq88/PDDfbcfPXr0nHPOsX0AQOtMt09+8pOLi4v33Xdf3+ 179 uyxaDIAaJ3pdv/993/rW98KIdx+++19//T 973 /foskAoHWm22WXXfbd7343hPDYY4/1nXh16NCh8847zyYCAK0zxQ4dOnTWWWe1Wq0Qwj//8z/X/+mZZ5554xvfaBMBgNaZYvFMqyuvvDKEMDhlx0KCAKB1ctBoNMKPTtk5ePBgCGF+ft7GAYAJ4XpY69t8RRFCSFe/Onjw4Pbt221SAJgcxnXW5Zprrgm1KTvPPvvsueeea7MAgNbJxBVXXBFqU3Yef/zxM88802YBAK2TiXjpq6997Wvxf48ePbp161abBQC0Tia2bdsWQnj++eeXlpZCCPv27du5c6fNAgBaJx/XX399COEf//EfQwgvvfSSk7AAQOtkJU7Z2bNnT7BoMgBMHuecr9fS0tIZZ5xx5plnPvfcc0VRHDhwIB7YAgAmgXGd9Zqfnz/ttNOef /75 uJCgRZMBQOvk5uqrrw4h/Nmf/VmwaDIAaJ38xCk7t912m00BAJPGfJ0ROHLkyI//+I+HEM4999zHH3/cBgGAyWFcZwS2bNmyffv2EMLpp59uawCA1slQPIwViwcA0Dq5ueqqq0IIFk0GAK2Tp1g5b3nLW2wKANA6GdqyZctf/dVffeADH7ApAGCiOA8LAMiZcR0AQOsAAGgdAACtAwCgdQAAtA4AgNYBALQOAIDWAQDQOgAAWgcAQOsAAGgdAACtAwBoHQAArQMAoHUAALQOAIDWAQDQOgAAWgcA0DoAAFoHAEDrAABoHQAArQMAoHUAALQOAKB1AAC0DgCA1gEA0DoAAFoHAEDrAABaBwBA6wAAaB0AAK0DAKB1AAC0DgCA1gEAtA4AgNYBANA6AABaBwBA6wAAaB0AAK0DAGgdAACtAwCgdQAAtA4AgNYBANA6AABaBwCYmdZZXFwsRuqGG25Y 872 54IILio137Ngxv3gAmBFFr9ezFQCAXDmGBQBoHQAArQMAoHUAALQOAIDWAQDQOgCA1gEA0DoAAFoHAEDrAABoHQAArQMAoHUAAK0DAKB1AAC0DgCA1gEA0DoAAFoHAEDrAABaBwBA6wAAaB0AAK0DAKB1AAC0DgCA1gEAtA4AgNYBANA6AABaBwBA6wAAaB0AQOsAAGgdAACtAwCgdQAAtA4AgNYBANA6AIDWAQDQOgAAWgcAQOsAAGgdAACtAwCgdQAArQMAoHUAALQOAIDWAQDQOgAAWgcAQOsAAFoHAEDrAABoHQAArQMAoHUAALQOAIDWAQC0DgCA1gEA0DoAAFoHAEDrAABoHQBA6wAAaB0AAK0DAKB1AAC0DgCA1gEA0DoAgNYBANA6AABaBwBA6wAAaB0AAK0DAKB1AACtAwCgdQAAtA4AgNYBANA6AABaBwBA6wAAWgcAQOsAAGgdAACtAwCgdQAAtA4AgNYBALQOAIDWAQDQOgAAWgcAQOsAAGgdAEDrAABoHQAArQMAoHUAALQOAIDWAQDQOgCA1gEA0DoAAFoHAEDrAABoHQAArQMAoHUAAK0DAKB1AAC0DgCA1gEA0DoAAFoHAEDrAABaBwBA6wAAaB0AAK0DAKB1AAC0DgCA1gEAtA4AgNYBANA6AABaBwBA6wAAaB0AQOsAAGgdAACtAwCgdQAAtA4AgNYBANA6AIDWAQDQOgAAWgcAQOsAAGgdAACtAwCgdQAArQMAoHUAALQOAIDWAQDQOgAAWgcAQOsAAFoHAEDrAABoHQAArQMAoHUAALQOAKB1AAC0DgCA1gEA0DoAAFoHAEDrAABoHQBA6wAAaB0AAK0DAKB1AAC0DgCA1gEA0DoAgNYBANA6AABaBwBA6wAAaB0AAK0DAKB1AACtAwCgdQAAtA4AgNYBANA6AABaBwBg81qnmBhHjhxZw/1fXFwsJt7i4qLnNwAUvV7PVgAAcuUYFgCgdQAAtA4AgNYBANA6AABaBwBA6wAAWgcAQOsAAGgdAACtAwCgdQAAtA4AgNYBALQOAIDWAQDQOgAAWgcAQOsAAGgdAACtAwBoHQAArQMAoHUAALQOAIDWAQDQOgAAWgcA0DoAAFoHAEDrAABoHQAArQMAoHUAAK0DAKB1AAC0DgCA1gEA0DoAAFoHAEDrAABaBwBA6wAAaB0AAK0DAKB1AAC0DgCA1gEAtA4AgNYBANA6AABaBwBA6wAAaB0AAK0DAGgdAACtAwCgdQAAtA4AgNYBANA6AABaBwDQOgAAWgcAQOsAAGgdAACtAwCgdQAArQMAoHUAALQOAIDWAQDQOgAAWgcAQOsAAFoHAEDrAABoHQAArQMAoHUAALQOAIDWAQC0DgCA1gEA0DoAAFoHAEDrAABoHQAArQMAaB0AAK0DAKB1AAC0DgCA1gEA0DoAAFoHANA6AABaBwBA6wAAaB0AAK0DAKB1AACtAwCgdQAAtA4AgNYBANA6AABaBwBA6wAAWgcAQOsAAGgdAACtAwCgdQAAtA4AgNYBALQOAIDWAQDQOgAAWgcAQOsAAGgdAACtAwBoHQAArQMAoHUAALQOAIDWAQDQOgAAWgcA0DoAAFoHAEDrAABoHQAArQMAoHUAgNk1ZxNkoyiKMf/EV155ZcuWLbY8AFqHMdm9e/eOHTvG9uOEDgBahzE5cuRICGHHjh3btm2zNQAgMV8nE0tLSyGErVu32hQAoHWyNTdnoA4AtE6OHnroIRsBALROto4ePdpoNGwHANA6eXr88cdPPfVU2wEAtE6ennzyybPOOst2AACtk6ennnrqwgsvtB0AQOvkaf/+/TYCAGidnF100UU2AgBonQzFhQQBAK2Tp3iBiPn5eZsCALROhn7wgx8EV+Icr3e9613FcJ544onst8bnPve5Yq2+/OUvezrFdyzDb7Spe3Qf//jHi3X74Ac/6HnC2rikQA4ef/xxG2HMu6Unn3zywQcffPvb337ST56Fi5TddtttX/nKVz70oQ+t4WuNR0bf+c53tm/fvm/fviwf3R133LF79+4dO3as55t4O4fWmWmHDx++5JJLbIdx7pZOO+20Xbt22RSx/J599tlrr71WtazHLbfccs0112zbti2/h7a0tHT48OFLL73UBfvYLI5h5eDhhx9+wxveYDuMc7d09dVX2w718hM663Tvvff+8i//cpYPbe/evRdeeKHQQeuwLi+88IJFk8e8W7riiitsB+U3KnFsbOfOnVk+ultvvfUjH/mI3zJah3X 57/ /+b4smj3m39J73vMemiL75zW8qv3WKk3VynY9SVZVpxWgd1suiyePfLTlkE8WpGMpvnf7iL/7immuuyfgZ8u53v9tvmU3kAGomLJo8NnEOqe0QPfDAAybrrN+ePXv+7u/+LsuHdvvtt5usw6YzrpPD2yYbYZwynkO6BrfeeqvJOuv/Ez58+LDJOqB1OCGLJo95a2c8h3QN9uzZY7LOOj3wwAMZT9bpdrsm66B1WK9nn302WGVrXPKeQ7paJuuMxK233prrUdGDBw+GEEzWYdM5hjr1nn76aRthbEzWqbv77rtN1lm/jCfr3HvvvSbroHUYzXvr 973 vfbbDeHzzm9/Mdbe0Bt/4xjdM1ln/3+/hw4d/7ud+LstHZ7IOE8IxrKm3b9++M844w3YY227JZJ1k7969Juus0wMPPLBz585cRz663e6VV17pt4zWYb1++MMfvu1tb7MdRujVV1/94he/uLi4OLhbmsHJOkeOHPmN3/iNwQuuxakYJusM6emnn/7EJz4RzySou/XWW6+99tppf3R/8id/8vWvf33ZZ0iWV/hC6zBu//mf/9lsNm2HUbnpppve8Y53/MEf/MFVV13Vt2fKeA7piXz1q189//zzq6q 677 77vvGNb9T/aWFh4S1veYvJOid17NixT3/60zt37vzLv/zL66+/vu9f9+zZc9lll03vo/unf/qns8466/d///c/9rGPxbhJ7r33XtckRuswGs8888yav3ZpaalYk8Exj2y8+OKLzz333Kc//ekXXnjh85//fN9uadZW1rn66qv/4z/+Y+/evSGEj 370 o/XFnG688cYMBiTG4MiRI7t27VpaWjrnnHNuueWW+nyvDNYU3r9//2OPPXbzzTeHEH7913+ 977 3Bdddd5wnAROgx5UIIjz32mO0wWq+99tpb3/rW+rZ98cUXQwivvPLKbG6Qr3zlKyGESy65JG2fEMLu3bs9VYZ34MCBEMLb3va29Cy6/fbbd+7cmceju/jii0MIN998c/2l6cCBA37vTALjOtMtDhq/8Y1vtClGa25ubt++fSGESy+99NixY+H4HNKZXVnnk5/85DnnnLN 379 54JOvf/u3fgsk6q7Rt27Yvf/nL9fHCr33ta9mMjd1yyy31wb/HH388mKzDxNA6ObC03UY 477 zzfuu3fuv555//oz/6o5DLHNL1xN8999yTdma7d+8OVutevd/+7d8+++yzb7zxxpgCe/funerJOnXz8/PxSNZnP/vZOOZnsg6To4gjjUypxcXF 97/ //X6JG+TYsWNnnHHG 977 3vQMHDlxwwQUPPvjgeeedN8sb5MYbb/zsZz97ySWXvPTSSz/90z992223eZKs1sGDB7dv337mmWf+/d///fnnn//aa6/ldMJ5o9G4/ /77 d+/e/Yd/+Ief+cxnPv7xj/uNo3VY3X538DXx61//+sc+9jG/xDHsmZ5//vnMdktrexKeffbZcd7JzTffbObp2nzpS1/63d/93RDCzp07H3300Zwe2tLS0tlnn33KKae88MILBw4ccAyLCeEY1tS49NJL+07pDCEcOHBg165dNs7G2bZt2x//8R8///zzGS/4Nry5ubmHH344fnzRRRd5eqzNZz7zmXe+850hhPyOis7Pz990000vvPBCMFmHiXrtsgmmwhe/+MWFhYWHHnqo7+XjkUceOf30022fDfV7v/d799 577 2/+5m/aFHFn1u12v/3tb9uTrScZu91us9n81V/91fwe3Yc//OFf+7VfM5eLieIY1hR48skn3/Wud4UQLr744rjSSdJsNnfs2PHVr37VVgKAZTmGNQV27doVE+e+++6L5z8n//Iv//L+ 97/ fJgIArTPF7rrrrosvvvj8888Px9c1SV5++WXbBwC0znR 773 vfG0K46qqrQgjdbjfdHsd4ZvwsaADQOpmIS7B/61vfSrccOnQoWDQZALROHnbu3BlC2Lt3b9+UHYsmA4DWycGWLVvi4ao0ZeeJJ54I1ukHAK2TjU984hOhNmXnf/7nf2wTANA6+Wg0GqE2ZefAgQPnnHOOzQIAK7CW4DQ5duzY6 173 uhBCvDDT5ZdfHn50tjIA0Me4zjSZm5trtVohhHhNopdeeukNb3iDzQIAWicfV155ZQjhvvvuCyE88cQTH/7wh20TANA6+fjQhz4UQrj99tuDRZMBQOvkJ15c+rHHHjt48GAI4Sd/8idtEwDQOlmJh7FuuummEMLb3/52GwQAtE5W4oWx4mEsAGBlzjmfPgcPHty+fXv82K8PALROhk 477 bQ4MdmvDwBW5hjWVLriiitCCBZNBgCtk6drrrkmhHD22WfbFACgdTL0nve8J4SwZcsWmwIAtE6G5ufnG43Gpz71KZsCAFZmbjIAkDPjOgCA1gEA0DoAAFoHAEDrAABoHQAArQMAaB0AAK0DAKB1AAC0DgCA1gEA0DoAAFoHANA6AABaBwBA6wAAaB0AAK0DAKB1AAC0DgCgdQAAtA4AgNYBANA6AABaBwBA6wAAaB0AQOsAAGgdAACtAwCgdQAAtA4AgNYBALQOAIDWAQDQOgAAWgcAQOsAAGgdAACtAwBoHQAArQMAoHUAALQOAIDWAQDQOgAAWgcA0DoAAFoHAEDrAABoHQAArQMAoHUAALQOAKB1AAC0DgCA1gEA0DoAAFoHAEDrAABoHQBA6wAAaB0AAK0DAKB1AAC0DgCA1gEAtA4AgNYBANA6AABaBwBA6wAAaB0AAK0DAGgdAACtAwCgdQAAtA4AgNYBANA6AABaBwDQOgAAWgcAQOsAAGgdAACtAwCgdQAAtA4AoHUAALQOAIDWAQDQOgAAWgcAQOsAAGgdAEDrAABoHQAArQMAoHUAALQOAIDWAQC0DgCA1gEA0DoAAFoHAEDrAACsz1w2j+SGG25ot9t+o9Putddem5ubsx0AGJWi1+vZCgBArhzDAgC0DgCA1gEA0DoAAFoHAEDrAABoHQBA6wAAaB0AAK0DAKB1AAC0DgCA1gEA0DoAgNYBANA6AABaBwBA6wAAaB0AAK0DAKB1AACtAwCgdQAAtA4AgNYBANA6AABaBwBA6wAAWgcAQOsAAGgdAACtAwCgdQAAtA4AoHUAALQOAIDWAQDQOgAAWgcAQOsAAGgdAEDrAABoHQAArQMAoHUAALQOAIDWAQDQOgCA1gEA0DoAAFoHAEDrAABoHQAArQMAoHUAAK0DAKB1AAAm2dw4f9gFF1zw2GOP2egz7sEHH9y1a5ftAMB4FL1ez1YAAHLlGBYAoHUAALQOAIDWAQDQOgAAWgcAQOsAAFoHAEDrAABoHQAArQMAoHUAALQOAIDWAQC0DgCA1gEA0DoAAFoHAEDrAABoHQAArQMAaB0AAK0DAKB1AAC0DgCA1gEA0DoAAFoHANA6AABaBwBA6wAAaB0AAK0DAKB1AACtAwCgdQAAtA4AgNYBANA6AABaBwBA6wAAWgcAQOsAAGgdAACtAwCgdQAAtA4AgNYBALQOAIDWAQDQOgAAWgcAQOsAAGgdAACtAwBoHQAArQMAoHUAALQOAIDWAQDQOgAAWgcA0DoAAFoHAEDrTLnFxcVi4y0uLg55f2644YZiM1xwwQWeDABMi6LX69kKAECujOsAADmbswk2wrFjxw4dOrTar9q6devc3Ib8Ro4cObK0tLT +77 Nly5b5+Xm/XwCmiGNYG+KWW2657rrrVvtV//qv/7pjx46NuD+XX 375 XXfdtf7vc8kll/zDP/yD3y8AWmfWXX755Y1G4 3Of+ 9yE3J9TTz31wQcfPO+88/xqAJg15utsiEceeeSDH/zghNyZI0eOHD58+Kd+6qf8XgDQOoymLZ599tnJaYvvfOc727dv37Jli18NAFqHEfiv//qvN7/5zZPTFvfdd1+j0fB7AUDrMBq33XbbFVdcMTn352//9m+vueYavxcAtA6j0e12J2eyTghh/ /79 G3R6FwBMPudhbcA2LYoDBw5s27ZtEu7MwYMHt2/f7rcMwMwyrjP6tgghTEjohBDuvffeSy65xO8FAK3DaHz729++8MILJ+f+3HPPPb/0S7/k9wKA1mE07rzzzquuumpy7s9ErfQDAFpn6j388MMf+MAHJuTOTNpKPwCgdabbkSNHnnnmmZ07d07I/Zm0lX4AQOtMt6eeemqi2uKuu+6aqJV+AEDrTJOlpaW+W+68887LLrtsU+7MsWPHjhw50nfjnj17fuEXfsFvCgCtw6rDYteuXTt27OjLiz 179 vziL/7i+O/Pc889t3Xr1ve 973 19tz/00EOTM3kIALTOdHj66ae3bt165plnvvTSS3/6p3+66W2xZ8+en/mZn9mxY8f+/fsXFxfT7ZO20g8AbArrJq/asWPHjh49esopp/zET/zE0tLSK6+8EifoLC0tnXHGGa+99trc3Nw 478 +rr746Nzf3ve9 974 wzzjj33HMfffTReAfuuOOOL3zhC48++qhfGQCzzLjOqs3NzW3ZsmVubu7OO+8MIVx//fXx9gceeGDnzp1jDp0Qwutf//q5ubn5+fl2u71///7bbrst3n7HHXdce+21fl8AzDjjOuvy7ne/+9///d/j1a8+9alPnXLKKV/60pc2684cOXJk69atp5xyyqFDh+bm5rZu3fo3f/M3u3bt8msCYJYZ11mXe+65J4Tw+c9/PoRw9913b+6KyVu2bLnxxhtfeOGFP//zP4+rCE7OSj8AsFmM66zX5Zdfftddd+3evfuyyy 578 cUX5+fnN/HOHDt2bH5+/uWXX969e/dHPvKR73//+35BAGgdrbMucUpyCOFNb3rTJLTF/fff32g0Qggf/ehH//qv/9ovCIAZ5xjWes3Pz//O7/xOCOG 973 3vJNyfn//5n3/nO98ZQrj44ov9dgBA64zAF77whde//vXXXXfdhNyfffv2hRBarZZfDQA4hgUA5My4DgCgdQAAtA4AgNYBANA6AABaBwBA6wAAWgcAQOsAAGgdAACtAwCgdQAAtA4AgNYBALQOAIDWAQDQOgAAWgcAQOsAAGgdAACtAwBoHQAArQMAoHUAALQOAIDWAQDQOgAAWgcA0DoAAFoHAEDrAABoHQAArQMAoHUAAK0DAKB1AAC0DgCA1gEA0DoAAFoHAEDrAABaBwBA6wAAaB0AAK0DAKB1AAC0DgCA1gEAtA4AgNYBANA6AABaBwBA6wAAaB0AAK0DAGgdAACtAwCgdQAAtA4AgNYBANA6AABaBwDQOgAAWgcAQOsAAGgdAACtAwCgdQAArQMAoHUAALQOAIDWAQDQOgAAWgcAQOsAAFoHAEDrAABoHQAArQMAoHUAALQOAIDWAQC0DgCA1gEA0DoAAFoHAEDrAABoHQAArQMAaB0AAK0DAKB1AAC0DgCA1gEA0DoAAFoHANA6AABaBwBA6wAAaB0AAK0DAKB1AACtAwCgdQAAtA4AgNYBANA6AABaBwDgROZsAk6qKAobAQCtQ856vZ6NAMA0vl13DAsAyJnWAQC0DgCA1gEA0DoAAFoHAEDrAABoHQBA6wAAaB0AAK0DAKB1AAC0DgCA1gEA0DoAgNYBANA6AABaBwBA6wAAaB0AAK0DAKB1AACtAwCgdQAAtA4AgNYBANA6AABaBwBA6wAAWgcAQOsAAGgdAACtAwCgdQAAtA4AoHUAALQOAMA0mrMJAGAjdLvdqqqazWZVVfGWZrPZaDRCCJ1Op/6ZzWYzhJA+bczKsmw2m/E+1O9kNoper+fpyEmeJYXnCczorrrRaHQ6nbS3brfbfTvpzRIb4kT77KqqNqsbMtBsNhcWFnLahdmHoXVGtldI78zSW6J0Y7PZLMsys7dKE7tvrn/Q6XTa7XZ8ez0hd7K+k0 675 LIs08f1YQDyToqqqsqyDMdHdOqjO4Mlt0LkjfDJGX96Tq/5WgetM8qtlF6n0uYqiqL+itZut9f/g+LOO77VbjQaaacejg+Y139Keke+Qfv7+MoYX6zr/+td9azts9OTf+N2wyf60XHkKcVB+nOojz/1/RMnfSkzroPWYZn+KMuy1+ulD+qtE9Vbp9VqSYFNVJZl/WBHfZRlzLvqwXf5K39OPWQH0xZG8oIfjOugdVjh1SEetEqHsUbeOvV9c31AZZLFIaU07cPba5jwVzPjOmgdTriVYnmcaFyn/lYpDv9k9oIC5PTOLadH5JxzGI04+zgcnxnQarXSIZL4CYMDOZt4uARghVezzB6RtQRhNOIITVmW8YP4YpGGbXq9ngM3gNbZFMZ1YGTqo75pao7Df8B0yW/Ou3EdAJgIk7NOY2YbVusAADnTOgAwEayWpHUAALQOAIDWAQC0DgCA1gEA0DoAAFoHAEDrAABoHQAArQMAZM51zplR9WvsVVXVbDabzWaj0bBlALQOTH3llGXZd2O6rm+v17OJAHLiGBZC50cURdHpdLrdrm0FkAfjOsyWGDrxiFX8IB23ike1yrIsy7LZbC4sLNhcwKy9G9Q6kEPrtNvtZf8p3t5utzudTiwhgJnSbrfjmz2tA9P9lzySzwHITzx8n+YvZsN8HWZUq9UqBuQ6fgswjFzPRdU6zKJOp5PfGxcAluUYFrMohU79nKxxrq+jtICJZb4OZPKXHGvD1ByA7N+MOYYF3jYB5EzrMNM2d25yWZZFUVi3EEDrAACskfk6zKKVlxMcp7IsXXAUYEMVrnTIyZ8lhefJiNUvy2XbAhP1gp/Z61JRFI5hMVu63W7f/Jhut9s5brO6x+8FmBBZnjnhGBaz+GeczjkfNJ7DWPVXkxUu0QXA+hnXgU3Qt5ihU7GASXt1yolxHWbLRB2EjiM6ZVlWVWWGMsAGMa4DExE9NgIwOTIbbNY6zJZOp7Py33CcqtxqtbFtkdYAABwHSURBVMYcOmYoA2gdGE1YNJvNuERyPS/i/xZF0Ww2xzzKEicmuxooMDkyO6qudZgtVVXFc6DKsoyXaIji/6YeWlhYGOe9iueFmaEMTAjHsGC636wsLCxUVVWPm1gbcY5wr9cb2xngaSwn5pehHWByXipzejjWw2WIZ4l1k0ctrZucNmx+a5UCU/qCH6ybDIxKfUXB+LEZygAjp3Vg09QPWo15hhCA1gE2gYV2ALQOZB46DmMBaB3Ik7OxALQO5Cye5FlVlaEdAK0D061+BlZdPIxl1g7ACFk3hSGeJdbX2ZitGpZbxCLeHi+BbisBE/LSNNWPyLgObIIV1l9Pl7CwlQBGQuvAJlhh/fUTHd4CQOtADtKhKzOUAbQO5CkewHLyOcBImHPKEM8Sc5NHrdvtxmNVJ9qwLgUKbNYLfjA3GbLU6XTGecxohfk6kTWUAUaWO944MkwU5/c8abVagweJ1nmmd7fbrapq8DvEs 676 +uakb54M7QCb8oIfjOtABjqdzshnw8TDUmVZtlqt+o1FUTSbzWazWb99GPEg1wpnpwMwDK3DTKuqqleznkGdsiybzWZVVfWLPKSiiv9ab6D6x8seq7LQDoDWgfU66byZVWVTs9ns+4apVMqyrI8kpY/jqE9ZloO5E8PL2VgAWgdWLY3fFD9qg+YCl2XZ1zqrYoYyMDZZjiVrHWZLq9WKWTPOV404X6d+e/rflQ+fxTwytAOMTZYvOFoHRpY1ZVnGimq3291ut9VqxaZpHpc+echjZ/HTtA7AejjnnCGeJdYSHE485zzO2qmfZx4PQvWN3Ax5Ymen04nzmhcWFmxhYKPF9TgyO+fcPowZbZ1Op9MXHydaHWeDqmjldZPX8JkAWkfroHX+r3LimeHhR2fhxY/H9kiHX7ArDu2sc51DAK0Ds9I6K09MnsDWCdZQBrTOOl5szU2G/xNXApzY+xacfA6M69UmM1qHmdPr9dKhq/qiyQsLCyNcWnAjXn2WXXIQAK0D/drtduybKbrDfmvA2GT2tkrrwHSIY1EujwVsqHgoP7MjWVqHGX3LUpxYp9OZwKuLp5ceh7GAjTaxB/S1DoxGPMF7Al964r2yjDKw0W+rHMOCqZemv8Rzr3q9Xho1iR9MZk+kK59P4LATgNaBCZLesqRzr9IVGCb8UgxZHkoH0DqwUVqtVrfb7Xa7qX5ardYk3+FGo2GtHQCtAyeRjmHFS3U2m810ltPkz4ZJa+34PQJoHTihwaZpNpupgSa5JNKdNGsHYBhzNgGzqdFoxLUE48GgFBBTscBgedyEzy4CmATGdZh17XZ76lYlbrfb8Qwys3YAtA4sr9vtDq4iOOETk+vSBCNHsgC0DiwTOsuetj1Fy/SlpQVNUgZYmfk6zKLUNH2hMF0Hs9rtdjxxrNvtZragO4DWgXVJgzrTfv3wOEO52WxO0TXbAbQObLg0CtJqteoHs5rN5nQNkLTb7aqqqqoqikLuAOuX5RX3tA6zKJ2+FEOh/k9TVwzxhKz4oKZ9mArQOhvB3GRmUU5NMBXrHwLTIstXEuM6zO57l8G3L1PaQPFKF8HQDjCK1xOtA5loNBqTMDVnJHUSzz9P85SdkwWsWTosnhPHsJhdnU6n1WrFJQTjBc/H+aPjB2VZFkWx/m8YV1IOjmQBDDCuw4xqtVrpvUv8IL6bGc+gSDr5a4RpsrCwUBSF5XYA+hjXYRZ1u92+QdrYHMsuprwRUouM9mpc8UEZ2gHQOsy6FDrpDPM8pvQ2Gg3XBAXQOvD/pSbIJg7M2gHQOrDMmjTZXEczTVI2tAOgdZhpgydVNpvNPI5kLSwsxG4b55llABPLeVjMqEaj0ev16pOUc1qFL64uWJZl7B4ArQOzWzzplKhOp5PNQnz1ScpWUgZmnGNY8H/iosM5PZz4XxN3AK0DZCheOCI4JwvQOjYB5KrdbsfQabVatgagdYA8cydkeuFiAK0Dq5Dx6dkxdAztAFoHZkKn0ymWk9Os5D7pnCzL7QBaB2ZdrsVjkjKgdWBWtNvtXq/X6/WqquoNyHXlvXhOVlVVjmQBWgdmRR5rBq4q8hzJArQOkLN4DCvjmUkAWgdmWqPRcE4WoHWAzHMnWG4H0DpAxgztAFoHyFn9Eui2BrDCmyKtA0yreGq9S6ADJ5LZSQxaB2b3TVtZlk5BB7KndWAWxdUFg1PQgRO/HdI6wHRrt9sxd8xTBvKmdWCmc8diysAg4zrA8rrdbqfTWXbCb6vVmsyJwI5kAYPMTQZO+OpQluWy5zdN7JukNHHHOVmA1oH8redQTmyFXq8XjwrV/2mFCTHd4zbxUbfb7XB8gAcgP1qHGVUURd9IRqvVWudbmfjlfa1TFEX832WHdprHbe4E4XjfiqIwcQfI782P1mGm/5hjYXQ6nVQk6y+GunpOLTsFOB322txXlnRZUKM7QH4vBXN+o8ymOPpSVVVRFCvEymp1Op2qquLLRLfbPelAUVzCeBLEiTtlWcbsi1cJBWa2deLR7TwY12FGLSws1N+4NJvNXq+3nh18PH87fs/4GtFsNhuNRq/Xi5N4yrKc8ICIDyHecwezYMZbJ6eHo3WYLd1utyiKoiharVb9jzkO8Kxz0szCwkJVVWmoptfr1f9pKt4kpQR0MAtmmfV1IIc/4GX/ktf/553BoZ+4nnJVVdZTBrQOkKeUOxbdgRl/W6h1YCr34r1eryzL3gnYRGlDBRdCh1mV2VHswos7J3+WFNk+TzqdTpxBHAcwxjmlJp7/NckbNp1H5rQsmB3pDz+bl/2iKIzrMKNarVZRFPFITXwTk5bbIaovumN0B5heWocZlY5Gp6GLcILl/mY8d2IOOi0LZuq10fWwIB9pzZtGo1GPHpK46I7TsgCtA9P6DiYO5MT1jvN7NzMSCwsLMXdcMAuyl+VroLnJDPEsyXFucqvVWnYIZ2yPdPLnJi+7xZrN5uRc1wIYuU6nE49Zm5sMeb53MStlBTFxLLoDTF/uGNdhmCjO+Jzzev2M88zqqRvXieLojrPQIVdZjuu4zjkzLacL+Y5HWZbNZjNO35E7kKvMZu1oHWb9HUzfjtxI58rildtbrVa8crtYhCxldkaq1mF2K8fsnDVbWFiIF4qvX9cdyIZrRDBzspyvE6fLDHIe1vCcmQX5cY0IyE3cVce/6viB9WOGZ90dyPJVMb8HpXXwV/1/b2XSZSJsltXmTgih2WzKHchAlmsJah1mWrr2p+WS15M78dC+3IGc3gFqHcihcvo+iJxYtAbtdjvljq0BTBpzkxniWZLpWoLxhPN2u93tduMAzzjXjMlgbnIfU5Uhm9f8kNfcZK3D7LZOCKHb7W7Wgnjx1SSzFfnkDmTwJtD1sCCfgCuKYtPXkMhs6eF0Zlar1fIcg2mUzjbI6gXfuA7DZEHG1znfrJGV/I5hJWl9DteRgCl9zQ/GdSAD6VyDZrNZ1DiTaP0ajUaaquyi6MCm0zqwfAOxHu12O27JsizlDrC5HMNiiGdJjsewTrQDHts553GUOI5/5Hqie5rkGC8U6ngWTL4srxGhdZjR1pmErZo+znvzpkfqWQRT9Ddrvg5MvU6nUx/acZxl46RrjZkOBWwKrcPM6Xa7rVarLMt0wnk81LIpp0lXVTULox3160g4HR3QOrCx4gIwy2ZH/bgSoxVnK6fVdwykAVoHNkTaxdYHVNJJQyGEMR9kmanpuo1GIw7wVFUVB9Ic0gK0DmyIwXOCGo1GWv7O9tlQqSzjMI8BHkDrwOgJms3VaDR6vV5agMcAD0yOLP8YtQ6zJQ3e9P09d7tdAbQpxRNn8DSbTbkDE/KHqXUgkz/jvktDpAvdjXlZP0dw6qdo2Rqw6bL8M9Q6zJwVrt 87/ sueZ3Yx4bVpt9txO7igBEzC36PWgam3sLAQD5r0NUdVVeP/I3fZhL5fSlmWRVFYgwcYIWv/M8SzxDUiNmarhhCqqpI7dekSWjYObO6rk2tEAKNhQnSfdrvd6/XM4AFGSOsAk1g8zkgHtA7kwNzkE2k0GumaEvEqWsZ4AK0D5JY7ac5yvKxEURSKB9A6ME3M1xmyeNKE5Vg8NgugdYCs1OcshxBM4gG0DpBn8fRN4lE8gNYBstI3iScWj80CaB2YUM7DGknxxIuambYMaB2YOOYmj6R44jwei/EAWgcmSFx/3bjOSIrHPB5A68DEiQdcjOuMsHgG5/E4qgUE1/5kqGeJa39uzFYNIZRlOf6Lq2ev2+3WB8xcQxTW8Ork2p+QoU6nY5G6PDQajfpiPK4hCjNuziZgNt+yrFA8BlrykH6PZVmWZRmnMBvggRlkXAfGYXBcIY06sKG5Y9oyYB4GQzxL8pqvU8+O0Q7htFqtONe4Pgun0+mkrKlPHDFfZ8y63W4c3QkhNI8zzAPLvuaHvObrhB6cTHzSs7K4E42DB2mLxcppNptxM5ZlWd+qfbcwBmVZ9p3n71cAg6/5Ob3sG9dhFsd1+gZ4qqqqn/i95oGWOH7T6/XiSUBpi8UJQPFfB8d16vwxjnOMJ61AGMVhHmNsEJyHBTmFTpqyOtrv3PcN2+12q9WKP2vZIyZxmMH0nXGKyw/WR3pi+qRrTdTn9JjfA1OfO95KMkwU5/c86RtWiXu79byVicM5MVyqqooDPCllBieIpNgyljAJ4khPfZAvjfQ4NY8ZfM0PeY3raB1munXSdZR6vd764yP1U/wmy57cXt+SRVFoncnv4ODwIlpnyh+O9XWYaWkqcavVGsl3i6MCMV8GD0u5+tVUiGNy9eObsUrDqE/cA8aUO96vMEwU5/c8qZ8KXje2gRbHsKZCX/QE56szG6/5wbgOZCANvcQ9WVp2RXlQFy8pGo6ftVd/tgRX2oJpyR3jOgwTxbPwPOl2u+Pcb1lLcEp1Op3BdQoM85DZa35wzjlMe9PE/3Y6nXh2cVpoZ5xXiPQ2Y0q12+2FhYX6soTxg8GT1YFJyR0vuAwTxTk9T+JblnSSeZ9xDrQ4DyuPdO47WT0YriOLF0njOjD1Rr6EILMpLkuYRnrSKgZpWcJxDhYCy+eOcR2GieL8rv05CW+7jevk/ba4zistU/cENq4DU6zdbssLNlS8Fmx9OaWiKFqtljEepkJ+K4FpHWZUp9OJu5++/B/JooJre+tPTuLJ6jF64oGtvktuObzFxMrvEL9jWAy1V87sGNYKF9o0N5kNMnhx9frb6PhO2pOBCXnND9YShIy5jAMbpNFoxInMMXpC7Soi6TSueE. src=" 374 1FNPtR0AQOvk6fDhwz/7sz9rOwCA1snTAw88sH37dtsBALROnp 577 rnTTz/ddgAArZOno0eP7tixw3YAAK2Tp0ceecRGAIBNZy3BDduyRfHaa6/NzVmZGgA2k3GdDXHkyJEQgtABAK2Tp6WlJYsmA4DWydb//u//mpgMAFonW3ffffdb3/pW2wEAtE62LJoMAFonW9/97nff8Y532A4AoHXy9NRTT51yyim2AwBonTwdPXr0oosush0AQOvkyaLJAKB1Mjc/P28jAIDWydDS0lIIYcuWLTYFAGidDMULRAAAWidPP/jBD0xMBgCtk619+/ZZNBkAtE7OzjrrLBsBALROnhYXF88++2zbAQC0Tp6effbZN73pTbYDAGidPB0+fNjcZADQOtnav3//mr92cXGxWJMbbrjBlgeAQUWv17MVRrxNi+KVV16xliAATALjOiNm0WQA0Do5s2gyAGidnFk0GQC0TiaWlpaOHTvWd+Pi4uKpp55q4wCA1plur 776 6q/8yq88/PDDfbcfPXr0nHPOsX0AQOtMt09+8pOLi4v33Xdf3+ 179 uyxaDIAaJ3pdv/993/rW98KIdx+++19//T 973 /foskAoHWm22WXXfbd7343hPDYY4/1nXh16NCh8847zyYCAK0zxQ4dOnTWWWe1Wq0Qwj//8z/X/+mZZ5554xvfaBMBgNaZYvFMqyuvvDKEMDhlx0KCAKB1ctBoNMKPTtk5ePBgCGF+ft7GAYAJ4XpY69t8RRFCSFe/Onjw4Pbt221SAJgcxnXW5Zprrgm1KTvPPvvsueeea7MAgNbJxBVXXBFqU3Yef/zxM88802YBAK2TiXjpq6997Wvxf48ePbp161abBQC0Tia2bdsWQnj++eeXlpZCCPv27du5c6fNAgBaJx/XX399COEf//EfQwgvvfSSk7AAQOtkJU7Z2bNnT7BoMgBMHuecr9fS0tIZZ5xx5plnPvfcc0VRHDhwIB7YAgAmgXGd9Zqfnz/ttNOef /75 uJCgRZMBQOvk5uqrrw4h/Nmf/VmwaDIAaJ38xCk7t912m00BAJPGfJ0ROHLkyI//+I+HEM4999zHH3/cBgGAyWFcZwS2bNmyffv2EMLpp59uawCA1slQPIwViwcA0Dq5ueqqq0IIFk0GAK2Tp1g5b3nLW2wKANA6GdqyZctf/dVffeADH7ApAGCiOA8LAMiZcR0AQOsAAGgdAACtAwCgdQAAtA4AgNYBALQOAIDWAQDQOgAAWgcAQOsAAGgdAACtAwBoHQAArQMAoHUAALQOAIDWAQDQOgAAWgcA0DoAAFoHAEDrAABoHQAArQMAoHUAALQOAKB1AAC0DgCA1gEA0DoAAFoHAEDrAABaBwBA6wAAaB0AAK0DAKB1AAC0DgCA1gEAtA4AgNYBANA6AABaBwBA6wAAaB0AAK0DAGgdAACtAwCgdQAAtA4AgNYBANA6AABaBwCYmdZZXFwsRuqGG25Y 872 54IILio137Ngxv3gAmBFFr9ezFQCAXDmGBQBoHQAArQMAoHUAALQOAIDWAQDQOgCA1gEA0DoAAFoHAEDrAABoHQAArQMAoHUAAK0DAKB1AAC0DgCA1gEA0DoAAFoHAEDrAABaBwBA6wAAaB0AAK0DAKB1AAC0DgCA1gEAtA4AgNYBANA6AABaBwBA6wAAaB0AQOsAAGgdAACtAwCgdQAAtA4AgNYBANA6AIDWAQDQOgAAWgcAQOsAAGgdAACtAwCgdQAArQMAoHUAALQOAIDWAQDQOgAAWgcAQOsAAFoHAEDrAABoHQAArQMAoHUAALQOAIDWAQC0DgCA1gEA0DoAAFoHAEDrAABoHQBA6wAAaB0AAK0DAKB1AAC0DgCA1gEA0DoAgNYBANA6AABaBwBA6wAAaB0AAK0DAKB1AACtAwCgdQAAtA4AgNYBANA6AABaBwBA6wAAWgcAQOsAAGgdAACtAwCgdQAAtA4AgNYBALQOAIDWAQDQOgAAWgcAQOsAAGgdAEDrAABoHQAArQMAoHUAALQOAIDWAQDQOgCA1gEA0DoAAFoHAEDrAABoHQAArQMAoHUAAK0DAKB1AAC0DgCA1gEA0DoAAFoHAEDrAABaBwBA6wAAaB0AAK0DAKB1AAC0DgCA1gEAtA4AgNYBANA6AABaBwBA6wAAaB0AQOsAAGgdAACtAwCgdQAAtA4AgNYBANA6AIDWAQDQOgAAWgcAQOsAAGgdAACtAwCgdQAArQMAoHUAALQOAIDWAQDQOgAAWgcAQOsAAFoHAEDrAABoHQAArQMAoHUAALQOAKB1AAC0DgCA1gEA0DoAAFoHAEDrAABoHQBA6wAAaB0AAK0DAKB1AAC0DgCA1gEA0DoAgNYBANA6AABaBwBA6wAAaB0AAK0DAKB1AACtAwCgdQAAtA4AgNYBANA6AABaBwBg81qnmBhHjhxZw/1fXFwsJt7i4qLnNwAUvV7PVgAAcuUYFgCgdQAAtA4AgNYBANA6AABaBwBA6wAAWgcAQOsAAGgdAACtAwCgdQAAtA4AgNYBALQOAIDWAQDQOgAAWgcAQOsAAGgdAACtAwBoHQAArQMAoHUAALQOAIDWAQDQOgAAWgcA0DoAAFoHAEDrAABoHQAArQMAoHUAAK0DAKB1AAC0DgCA1gEA0DoAAFoHAEDrAABaBwBA6wAAaB0AAK0DAKB1AAC0DgCA1gEAtA4AgNYBANA6AABaBwBA6wAAaB0AAK0DAGgdAACtAwCgdQAAtA4AgNYBANA6AABaBwDQOgAAWgcAQOsAAGgdAACtAwCgdQAArQMAoHUAALQOAIDWAQDQOgAAWgcAQOsAAFoHAEDrAABoHQAArQMAoHUAALQOAIDWAQC0DgCA1gEA0DoAAFoHAEDrAABoHQAArQMAaB0AAK0DAKB1AAC0DgCA1gEA0DoAAFoHANA6AABaBwBA6wAAaB0AAK0DAKB1AACtAwCgdQAAtA4AgNYBANA6AABaBwBA6wAAWgcAQOsAAGgdAACtAwCgdQAAtA4AgNYBALQOAIDWAQDQOgAAWgcAQOsAAGgdAACtAwBoHQAArQMAoHUAALQOAIDWAQDQOgAAWgcA0DoAAFoHAEDrAABoHQAArQMAoHUAgNk1ZxNkoyiKMf/EV155ZcuWLbY8AFqHMdm9e/eOHTvG9uOEDgBahzE5cuRICGHHjh3btm2zNQAgMV8nE0tLSyGErVu32hQAoHWyNTdnoA4AtE6OHnroIRsBALROto4ePdpoNGwHANA6eXr88cdPPfVU2wEAtE6ennzyybPOOst2AACtk6ennnrqwgsvtB0AQOvkaf/+/TYCAGidnF100UU2AgBonQzFhQQBAK2Tp3iBiPn5eZsCALROhn7wgx8EV+Icr3e9613FcJ544onst8bnPve5Yq2+/OUvezrFdyzDb7Spe3Qf//jHi3X74Ac/6HnC2rikQA4ef/xxG2HMu6Unn3zywQcffPvb337ST56Fi5TddtttX/nKVz70oQ+t4WuNR0bf+c53tm/fvm/fviwf3R133LF79+4dO3as55t4O4fWmWmHDx++5JJLbIdx7pZOO+20Xbt22RSx/J599tlrr71WtazHLbfccs0112zbti2/h7a0tHT48OFLL73UBfvYLI5h5eDhhx9+wxveYDuMc7d09dVX2w718hM663Tvvff+8i//cpYPbe/evRdeeKHQQeuwLi+88IJFk8e8W7riiitsB+U3KnFsbOfOnVk+ultvvfUjH/mI3zJah3X 57/ /+b4smj3m39J73vMemiL75zW8qv3WKk3VynY9SVZVpxWgd1suiyePfLTlkE8WpGMpvnf7iL/7immuuyfgZ8u53v9tvmU3kAGomLJo8NnEOqe0QPfDAAybrrN+ePXv+7u/+LsuHdvvtt5usw6YzrpPD2yYbYZwynkO6BrfeeqvJOuv/Ez58+LDJOqB1OCGLJo95a2c8h3QN9uzZY7LOOj3wwAMZT9bpdrsm66B1WK9nn302WGVrXPKeQ7paJuuMxK233prrUdGDBw+GEEzWYdM5hjr1nn76aRthbEzWqbv77rtN1lm/jCfr3HvvvSbroHUYzXvr 973 vfbbDeHzzm9/Mdbe0Bt/4xjdM1ln/3+/hw4d/7ud+LstHZ7IOE8IxrKm3b9++M844w3YY227JZJ1k7969Juus0wMPPLBz585cRz663e6VV17pt4zWYb1++MMfvu1tb7MdRujVV1/94he/uLi4OLhbmsHJOkeOHPmN3/iNwQuuxakYJusM6emnn/7EJz4RzySou/XWW6+99tppf3R/8id/8vWvf33ZZ0iWV/hC6zBu//mf/9lsNm2HUbnpppve8Y53/MEf/MFVV13Vt2fKeA7piXz1q189//zzq6q 677 77vvGNb9T/aWFh4S1veYvJOid17NixT3/60zt37vzLv/zL66+/vu9f9+zZc9lll03vo/unf/qns8466/d///c/9rGPxbhJ7r33XtckRuswGs8888yav3ZpaalYk8Exj2y8+OKLzz333Kc//ekXXnjh85//fN9uadZW1rn66qv/4z/+Y+/evSGEj 370 o/XFnG688cYMBiTG4MiRI7t27VpaWjrnnHNuueWW+nyvDNYU3r9//2OPPXbzzTeHEH7913+ 977 3Bdddd5wnAROgx5UIIjz32mO0wWq+99tpb3/rW+rZ98cUXQwivvPLKbG6Qr3zlKyGESy65JG2fEMLu3bs9VYZ34MCBEMLb3va29Cy6/fbbd+7cmceju/jii0MIN998c/2l6cCBA37vTALjOtMtDhq/8Y1vtClGa25ubt++fSGESy+99NixY+H4HNKZXVnnk5/85DnnnLN 379 54JOvf/u3fgsk6q7Rt27Yvf/nL9fHCr33ta9mMjd1yyy31wb/HH388mKzDxNA6ObC03UY 477 zzfuu3fuv555//oz/6o5DLHNL1xN8999yTdma7d+8OVutevd/+7d8+++yzb7zxxpgCe/funerJOnXz8/PxSNZnP/vZOOZnsg6To4gjjUypxcXF 97/ //X6JG+TYsWNnnHHG 977 3vQMHDlxwwQUPPvjgeeedN8sb5MYbb/zsZz97ySWXvPTSSz/90z992223eZKs1sGDB7dv337mmWf+/d///fnnn//aa6/ldMJ5o9G4/ /77 d+/e/Yd/+Ief+cxnPv7xj/uNo3VY3X538DXx61//+sc+9jG/xDHsmZ5//vnMdktrexKeffbZcd7JzTffbObp2nzpS1/63d/93RDCzp07H3300Zwe2tLS0tlnn33KKae88MILBw4ccAyLCeEY1tS49NJL+07pDCEcOHBg165dNs7G2bZt2x//8R8///zzGS/4Nry5ubmHH344fnzRRRd5eqzNZz7zmXe+850hhPyOis7Pz990000vvPBCMFmHiXrtsgmmwhe/+MWFhYWHHnqo7+XjkUceOf30022fDfV7v/d799 577 2/+5m/aFHFn1u12v/3tb9uTrScZu91us9n81V/91fwe3Yc//OFf+7VfM5eLieIY1hR48skn3/Wud4UQLr744rjSSdJsNnfs2PHVr37VVgKAZTmGNQV27doVE+e+++6L5z8n//Iv//L+ 97/ fJgIArTPF7rrrrosvvvj8888Px9c1SV5++WXbBwC0znR 773 vfG0K46qqrQgjdbjfdHsd4ZvwsaADQOpmIS7B/61vfSrccOnQoWDQZALROHnbu3BlC2Lt3b9+UHYsmA4DWycGWLVvi4ao0ZeeJJ54I1ukHAK2TjU984hOhNmXnf/7nf2wTANA6+Wg0GqE2ZefAgQPnnHOOzQIAK7CW4DQ5duzY6 173 uhBCvDDT5ZdfHn50tjIA0Me4zjSZm5trtVohhHhNopdeeukNb3iDzQIAWicfV155ZQjhvvvuCyE88cQTH/7wh20TANA6+fjQhz4UQrj99tuDRZMBQOvkJ15c+rHHHjt48GAI4Sd/8idtEwDQOlmJh7FuuummEMLb3/52GwQAtE5W4oWx4mEsAGBlzjmfPgcPHty+fXv82K8PALROhk 477 bQ4MdmvDwBW5hjWVLriiitCCBZNBgCtk6drrrkmhHD22WfbFACgdTL0nve8J4SwZcsWmwIAtE6G5ufnG43Gpz71KZsCAFZmbjIAkDPjOgCA1gEA0DoAAFoHAEDrAABoHQAArQMAaB0AAK0DAKB1AAC0DgCA1gEA0DoAAFoHANA6AABaBwBA6wAAaB0AAK0DAKB1AAC0DgCgdQAAtA4AgNYBANA6AABaBwBA6wAAaB0AQOsAAGgdAACtAwCgdQAAtA4AgNYBALQOAIDWAQDQOgAAWgcAQOsAAGgdAACtAwBoHQAArQMAoHUAALQOAIDWAQDQOgAAWgcA0DoAAFoHAEDrAABoHQAArQMAoHUAALQOAKB1AAC0DgCA1gEA0DoAAFoHAEDrAABoHQBA6wAAaB0AAK0DAKB1AAC0DgCA1gEAtA4AgNYBANA6AABaBwBA6wAAaB0AAK0DAGgdAACtAwCgdQAAtA4AgNYBANA6AABaBwDQOgAAWgcAQOsAAGgdAACtAwCgdQAAtA4AoHUAALQOAIDWAQDQOgAAWgcAQOsAAGgdAEDrAABoHQAArQMAoHUAALQOAIDWAQC0DgCA1gEA0DoAAFoHAEDrAACsz1w2j+SGG25ot9t+o9Putddem5ubsx0AGJWi1+vZCgBArhzDAgC0DgCA1gEA0DoAAFoHAEDrAABoHQBA6wAAaB0AAK0DAKB1AAC0DgCA1gEA0DoAgNYBANA6AABaBwBA6wAAaB0AAK0DAKB1AACtAwCgdQAAtA4AgNYBANA6AABaBwBA6wAAWgcAQOsAAGgdAACtAwCgdQAAtA4AoHUAALQOAIDWAQDQOgAAWgcAQOsAAGgdAEDrAABoHQAArQMAoHUAALQOAIDWAQDQOgCA1gEA0DoAAFoHAEDrAABoHQAArQMAoHUAAK0DAKB1AAAm2dw4f9gFF1zw2GOP2egz7sEHH9y1a5ftAMB4FL1ez1YAAHLlGBYAoHUAALQOAIDWAQDQOgAAWgcAQOsAAFoHAEDrAABoHQAArQMAoHUAALQOAIDWAQC0DgCA1gEA0DoAAFoHAEDrAABoHQAArQMAaB0AAK0DAKB1AAC0DgCA1gEA0DoAAFoHANA6AABaBwBA6wAAaB0AAK0DAKB1AACtAwCgdQAAtA4AgNYBANA6AABaBwBA6wAAWgcAQOsAAGgdAACtAwCgdQAAtA4AgNYBALQOAIDWAQDQOgAAWgcAQOsAAGgdAACtAwBoHQAArQMAoHUAALQOAIDWAQDQOgAAWgcA0DoAAFoHAEDrTLnFxcVi4y0uLg55f2644YZiM1xwwQWeDABMi6LX69kKAECujOsAADmbswk2wrFjxw4dOrTar9q6devc3Ib8Ro4cObK0tLT +77 Nly5b5+Xm/XwCmiGNYG+KWW2657rrrVvtV//qv/7pjx46NuD+XX 375 XXfdtf7vc8kll/zDP/yD3y8AWmfWXX755Y1G4 3Of+ 9yE3J9TTz31wQcfPO+88/xqAJg15utsiEceeeSDH/zghNyZI0eOHD58+Kd+6qf8XgDQOoymLZ599tnJaYvvfOc727dv37Jli18NAFqHEfiv//qvN7/5zZPTFvfdd1+j0fB7AUDrMBq33XbbFVdcMTn352//9m+vueYavxcAtA6j0e12J2eyTghh/ /79 G3R6FwBMPudhbcA2LYoDBw5s27ZtEu7MwYMHt2/f7rcMwMwyrjP6tgghTEjohBDuvffeSy65xO8FAK3DaHz729++8MILJ+f+3HPPPb/0S7/k9wKA1mE07rzzzquuumpy7s9ErfQDAFpn6j388MMf+MAHJuTOTNpKPwCgdabbkSNHnnnmmZ07d07I/Zm0lX4AQOtMt6eeemqi2uKuu+6aqJV+AEDrTJOlpaW+W+68887LLrtsU+7MsWPHjhw50nfjnj17fuEXfsFvCgCtw6rDYteuXTt27OjLiz 179 vziL/7i+O/Pc889t3Xr1ve 973 19tz/00EOTM3kIALTOdHj66ae3bt165plnvvTSS3/6p3+66W2xZ8+en/mZn9mxY8f+/fsXFxfT7ZO20g8AbArrJq/asWPHjh49esopp/zET/zE0tLSK6+8EifoLC0tnXHGGa+99trc3Nw 478 +rr746Nzf3ve9 974 wzzjj33HMfffTReAfuuOOOL3zhC48++qhfGQCzzLjOqs3NzW3ZsmVubu7OO+8MIVx//fXx9gceeGDnzp1jDp0Qwutf//q5ubn5+fl2u71///7bbrst3n7HHXdce+21fl8AzDjjOuvy7ne/+9///d/j1a8+9alPnXLKKV/60pc2684cOXJk69atp5xyyqFDh+bm5rZu3fo3f/M3u3bt8msCYJYZ11mXe+65J4Tw+c9/PoRw9913b+6KyVu2bLnxxhtfeOGFP//zP4+rCE7OSj8AsFmM66zX5Zdfftddd+3evfuyyy 578 cUX5+fnN/HOHDt2bH5+/uWXX969e/dHPvKR73//+35BAGgdrbMucUpyCOFNb3rTJLTF/fff32g0Qggf/ehH//qv/9ovCIAZ5xjWes3Pz//O7/xOCOG 973 3vJNyfn//5n3/nO98ZQrj44ov9dgBA64zAF77whde//vXXXXfdhNyfffv2hRBarZZfDQA4hgUA5My4DgCgdQAAtA4AgNYBANA6AABaBwBA6wAAWgcAQOsAAGgdAACtAwCgdQAAtA4AgNYBALQOAIDWAQDQOgAAWgcAQOsAAGgdAACtAwBoHQAArQMAoHUAALQOAIDWAQDQOgAAWgcA0DoAAFoHAEDrAABoHQAArQMAoHUAAK0DAKB1AAC0DgCA1gEA0DoAAFoHAEDrAABaBwBA6wAAaB0AAK0DAKB1AAC0DgCA1gEAtA4AgNYBANA6AABaBwBA6wAAaB0AAK0DAGgdAACtAwCgdQAAtA4AgNYBANA6AABaBwDQOgAAWgcAQOsAAGgdAACtAwCgdQAArQMAoHUAALQOAIDWAQDQOgAAWgcAQOsAAFoHAEDrAABoHQAArQMAoHUAALQOAIDWAQC0DgCA1gEA0DoAAFoHAEDrAABoHQAArQMAaB0AAK0DAKB1AAC0DgCA1gEA0DoAAFoHANA6AABaBwBA6wAAaB0AAK0DAKB1AACtAwCgdQAAtA4AgNYBANA6AABaBwDgROZsAk6qKAobAQCtQ856vZ6NAMA0vl13DAsAyJnWAQC0DgCA1gEA0DoAAFoHAEDrAABoHQBA6wAAaB0AAK0DAKB1AAC0DgCA1gEA0DoAgNYBANA6AABaBwBA6wAAaB0AAK0DAKB1AACtAwCgdQAAtA4AgNYBANA6AABaBwBA6wAAWgcAQOsAAGgdAACtAwCgdQAAtA4AoHUAALQOAMA0mrMJAGAjdLvdqqqazWZVVfGWZrPZaDRCCJ1Op/6ZzWYzhJA+bczKsmw2m/E+1O9kNoper+fpyEmeJYXnCczorrrRaHQ6nbS3brfbfTvpzRIb4kT77KqqNqsbMtBsNhcWFnLahdmHoXVGtldI78zSW6J0Y7PZLMsys7dKE7tvrn/Q6XTa7XZ8ez0hd7K+k0 675 LIs08f1YQDyToqqqsqyDMdHdOqjO4Mlt0LkjfDJGX96Tq/5WgetM8qtlF6n0uYqiqL+itZut9f/g+LOO77VbjQaaacejg+Y139Keke+Qfv7+MoYX6zr/+td9azts9OTf+N2wyf60XHkKcVB+nOojz/1/RMnfSkzroPWYZn+KMuy1+ulD+qtE9Vbp9VqSYFNVJZl/WBHfZRlzLvqwXf5K39OPWQH0xZG8oIfjOugdVjh1SEetEqHsUbeOvV9c31AZZLFIaU07cPba5jwVzPjOmgdTriVYnmcaFyn/lYpDv9k9oIC5PTOLadH5JxzGI04+zgcnxnQarXSIZL4CYMDOZt4uARghVezzB6RtQRhNOIITVmW8YP4YpGGbXq9ngM3gNbZFMZ1YGTqo75pao7Df8B0yW/Ou3EdAJgIk7NOY2YbVusAADnTOgAwEayWpHUAALQOAIDWAQC0DgCA1gEA0DoAAFoHAEDrAABoHQAArQMAZM51zplR9WvsVVXVbDabzWaj0bBlALQOTH3llGXZd2O6rm+v17OJAHLiGBZC50cURdHpdLrdrm0FkAfjOsyWGDrxiFX8IB23ike1yrIsy7LZbC4sLNhcwKy9G9Q6kEPrtNvtZf8p3t5utzudTiwhgJnSbrfjmz2tA9P9lzySzwHITzx8n+YvZsN8HWZUq9UqBuQ6fgswjFzPRdU6zKJOp5PfGxcAluUYFrMohU79nKxxrq+jtICJZb4OZPKXHGvD1ByA7N+MOYYF3jYB5EzrMNM2d25yWZZFUVi3EEDrAACskfk6zKKVlxMcp7IsXXAUYEMVrnTIyZ8lhefJiNUvy2XbAhP1gp/Z61JRFI5hMVu63W7f/Jhut9s5brO6x+8FmBBZnjnhGBaz+GeczjkfNJ7DWPVXkxUu0QXA+hnXgU3Qt5ihU7GASXt1yolxHWbLRB2EjiM6ZVlWVWWGMsAGMa4DExE9NgIwOTIbbNY6zJZOp7Py33CcqtxqtbFtkdYAABwHSURBVMYcOmYoA2gdGE1YNJvNuERyPS/i/xZF0Ww2xzzKEicmuxooMDkyO6qudZgtVVXFc6DKsoyXaIji/6YeWlhYGOe9iueFmaEMTAjHsGC636wsLCxUVVWPm1gbcY5wr9cb2xngaSwn5pehHWByXipzejjWw2WIZ4l1k0ctrZucNmx+a5UCU/qCH6ybDIxKfUXB+LEZygAjp3Vg09QPWo15hhCA1gE2gYV2ALQOZB46DmMBaB3Ik7OxALQO5Cye5FlVlaEdAK0D061+BlZdPIxl1g7ACFk3hSGeJdbX2ZitGpZbxCLeHi+BbisBE/LSNNWPyLgObIIV1l9Pl7CwlQBGQuvAJlhh/fUTHd4CQOtADtKhKzOUAbQO5CkewHLyOcBImHPKEM8Sc5NHrdvtxmNVJ9qwLgUKbNYLfjA3GbLU6XTGecxohfk6kTWUAUaWO944MkwU5/c8abVagweJ1nmmd7fbrapq8DvEs 676 +uakb54M7QCb8oIfjOtABjqdzshnw8TDUmVZtlqt+o1FUTSbzWazWb99GPEg1wpnpwMwDK3DTKuqqleznkGdsiybzWZVVfWLPKSiiv9ab6D6x8seq7LQDoDWgfU66byZVWVTs9ns+4apVMqyrI8kpY/jqE9ZloO5E8PL2VgAWgdWLY3fFD9qg+YCl2XZ1zqrYoYyMDZZjiVrHWZLq9WKWTPOV404X6d+e/rflQ+fxTwytAOMTZYvOFoHRpY1ZVnGimq3291ut9VqxaZpHpc+echjZ/HTtA7AejjnnCGeJdYSHE485zzO2qmfZx4PQvWN3Ax5Ymen04nzmhcWFmxhYKPF9TgyO+fcPowZbZ1Op9MXHydaHWeDqmjldZPX8JkAWkfroHX+r3LimeHhR2fhxY/H9kiHX7ArDu2sc51DAK0Ds9I6K09MnsDWCdZQBrTOOl5szU2G/xNXApzY+xacfA6M69UmM1qHmdPr9dKhq/qiyQsLCyNcWnAjXn2WXXIQAK0D/drtduybKbrDfmvA2GT2tkrrwHSIY1EujwVsqHgoP7MjWVqHGX3LUpxYp9OZwKuLp5ceh7GAjTaxB/S1DoxGPMF7Al964r2yjDKw0W+rHMOCqZemv8Rzr3q9Xho1iR9MZk+kK59P4LATgNaBCZLesqRzr9IVGCb8UgxZHkoH0DqwUVqtVrfb7Xa7qX5ardYk3+FGo2GtHQCtAyeRjmHFS3U2m810ltPkz4ZJa+34PQJoHTihwaZpNpupgSa5JNKdNGsHYBhzNgGzqdFoxLUE48GgFBBTscBgedyEzy4CmATGdZh17XZ76lYlbrfb8Qwys3YAtA4sr9vtDq4iOOETk+vSBCNHsgC0DiwTOsuetj1Fy/SlpQVNUgZYmfk6zKLUNH2hMF0Hs9rtdjxxrNvtZragO4DWgXVJgzrTfv3wOEO52WxO0TXbAbQObLg0CtJqteoHs5rN5nQNkLTb7aqqqqoqikLuAOuX5RX3tA6zKJ2+FEOh/k9TVwzxhKz4oKZ9mArQOhvB3GRmUU5NMBXrHwLTIstXEuM6zO57l8G3L1PaQPFKF8HQDjCK1xOtA5loNBqTMDVnJHUSzz9P85SdkwWsWTosnhPHsJhdnU6n1WrFJQTjBc/H+aPjB2VZFkWx/m8YV1IOjmQBDDCuw4xqtVrpvUv8IL6bGc+gSDr5a4RpsrCwUBSF5XYA+hjXYRZ1u92+QdrYHMsuprwRUouM9mpc8UEZ2gHQOsy6FDrpDPM8pvQ2Gg3XBAXQOvD/pSbIJg7M2gHQOrDMmjTZXEczTVI2tAOgdZhpgydVNpvNPI5kLSwsxG4b55llABPLeVjMqEaj0ev16pOUc1qFL64uWJZl7B4ArQOzWzzplKhOp5PNQnz1ScpWUgZmnGNY8H/iosM5PZz4XxN3AK0DZCheOCI4JwvQOjYB5KrdbsfQabVatgagdYA8cydkeuFiAK0Dq5Dx6dkxdAztAFoHZkKn0ymWk9Os5D7pnCzL7QBaB2ZdrsVjkjKgdWBWtNvtXq/X6/WqquoNyHXlvXhOVlVVjmQBWgdmRR5rBq4q8hzJArQOkLN4DCvjmUkAWgdmWqPRcE4WoHWAzHMnWG4H0DpAxgztAFoHyFn9Eui2BrDCmyKtA0yreGq9S6ADJ5LZSQxaB2b3TVtZlk5BB7KndWAWxdUFg1PQgRO/HdI6wHRrt9sxd8xTBvKmdWCmc8diysAg4zrA8rrdbqfTWXbCb6vVmsyJwI5kAYPMTQZO+OpQluWy5zdN7JukNHHHOVmA1oH8redQTmyFXq8XjwrV/2mFCTHd4zbxUbfb7XB8gAcgP1qHGVUURd9IRqvVWudbmfjlfa1TFEX832WHdprHbe4E4XjfiqIwcQfI782P1mGm/5hjYXQ6nVQk6y+GunpOLTsFOB322txXlnRZUKM7QH4vBXN+o8ymOPpSVVVRFCvEymp1Op2qquLLRLfbPelAUVzCeBLEiTtlWcbsi1cJBWa2deLR7TwY12FGLSws1N+4NJvNXq+3nh18PH87fs/4GtFsNhuNRq/Xi5N4yrKc8ICIDyHecwezYMZbJ6eHo3WYLd1utyiKoiharVb9jzkO8Kxz0szCwkJVVWmoptfr1f9pKt4kpQR0MAtmmfV1IIc/4GX/ktf/553BoZ+4nnJVVdZTBrQOkKeUOxbdgRl/W6h1YCr34r1eryzL3gnYRGlDBRdCh1mV2VHswos7J3+WFNk+TzqdTpxBHAcwxjmlJp7/NckbNp1H5rQsmB3pDz+bl/2iKIzrMKNarVZRFPFITXwTk5bbIaovumN0B5heWocZlY5Gp6GLcILl/mY8d2IOOi0LZuq10fWwIB9pzZtGo1GPHpK46I7TsgCtA9P6DiYO5MT1jvN7NzMSCwsLMXdcMAuyl+VroLnJDPEsyXFucqvVWnYIZ2yPdPLnJi+7xZrN5uRc1wIYuU6nE49Zm5sMeb53MStlBTFxLLoDTF/uGNdhmCjO+Jzzev2M88zqqRvXieLojrPQIVdZjuu4zjkzLacL+Y5HWZbNZjNO35E7kKvMZu1oHWb9HUzfjtxI58rildtbrVa8crtYhCxldkaq1mF2K8fsnDVbWFiIF4qvX9cdyIZrRDBzspyvE6fLDHIe1vCcmQX5cY0IyE3cVce/6viB9WOGZ90dyPJVMb8HpXXwV/1/b2XSZSJsltXmTgih2WzKHchAlmsJah1mWrr2p+WS15M78dC+3IGc3gFqHcihcvo+iJxYtAbtdjvljq0BTBpzkxniWZLpWoLxhPN2u93tduMAzzjXjMlgbnIfU5Uhm9f8kNfcZK3D7LZOCKHb7W7Wgnjx1SSzFfnkDmTwJtD1sCCfgCuKYtPXkMhs6eF0Zlar1fIcg2mUzjbI6gXfuA7DZEHG1znfrJGV/I5hJWl9DteRgCl9zQ/GdSAD6VyDZrNZ1DiTaP0ajUaaquyi6MCm0zqwfAOxHu12O27JsizlDrC5HMNiiGdJjsewTrQDHts553GUOI5/5Hqie5rkGC8U6ngWTL4srxGhdZjR1pmErZo+znvzpkfqWQRT9Ddrvg5MvU6nUx/acZxl46RrjZkOBWwKrcPM6Xa7rVarLMt0wnk81LIpp0lXVTULox3160g4HR3QOrCx4gIwy2ZH/bgSoxVnK6fVdwykAVoHNkTaxdYHVNJJQyGEMR9kmanpuo1GIw7wVFUVB9Ic0gK0DmyIwXOCGo1GWv7O9tlQqSzjMI8BHkDrwOgJms3VaDR6vV5agMcAD0yOLP8YtQ6zJQ3e9P09d7tdAbQpxRNn8DSbTbkDE/KHqXUgkz/jvktDpAvdjXlZP0dw6qdo2Rqw6bL8M9Q6zJwVrt 87/ sueZ3Yx4bVpt9txO7igBEzC36PWgam3sLAQD5r0NUdVVeP/I3fZhL5fSlmWRVFYgwcYIWv/M8SzxDUiNmarhhCqqpI7dekSWjYObO6rk2tEAKNhQnSfdrvd6/XM4AFGSOsAk1g8zkgHtA7kwNzkE2k0GumaEvEqWsZ4AK0D5JY7ac5yvKxEURSKB9A6ME3M1xmyeNKE5Vg8NgugdYCs1OcshxBM4gG0DpBn8fRN4lE8gNYBstI3iScWj80CaB2YUM7DGknxxIuambYMaB2YOOYmj6R44jwei/EAWgcmSFx/3bjOSIrHPB5A68DEiQdcjOuMsHgG5/E4qgUE1/5kqGeJa39uzFYNIZRlOf6Lq2ev2+3WB8xcQxTW8Ork2p+QoU6nY5G6PDQajfpiPK4hCjNuziZgNt+yrFA8BlrykH6PZVmWZRmnMBvggRlkXAfGYXBcIY06sKG5Y9oyYB4GQzxL8pqvU8+O0Q7htFqtONe4Pgun0+mkrKlPHDFfZ8y63W4c3QkhNI8zzAPLvuaHvObrhB6cTHzSs7K4E42DB2mLxcppNptxM5ZlWd+qfbcwBmVZ9p3n71cAg6/5Ob3sG9dhFsd1+gZ4qqqqn/i95oGWOH7T6/XiSUBpi8UJQPFfB8d16vwxjnOMJ61AGMVhHmNsEJyHBTmFTpqyOtrv3PcN2+12q9WKP2vZIyZxmMH0nXGKyw/WR3pi+qRrTdTn9JjfA1OfO95KMkwU5/c86RtWiXu79byVicM5MVyqqooDPCllBieIpNgyljAJ4khPfZAvjfQ4NY8ZfM0PeY3raB1munXSdZR6vd764yP1U/wmy57cXt+SRVFoncnv4ODwIlpnyh+O9XWYaWkqcavVGsl3i6MCMV8GD0u5+tVUiGNy9eObsUrDqE/cA8aUO96vMEwU5/c8qZ8KXje2gRbHsKZCX/QE56szG6/5wbgOZCANvcQ9WVp2RXlQFy8pGo6ftVd/tgRX2oJpyR3jOgwTxbPwPOl2u+Pcb1lLcEp1Op3BdQoM85DZa35wzjlMe9PE/3Y6nXh2cVpoZ5xXiPQ2Y0q12+2FhYX6soTxg8GT1YFJyR0vuAwTxTk9T+JblnSSeZ9xDrQ4DyuPdO47WT0YriOLF0njOjD1Rr6EILMpLkuYRnrSKgZpWcJxDhYCy+eOcR2GieL8rv05CW+7jevk/ba4zistU/cENq4DU6zdbssLNlS8Fmx9OaWiKFqtljEepkJ+K4FpHWZUp9OJu5++/B/JooJre+tPTuLJ6jF64oGtvktuObzFxMrvEL9jWAy1V87sGNYKF9o0N5kNMnhx9frb6PhO2pOBCXnND9YShIy5jAMbpNFoxInMMXpC7Soi6TSueE