THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng | |
---|---|
Số trang | 89 |
Dung lượng | 763,36 KB |
Nội dung
Ngày đăng: 10/08/2014, 18:21
Nguồn tham khảo
Tài liệu tham khảo | Loại | Chi tiết |
---|---|---|
16.4 Estimating the Probability Density Function in Life Table MethodsThe density function in the interval from x (i ) to x (i + 1 ) for the life table is estimated byf i =P i − P i +1x (i + 1 ) − x (i ) The standard error of f i is estimated byp i q i√x (i + 1 ) − x (i )i −1j =1q jl′ jp j+ p il′ iq i1 / 2 | Khác | |
16.6 Group Expected SurvivalThe baseline survival curve S 0 (t ) estimates the survival probability at time t for a person whose covariates equal the average of the population. This is not the same as the survival curve expected for the population S (t ) as estimated by the Kaplan–Meier method. The population curve S (t ) | Khác | |
16.1 Example 16.2 deals with chest pain in groups in the Coronary Artery Surgery Study;all times are in days. The life table for the individuals with chest pain thought probably not to be angina is given in Table 16.10 | Khác | |
16.2 From Example 16.2 for patients with chest pain thought definitely to be angina the life table is as given in Table 16.11 | Khác | |
16.3 Patients from Example 16.4 on a beta-blocking drug are used here and those not on a beta-blocking drug in Problem 16.4. The life table for those using such drugs at enrollment is given in Table 16.12 | Khác | |
16.5 Take the Stanford heart transplant data of Example 16.3. Place the data in a life table analysis using 50-day intervals. Plot the data over the interval from zero to 300 days.(Do not compute the Greenwood standard errors.) | Khác | |
16.6 For Problem 16.1, compute the hazard function (in probability of dying/day) for inter- vals:(a) 546–637 (b) 1092–1183 (c) 1456–1547 | Khác |
TÀI LIỆU CÙNG NGƯỜI DÙNG
TÀI LIỆU LIÊN QUAN