Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 100 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
100
Dung lượng
3,21 MB
Nội dung
ASM INTERNATIONAL ® The Materials Information Company Publication Information and Contributors Metallography and Microstructures was published in 1985 as Volume 9 of the 9th Edition Metals Handbook. With the fifth printing (1992), the series title was changed to ASM Handbook. The Volume was prepared under the direction of the ASM Handbook Committee. Fig. 1 As-Drawn hafnium crystal bar. Changes in grain orientation produce different colors when viewed under polarized light. Some twinning is also evident. Specimen was attack polished and heat tinted at ~425 °C (800 °F). 180×. Courtesy of Paul E. Danielson, Teledyne Wah Chang Albany. Additional color micrographs can be found in the article "Color Metallography." in this Volume. Authors and Reviewers • LAMET UFRGS • Hubert I. Aaronson Carnegie-Mellon University • John K. Abraham LTV-Republic Steel Research Center • N.R. Adsit Rohr Industries, Inc. • Samuel M. Allen Massachusetts Institute of Technology • P. Ambalal Lawrence Livermore National Laboratory • R.J. Barnhurst Noranda, Inc. (Canada) • Edmund F. Baroch Consultant • Charles S. Barrett University of Denver • Charles E. Bates Southern Research Institute • R. Batich Brush Wellman Inc. • Alan M. Bayer Teledyne VASCO • Arlan O. Benscoter Bethlehem Steel Corporation • Michael L. Bess Eastern Alloys, Inc. • Michael B. Bever Massachusetts Institute of Technology • C.R. Bird Stainless Foundry & Engineering, Inc. • George A. Blann Buehler Ltd. • Arne Boe Struers, Inc. • William J. Boettinger National Bureau of Standards • T.F. Bower Chase Brass & Copper Company • Rodney R. Boyer Boeing Commercial Airplane Company • B.L. Bramfitt Bethlehem Steel Corporation • Richard Bratt Colt Industries • John F. Breedis Olin Corporation • Robert J. Brennan E.F. Houghton & Company • Harold Brody University of Pittsburgh • Ronald A. Bulwith Alpha Metals, Inc. • Michael E. Burnett The Timken Company • J.G. Byrne University of Utah • R.L. Caton Carpenter Technology Corporation • Robert Chaney Wellman Furnaces, Inc. • Henry J. Chapin Abex Corporation • James C. Chesnutt Rockwell International • G.Y. Chin AT&T Bell Laboratories • Kenneth J. Clark Wellman Dynamics Corporation • Linda Clements San Jose State University • Hans Conrad North Carolina State University • Richard Corle Rockwell International • L.R. Cornwell Texas A&M University • Carl E. Cross Colorado School of Mines • Robert S. Crouse Oak Ridge National Laboratory • N.J. Culp Carpenter Technology Corporation • Donald S. Dabkowski United States Steel Corporation • Craig B. Dallam Colorado School of Mines • Brian K. Damkroger Colorado School of Mines • Frank Danek Cleveland Refractory Metals • Paul E. Danielson Teledyne Wah Chang Albany • Robert T. DeHoff University of Florida • John A. DeVore General Electric Company • Thomas Diebold Colorado School of Mines • Lee Dillinger Leco Corporation • Carl DiMartini ASARCO, Inc. • David Dozer Lockheed Missiles & Space Company, Inc. • T.E. Dwyer National Steel Corporation • James Early National Bureau of Standards • Kenneth H. Eckelmeyer Sandia National Laboratories • D.V. Edmonds University of Oxford (England) • G. Elssner Max-Planck-Institut für Metallforschung (West Germany) • J.D. Embury McMaster University (Canada) • H.E. Exner Max-Planck-Institut für Metallforschung (West Germany) • D. Eylon Metcut-Materials Research Group • E.W. Filer Cabot Corporation • M.C. Flemings Massachusetts Institute of Technology • D.Y. Foster Carpenter Technology Corporation • Fred A. Foyle Rhenium Alloys, Inc. • Aaron Freeman Kennametal, Inc. • Paul B. Gallagher Columbia Tool Steel Company • Michael Gigliotti, Jr. General Electric Company • Claus G. Goetzel Stanford University • R.C. Gower Carpenter Technology Corporation • Douglas A. Granger Aluminum Company of America • Robert J. Gray Unitron Inc. • R. Gronsky University of California at Berkeley • Gary W. Grube Abex Corporation • Amitava Guha Brush Wellman Inc. • Richard B. Gundlach Amax Research & Development Center • Martin N. Haller Kennametal, Inc. • William B. Hampshire Tin Research Institute, Inc. • John Harkness Brush Wellman Inc. • E. Harper Systems Research Laboratories • Walter T. Haswell Colt Industries • R.M. Hemphill Carpenter Technology Corporation • John A. Hendrickson Wyman-Gordon Company • Helen Henson Oak Ridge National Laboratory • Tommy Henson Oak Ridge National Laboratory • Dennis W. Hetzner The Timken Company • James Hoag Abex Corporation • William F. Hosford University of Michigan • Helmut Hoven Institut für Reaktorwerkstoffe (West Germany) • Norman S. Hoyer Westinghouse Electric Corporation • Hsun Hu University of Pittsburgh • James Lee Hubbard Georgia Institute of Technology • Paul L. Huber Seco/Warwick Corporation • Glenn S. Huppi Colorado School of Mines • K.A. Jackson AT&T Bell Laboratories • Mitchell A. Jacobs Taussig Associates, Inc. • Hughston M. James Carpenter Technology Corporation • N.C. Jessen Martin Marietta Energy Systems • Wilbur Johns Rockwell International • Mark J. Johnson Allegheny Ludlum Steel Corporation • E.A. Jonas Consulting Metallurgical Engineer • John J. Jonas McGill University (Canada) • Jerald E. Jones Colorado School of Mines • Frederick W. Kern U.S Steel Corporation • Jon A. Kish Rhenium Alloys, Inc. • Michael Kim Rhenium Alloys, Inc. • Roger W. Koch Ladish Company • Karl Koizlik Institut für Reaktorwerkstoffe (West Germany) • T. Kosa Carpenter Technology Corporation • J.A. Kowalik Lehigh University • R. Wayne Kraft Lehigh University • George Krauss Colorado School of Mines • John B. Lambert Fansteel • John A. Larson Ingersoll-Rand Company • David E. Laughlin Carnegie-Mellon University • James L. Laverick The Timken Company • Harvie H. Lee Inland Steel Company • Peter W. Lee The Timken Company • Franklin D. Lemkey United Technologies Research Center/Dartmouth College • William C. Leslie University of Michigan • Jochen Linke Institut für Reaktorwerkstoffe (West Germany) • Stephen Liu Pennsylvania State University • Ken Lloyd D.A.B. Industries, Inc. • Richard F. Lynch Zinc Institute, Inc. • William L. Mankins Huntington Alloys International • M.J. Marcinkowski University of Maryland • A.R. Marder Bethlehem Steel Corporation • James M. Marder Brush Wellman Inc. • T.B. Massalski Carnegie-Mellon University • M.S. Masteller Carpenter Technology Corporation • John E. Masters American Cyanamid Company • Daniel J. Maykuth Tin Research Institute, Inc. • James L. McCall Battelle Columbus Laboratories • George McClary H. Cross Company • E.J. Minarcik Lead Industries Association, Inc. • T.E. Mitchell Case Western Reserve University • L. Mondolfo Rensselaer Polytechnic Institute • L. Mongeon Noranda, Inc. (Canada) • Jeremy P. Morse Huntington Alloys International • William M. Mueller Colorado School of Mines • Michael S. Nagorka Colorado School of Mines • James A. Nelson Buehler Ltd. • Hubertus Nickel Institut für Reaktorwerkstoffe (West Germany) • B. Oliver University of Tennessee • Oliver E. Olsen Lead Industries Association, Inc. • T. Palomaki Honeywell Inc. • W.B. Pearson University of Waterloo (Canada) • Leander F. Pease III Powder-Tech Associates, Inc. • John H. Perepezko University of Wisconsin at Madison • A. Jeffrey Perkins Naval Postgraduate School • Robert N. Peterson Enduro Stainless, Inc. • G. Petzow Max-Planck-Institut für Metallforschung (West Germany) • Mark Podob Abar Ipsen Industries • Larry E. Pope Sandia National Laboratories • C.E. Price Oklahoma State University • S.M. Purdy National Steel Corporation • Dennis T. Quinto Kennametal, Inc. • M.R. Randlett Chase Brass & Copper Company • W.P. Rehrer Carpenter Technology Corporation • R. Ricksecker Chase Brass & Copper Company • N. Ridley University of Manchester (England) • H.C. Rogers Drexel University • Kempton Roll Metal Powder Industries Federation • Alton D. Romig, Jr. Sandia National Laboratories • Charles R. Roper, Jr. Lukens Steel Company • H.W. Rosenberg Alta Group • M. Rühle Max-Planck-Institut für Metallforschung (West Germany) • Moy Ryvola Alcan International, Ltd. (Canada) • N. Saenz Battelle Pacific Northwest Laboratories • Anant V. Samudra LTV Steel Company • L.E. Samuels Samuels Consulting (Australia) • Ernest A. Schoefer Technical Consultant • J. Schruers Westinghouse Electric Corporation • D.D. Schwemmer Rockwell International • Brian Scott International Tin Research Institute (England) • J. Self Colorado School of Mines • Jerome F. Smith Lead Industries Association, Inc. • William A. Soffa University of Pittsburgh • Peter D. Southwick Inland Steel Company • R.E. Spear Aluminum Company of America • G.R. Speich Illinois Institute of Technology • D.L. Sponseller Amax Research & Development Center • E.E. Stansbury University of Tennessee • J.H. Steele, Jr. Armco, Inc. • Richard H. Stevens Aluminum Company of America • Patricia Stumpff Air Force Wright Aeronautical Laboratories • Dilip K. Subramanyam Abex Corporation • C.J. Thwaites International Tin Research Institute (England) • Milton W. Toaz Imperial Clevite, Inc. • H.E. Townsend Bethlehem Steel Corporation • Frank J. Toye, Jr. Leco Corporation • Rohit Trivedi Iowa State University • George B. Tyler Reynolds Metals Company • Ervin E. Underwood Georgia Institute of Technology • Roy A. Vandermeer Naval Research Laboratory • George F. Vander Voort Carpenter Technology Corporation • John D. Verhoven Iowa State University • Rajat Verma Abar Ipsen Industries • Steven E. Wall Bendix Corporation • Francis J. Warmuth Special Metals Corporation • M.E. Warwick International Tin Research Institute (England) • D.M. Wayman University of Illinois • Elisabeth Weidmann Struers, Inc. • William E. White Petro-Canada Resources (Canada) • C.R. Whitney Carpenter Technology Corporation • David B. Williams Lehigh University • W.A. Yahraus Imperial Clevite, Inc. • J.N. Zgonc National Steel Corporation Other Contributors The following individuals supplied micrographs for this Volume, as did many authors, reviewers, and other anonymous contributors. • R.L. Anderson Westinghouse Research Laboratories • G.L. Armstrong U.S. Reduction Company • R.J. Asaro Brown University • F. Assmus Vacuumschmelze Siemens (West Germany) • F.A. Badia International Nickel Company, Inc. • R.W. Balluffi Cornell University • P. Bania Timet • J. Bartholomew Chase Brass & Copper Company, Inc. • P.I. Basalyk Chase Brass & Copper Company, Inc. • B. Bay Danish Academy of Mechanical Engineering (Denmark) • C. Brady National Bureau of Standards • L.L. Bright American Steel Foundries • R.D. Buchheit Battelle Columbus Laboratories • M.G. Burke University of Pittsburgh • B.C. Buzek NASA Lewis Research Center • J.W. Cahn Massachusetts Institute of Technology • R. Carbonara Battelle Columbus Laboratories • D.A. Chatfield National Steel Corporation • J.B. Clark University of Missouri Rolla • R.S. Cline U.S. Steel Corporation • T. Cobb Chase Brass & Copper Company, Inc. • J. Cornie Massachusetts Institute of Technology • M.H. Cornell NLO Inc. • J.E. Costa Carnegie-Mellon University • S.L. Couling Battelle Columbus Laboratories • A. Datta University of Pittsburgh • L.W. Davis NETCO • L. Delaey Katholieke Universiteit (Belgium) • K. Detert Vacuumschmelze Siemens (West Germany) • J. Dibee Chase Brass & Copper Company, Inc. • J.E. Gatehouse Bethlehem Steel Corporation • J.J. Gilman Allied Chemical Corporation • R.C. Glenn U.S. Steel Corporation • S.R. Goodman U.S. Steel Corporation • F.E. Goodwin International Lead Zinc Research Organization • N. Grant Massachusetts Institute of Technology • G. Grosse Chase Brass & Copper Company, Inc. • N. Hansen Riso National Laboratory (Denmark) • W.C. Harrigan DWA Composite Specialties • M. Hatherly University of New South Wales (Australia) • M. Henry General Electric Research & Development • D. Hull University of Liverpool (England) • J. Humphries University of Oxford (England) • M.S. Hunter Alcoa Research Laboratories • F.I. Hurwitz NASA Lewis Research Center • G. Ibe Vacuumschmelze Siemens (West Germany) • S. Jin AT&T Bell Laboratories • A.R. Jones Riso National Laboratory (Denmark) • Anwar-ul Karim Engineering University (Bangladesh) • R.S. Karz University of Illinois • T.J. Kelly International Nickel Company, Inc. • J.R. Kilpatrick Bethlehem Steel Corporation • M. Kitada Hitachi Ltd. (Japan) • J.W. Koger Martin Marietta • M.M. Lappin Sandia National Laboratories • P.K. Lattari Texas Instruments, Inc. • M. Lee San Jose State University • P.R. Lee NASA Ames Research Center • I. Lefever Katholieke Universiteit (Belgium) • D.S. Lieberman University of Illinois • J.D. Livingston General Electric Research & Development • A.C. Lon Phillips Petroleum Company • T. Long Boeing Commercial Airplane Company • D.M. Maher AT&T Bell Laboratories • A.S. Malin University of New South Wales (Australia) • J.J. Manganello Chrysler Corporation • M.E. McAllaster Sandia National Laboratories • H. McQueen Sir George Williams University (Canada) • D. Metzler University of Pittsburgh • J.T. Michalak U.S. Steel Corporation • M.K. Miller Oak Ridge National Laboratory • P.N. Mincer Battelle Columbus Laboratories • L.R. Morris Alcan Kingston Laboratories (Canada) • R. Moss Ford Aerospace and Communications Corporation • A.W. Mullendore Sandia Corporation • G. Müller Struers GmbH (West Germany) • A. Needleman Brown University • J.R. Patel AT&T Bell Laboratories • N.E. Paton North American Rockwell Corporation • H.W. Paxton U.S. Steel Corporation • J.F. Peck Massachusetts Institute of Technology • L. Penn Midwest Research Institute • R.L. Perry Bethlehem Steel Corporation • W.G. Pfann AT&T Bell Laboratories • V.A. Phillips General Electric Company • K.M. Prewo United Technologies Research Center • S.V. Ramani NASA Ames Research Center • B.B. Rath U.S. Steel Corporation • T. Redden General Electric Company • W. Reinsch Timet • W.H. Rowley, Jr. The Stackpole Corporation • M.A. Scherling University of Illinois • C. Scholl Wyman-Gordon Company • M. Scott Bethlehem Steel Corporation • G. Shaw Midwest Research Institute • D. Shechtman Technion, Israel Institute of Technology • M.J. Shemanski AT&T Bell Laboratories • H.M. Shih NASA Ames Research Center • J.W. Shilling Allegheny Ludlum Steel Corporation • V.L. Shultes Boeing Vertol Company • J.R. Sims Square D Company • D.P. Skinner Princeton Gamma-Tech, Inc. • E. Snell Lawrence Livermore National Laboratory • R.L. Snyder Bendix Aircraft Brake and Strut Division • C.N. Su The Aerospace Corporation • D.A. Thomas Massachusetts Institute of Technology • G. Thomas University of California Berkeley • D. Tyler Olin Corporation Metals Research Laboratories • J.L. Uvira Steel Company of Canada, Ltd. • J.M. Van Orden Lockheed Corporation • G.B. Wadsworth Boeing Vertol Company • E. Walden Lockheed Corporation • H. Warlimont Max-Planck-Institut für Metallforschung (West Germany) • B. Weinberger Struers, Inc. • J. Williams North American Rockwell Corporation • J.C. Williams Carnegie-Mellon University • D.J. Willis Broken Hill Proprietary Company, Ltd. (Australia) • P. Wingert GTE Products Corporation • W.N. Wise NLO Inc. • G.J. Wiskow Falk Corporation • D.A. Witmer University of Denver • W.A. Wong McGill University (Canada) • J.H. Wood General Electric Company • S.A. Wright Bethlehem Steel Corporation • P. Yaffe Chase Brass & Copper Company, Inc. • K.P. Young ITT Engineered Metal Processes • A. Zeltser University of Pittsburgh • J.E. Zimmer Acurex Corporation, Aerotherm Division Foreword Metallography and Microstructures is a comprehensive and convenient reference source and an outstanding example of the special commitment of the American Society for Metals to the field of metallography and recognition of its continued growth and sophistication. In the early 1970s, ASM published Volumes 7 and 8 of the 8th Edition of Metals Handbook. The Atlas of Microstructures of Industrial Alloys was essentially a picture book, designed to provide a meaningful sampling of normal and abnormal structures and to illustrate the effects of major processing variables and service conditions. Metallography, Structures and Phase Diagrams covered metallographic laboratory practices, metallographic structures, and phase diagrams of binary and ternary alloys. When the time came to plan the revision of these Volumes for the 9th Edition, it was decided to combine them into one book (excluding the phase diagrams, which will be published by ASM next year as a two-volume set entitled Binary Alloy Phase Diagrams; volumes on ternary and higher order phase diagrams are also planned). In this latest addition to the prestigious Metals Handbook series, the reader will find detailed treatments of every aspect of metallography, from advances in standard specimen preparation methods to the latest computerized color imaging techniques. Coverage has been significantly expanded to encompass more materials and representative microstructures, including information on metallographic techniques associated with metal-matrix and resin-matrix fiber composites. There are brand-new articles written by internationally recognized authorities on etching, on optical, scanning electron, and transmission electron microscopy, and on color metallography. We would like to express our appreciation for the hard work and dedication of the Handbook staff, the ASM Handbook Committee, and the hundreds of authors, reviewers, and other contributors listed in the next several pages. Many of the more than 3,000 micrographs in this Volumes were contributed over the years by friends of ASM and carry no specific attribution in their captions. To these anonymous metallographers we extend special thanks. John W. Pridgeon President Edward L. Langer Managing Director Preface Metallography is one of the metallurgist's most valuable tools. Since the pioneering work of Henry Clifton Sorby in petrography and metallography in the 1860s a multitude of techniques has been developed (particularly during the past 40 years) and applied to the study and characterization of metals and other engineering materials, such as ceramics and polymers. In addition to the conventional optical microscope, the materials scientist can utilize electron microscopes and deploy characterization techniques such x-ray diffraction, electron microprobe analysis, and field ion microscopy. This Volume examines the development and applicability of optical and electron microscopy as related to the study of metals. A subsequent Volume in this Handbook series (Materials Characterization) will detail alternate methods for crystallographic analysis, as well as methods for examining atomic/molecular structure and determining chemical composition. Metallography is as much an art as a science. The artistry lies in the techniques used to prepare a specimen sectioning, mounting, grinding, polishing, and etching and to photograph a specimen. When properly carried out, these techniques result in a micrograph that is both a true representation of the microstructure of a material and a beautifully executed photograph. Five articles in the first Section of this Volume, "Metallographic Techniques," review the methods used to prepare metallographic specimens for optical microscopy. Attention is given to problems that may be encountered and methods for their control and elimination. These are followed by articles explaining the principles and applicability of optical microscopy, scanning electron microscopy, transmission electron microscopy, and quantitative metallography. The final article in this Section, "Color Metallography," is perhaps the most vivid example of the art and beauty of metallography, as evidence by the eight-page atlas of color micrographs that showcases the work of a number of metallographer/artists. Detailed specimen preparation procedures for various materials are given in the 34 articles in the Section "Metallographic Techniques and Microstructures: Specific Metals and Alloys." Recommended specimen preparation guidelines, information on the characteristics and constituents of various alloy systems, and a series of representative micrographs are presented in each article. Also included in this Section is an in-depth discussion of the metallography of metal-matrix and resin-matrix fiber composite materials. The science of metallography lies in the interpretation of structures, which is thoroughly reviewed in the final Section, "Structures." Following an introductory overview of the subject, 18 articles deal with the principles underlying metallographic structures. Among the microstructural features of metals discussed are: • Solidification structures, including those of pure metals, solid solutions, eutectic alloys, steels, aluminum alloy ingots, and copper alloy ingots • Transformation structures, including structures resulting from precipitation from solid solution, spinodal structures, massive transformation structures, eutectoid structures, bainitic structures, martensitic structures, peritectic structures, and ordered structures • Deformation and annealing structures, including structures resulting from plastic deformation, from plastic deformation at elevated temperature, and from recovery, recrystallization, and grain growth • Textured structures • Crystal structures By virtue of its comprehensive coverage of metallographic techniques and the representation and interpretation of microstructures, metallurgical engineers and technicians should find this Volume a valuable reference work. Undergraduate and graduate students involved in physical metallurgy and/or microscopy coursework should also find it useful. ASM is grateful to the many authors and reviewers who gave freely of their time and knowledge and to the dozens of engineers and metallographers who contributed the thousands of micrographs published in this Volume. Special thanks are due to Robert J. Gray, George F. Vander Voort, and Paul E. Danielson for their extraordinary efforts and assistance throughout this project. Publication if this Volume would not have been possible without the valuable contributions of all these individuals. The Editors General Information Officers and Trustees of the American Society for Metals (1984-1985) Officers • John W. Pridgeon President and TrusteeConsultant • Raymond F. Decker Vice President and TrusteeMichigan Technological University • M. Brian Ives Immediate Past President and TrusteeMcMaster University • Frank J. Waldeck TreasurerLindberg Corporation Trustees • Herbert S. Kalish Adamas Carbide Corporation • William P. Koster Metcut Research Associates, Inc. • Robert E. Luetje Armco, Inc. • Richard K. Pitler Allegheny Ludlum Steel Corporation • Wayne A. Reinsch Timet • C. Sheldon Roberts ConsultantMaterials and Processes • Gerald M. Slaughter Oak Ridge National Laboratory • William G. Wood Technology Materials • Klaus M. Zwilsky National Materials Advisory BoardNational Academy of Sciences [...]... (19 4 0 -1 942) (Member, 19 3 7 -1 942) L.B Case (19 3 1- 1 933) (Member, 19 2 7 -1 933) E.O Dixon (19 5 2 -1 954) (Member, 19 4 7 -1 955) R.L Dowdell (19 3 8 -1 939) (Member, 19 3 5 -1 939) J.P Gill (19 37) (Member, 19 3 4 -1 937) J.D Graham (19 6 6 -1 968) (Member, 19 6 1- 1 970) J.F Harper (19 2 3 -1 926) (Member, 19 2 3 -1 926) C.H Herty, Jr (19 3 4 -1 936) (Member, 19 3 0 -1 936) J.B Johnson (19 4 8 -1 9 51) (Member, 19 4 4 -1 9 51) L.J Korb (19 83) (Member, 19 7 8 -1 983)... Leiter (19 6 2 -1 963) (Member, 19 5 5 -1 958, 19 6 0 -1 964) G.V Luerssen (19 4 3 -1 947) (Member, 19 4 2 -1 947) Gunvant N Maniar (19 7 9 -1 980) (Member, 19 7 4 -1 980) James L McCall (19 82) (Member, 19 7 7 -1 982) W.J Merten (19 2 7 -1 930) (Member, 19 2 3 -1 933) N.E Promisel (19 5 5 -1 9 61) (Member, 19 5 4 -1 963) G.J Shubat (19 7 3 -1 975) (Member, 19 6 6 -1 975) W.A Stadtler (19 6 9 -1 972) (Member, 19 6 2 -1 972) Raymond Ward (19 7 6 -1 978) (Member, 19 7 2 -1 978)... (woodfilled) 13 517 0 275340 17 29 25004200 Diallyl phthalate (asbestosfilled) 14 016 0 285320 17 21 25003000 Time, min Coefficient of thermal expansion in./in °C(a) Abrasion rate, μm/min(b) Polishing rate, μm/min(c) Transparency Chemical resistance 10 0 2.9 Opaque Attacked by strong acids and alkalies 19 0 0.8 Opaque Attacked by strong acids and alkalies °C °F 5 -1 2 14 0 285 3. 0-4 .5 1 0-5 6 -1 2 15 0 300 3.5 × 1 0-5 × Source:... Water, white to clear 65 15 0 5-9 × 1 0-5 7.5 Not resistant to strong acids and some solvents, especially ethanol 6 65 15 0 Light brown, clear 75 16 5 6-8 × 1 8-5 20 1. 1 Not resistant to strong acids 4000 Opaque 60 14 0 5 -1 8 × 1 0-5 45 1. 3 Resistant to most acids and alkalies (a) Determined by method ASTM D 648 (b) Specimen 10 0 mm2 (0 .15 in.) in area abraded on a slightly worn 600-grit silicon carbide... Print Volume) Metals handbook Includes bibliographies and indexes.Contents: v 1 Properties and selection v 2.Properties and selection nonferrous alloys and puremetals [etc.] v 9 Metallography and microstructures 1 Metals Handbooks, manuals, etc 1 American Society for metals Handbook Committee TA459.M43 19 78 669 7 8 -1 4934 ISBN 0-8 717 0-0 0 7-7 (v 1) SAN 20 4-7 586 Printed in the United States of America Sectioning... the ASM Handbook Committee (19 8 4 -1 985) • • • • • • • • • • • • • Thomas D Cooper (Chairman 19 8 4- ; Member 19 8 1- ) Air Force Wright Aeronautical Laboratories Roger J Austin (19 8 4-) Materials Engineering Consultant Deane I Biehler (19 8 4-) Caterpillar Tractor Company Rodney R Boyer (19 8 2-) Boeing Commercial Airplane Company Wilson G Dobson (19 8 2-) Binary Engineering Associates Jess F Helsel (19 8 2-) Helsel... Cooling Temperature Pressure °C °F MPa psi Methyl methacrylate 14 016 5 285330 17 29 25004200 Polystyrene 14 016 5 285330 17 Polyvinyl formal 220 430 Polyvinyl chloride 12 016 0 250320 Source: Ref 1 Heat distortion temperature(a) Time (min) Temperature Pressure °C °F MPa psi 6 7585 16 518 5 max max 6-7 2500 5 85 18 5 212 max 27 4000 0.7 10 0 nil 60 14 0 27 Coefficient of thermal expansion, in./in °C Abrasion... Hubbard (19 8 4-) HinderTec, Inc Dennis D Huffman (19 8 3-) The Timken Company Conrad Mitchell (19 8 3-) United States Steel Corporation David LeRoy Olson (19 8 2-) Colorado School of Mines Ronald J Ries (19 8 3-) The Timken Company Derek E Tyler (19 8 3-) Olin Corporation Leonard A Weston (19 8 2-) Lehigh Testing Laboratories, Inc Previous Chairmen of the ASM Handbook Committee Previous Chairmen of the ASM Handbook... 500 to 750 gf, and the wire would travel 20 to 30 m/min (60 to 10 0 ft/min) 0.0055 0.2 0.008 45 0.23 0. 009 0.25 0. 010 60 0.29 0. 011 5 0.3 0. 012 60 0.34 0. 013 5 When a firm, hard, tough specimen is to be cut and when surface damage poses little or no problem, the fastest and most economical method of cutting usually is best For example, a 0.4-mm (0. 015 -in.) diam wire impregnated with 6 0- m diamonds would... (19 81) (Member, 19 7 6 -1 9 81) D.J Wright (19 6 4 -1 965) (Member, 19 5 9 -1 967) Staff ASM International staff who contributed to the development of the Volume included Kathleen Mills, Manager of Editorial Operations; Joseph R Davis, Senior Technical Editor; James D Destefani, Technical Editor; Deborah A Dieterich, Production Editor; George M Crankovic, Assistant Editor; Heather J Frissell, Assistant Editor; and . Johnson (19 4 8 -1 9 51) (Member, 19 4 4 -1 9 51) • L.J. Korb (19 83) (Member, 19 7 8 -1 983) • R.W.E. Leiter (19 6 2 -1 963) (Member, 19 5 5 -1 958, 19 6 0 -1 964) • G.V. Luerssen (19 4 3 -1 947) (Member, 19 4 2 -1 947) •. 19 3 5 -1 939) • J.P. Gill (19 37) (Member, 19 3 4 -1 937) • J.D. Graham (19 6 6 -1 968) (Member, 19 6 1- 1 970) • J.F. Harper (19 2 3 -1 926) (Member, 19 2 3 -1 926) • C.H. Herty, Jr. (19 3 4 -1 936) (Member, 19 3 0 -1 936). (19 7 9 -1 980) (Member, 19 7 4 -1 980) • James L. McCall (19 82) (Member, 19 7 7 -1 982) • W.J. Merten (19 2 7 -1 930) (Member, 19 2 3 -1 933) • N.E. Promisel (19 5 5 -1 9 61) (Member, 19 5 4 -1 963) • G.J. Shubat (19 7 3 -1 975)