1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Volume 01 - Properties and Selection Irons, Steels, and High-Performance Alloys Part 7 potx

160 467 1

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 160
Dung lượng 3 MB

Nội dung

Fig. 1 Properties of cast carbon steels as a function of carbon content and heat treatment. (a) Tensile strength and reduction of area. (b) Yield strength and elongation. (c) Brinell hardness. (d) Charpy V- notch impact energy Low-alloy steels contain, in addition to carbon, alloying elements up to a total alloy content of 8%. Cast steels containing more than the following amounts of a single alloying element are considered low-alloy cast steel: Element Amount, % Manganese 1.00 Silicon 0.80 Nickel 0.50 Copper 0.50 Chromium 0.25 Molybdenum 0.10 Vanadium 0.05 Tungsten 0.05 Aluminum, titanium, and zirconium are used for the deoxidation of low-alloy steels. Of these elements, aluminum is used most frequently because of its effectiveness and low cost. Numerous types of cast low-alloy steel grades exist to meet the specific requirements of the end-use, such as structural strength and resistance to wear, heat, and corrosion. The designations of the American Iron and Steel Institute (AISI) and the Society of Automotive Engineers (SAE) have historically been used to identify the various types of steel by their principal alloy content. Cast steels, however, do not precisely follow the compositional ranges specified by AISI and SAE designations for wrought steels. In most cases, the cast steel grades contain 0.30 to 0.65% Si and 0.50 to 1.00% Mn, unless otherwise specified. The principal low-alloy cast steel designations, their AISI and SAE equivalents, and their alloy type are: Cast steel designation Nearest wrought equivalent Alloying elements 1300 1300 Manganese 8000, 8400 8000, 8400 Manganese, molybdenum 80B00 80B00 Manganese, molybdenum, boron 2300 2300 Nickel 8600, 4300 8600, 4300 Nickel, chromium, molybdenum 9500 9500 Manganese, nickel, chromium, molybdenum 4100 4100 Chromium, molybdenum The 8000, 8400, 2300, and 9500 alloy types are used extensively as cast steels. There are additional alloy types that are infrequently specified as cast steels, that is, 3100 (nickel-chromium), 3300 (nickel-chromium), 4000 (molybdenum), 5100 (chromium), 6100 (chromium-vanadium), 4600 (nickel-molybdenum), and 9200 (silicon). Further information on the elements used in alloy steel castings is provided in the section "Low-Alloy Cast Steels" of this article. Specifications. Steel castings are usually purchased to meet specified mechanical properties, with some restrictions on chemical composition. Tables 1 and 2 list the requirements given in various specifications of the American Society of Testing and Materials (ASTM) and in SAE J435c. Table 1 primarily lists carbon steel castings (with some comparable low-alloy types), while Table 2 lists several low-alloy cast steels and some cast steels with chromium contents up to 10.0%. Table 1 Summary of specification requirements for various carbon steel castings Unless otherwise noted, all the grades listed in this table are restricted to a phosphorus content of 0.40% max and a sulfur content of 0.045% max. Tensile strength (a) Yield strength (a) Chemical composition (b) , % Class or grade MPa ksi MPa ksi Minimum elongation in 50 mm (2 in.), % Minimum reduction in area, % C Mn Si Other requirements Condition or specific application ASTM A 27: carbon steel castings for general applications N-1 . . . . . . . . . . . . . . . . . . 0.25 (c) 0.75 (c) 0.80 0.06% S, 0.05% P Chemical analysis only N-2 . . . . . . . . . . . . . . . . . . 0.35 (c) 0.60 (c) 0.80 0.06% S, 0.05% P Heat treated but not mechanically tested U60-30 415 60 205 30 22 30 0.25 (c) 0.75 (c) 0.80 0.06% S, 0.05% P Mechanically tested but not heat treated 60-30 415 60 205 30 24 35 0.30 (c) 0.60 (c) 0.80 0.06% S, 0.05% P Heat treated and mechanically tested 65-35 450 65 240 35 24 35 0.30 (c) 0.70 (c) 0.80 0.06% S, 0.05% P Heat treated and mechanically tested 70-36 485 70 250 36 22 30 0.35 (c) 0.70 (c) 0.80 0.06% S, 0.05% P Heat treated and mechanically tested 70-40 485 70 275 40 22 30 0.25 (c) 1.20 (c) 0.80 0.06% S, 0.05% P Heat treated and mechanically tested ASTM A 148: carbon steel castings for structural applications (d) 80-40 550 80 275 40 18 30 (e) (e) (e) 0.06% S, 0.05% P Composition and heat treatment necessary to achieve specified mechanical properties 80-50 550 80 345 50 22 35 (e) (e) (e) 0.06% S, 0.05% P Composition and heat treatment necessary to achieve specified mechanical properties 90-60 620 90 415 60 20 40 (e) (e) (e) 0.06% S, 0.05% P Composition and heat treatment necessary to achieve specified mechanical properties 105-85 725 105 585 85 17 35 (e) (e) (e) 0.06% S, 0.05% P Composition and heat treatment necessary to achieve specified mechanical properties SAE J435c: see Table 2 for alloy steel castings specified in SAE J435c 0022 . . . . . . . . . . . . . . . . . . 0.12- 0.22 0.50- 0.90 0.60 187 HB max Low carbon steel suitable for carburizing 0025 415 60 207 30 22 30 0.25 (c) 0.75 (c) 0.80 187 HB max Carbon steel welding grade 0030 450 65 241 35 24 35 0.30 (c) 0.70 (c) 0.80 131-187 HB Carbon steel welding grade 0050A 585 85 310 45 16 24 0.40- 0.50 0.50- 0.90 0.80 170-229 HB Carbon steel medium- strength grade 0050B 690 100 485 70 10 15 0.40- 0.50 0.50- 0.90 0.80 207-225 HB Carbon steel medium- strength grade 080 550 80 345 50 22 35 . . . . . . . . . 163-207 HB Medium-strength low- alloy steel 090 620 90 415 60 20 40 . . . . . . . . . 187-241 HB Medium-strength low- alloy steel HA, HB, HC (f) . . . . . . . . . . . . . . . . . . 0.25- 0.34 (f) (f) See Fig. 2. Hardenability grades (Fig. 2) ASTM A 216: carbon steel castings suitable for fusion welding and high-temperature service WCA 415- 585 60- 85 205 30 24 35 0.25 0.70 (c) 0.60 (g) Pressure-containing parts WCB 485- 655 70- 95 250 36 22 35 0.30 1.00 (c) 0.60 (g) Pressure-containing parts WCC 485- 655 70- 95 275 40 22 35 0.25 1.20 (c) 0.50 (g) Pressure-containing parts Other ASTM cast steel specifications with carbon steel grades (h) A 352- LCA 415- 585 60- 85 205 30 24 35 0.25 0.70 (c) 0.60 (g)(i)(j) Low-temperature applications A 352- LCB 450- 620 65- 90 240 35 24 35 0.30 1.00 0.60 (g) , (j) , (k) Low-temperature applications A 356- grade 1 485 70 250 36 20 35 0.35 0.70 (c) 0.60 0.035% P max, 0.030 S max Castings for valve chests, throttle valves, and other heavy-walled components for steam turbines A 757- A1Q 450 65 240 35 24 35 0.30 1.00 0.60 (j) , (k) , (l) Castings for pressure- containing applications at low temperatures (a) Where a single value is shown, it is a minimum. (b) Where a single value is shown, it is a maximum. (c) For each reduction of 0.01% C below the maximum specified, an increase of 0.04% Mn above the maximum specified is permitted up to the maximums given in the applicable ASTM specifications. (d) Grades may also include low-alloy steels; see Table 2 for the stronger grades of ASTM A 148. (e) Unless specified by purchaser, the compositions of cast steels in ASTM A 148 are selected by the producer in order to achieve the specified mechanical properties. (f) Purchased on the basis of hardenability, with manganese and other elements added as required. (g) Specified residual elements include 0.30% Cu max, 0.50% Ni max, 0.50% Cr max, 0.20% Mo max, and 0.03% V max, with the total residual elements not exceeding 1.00%. (h) These ASTM specifications also include alloy steel castings for the general type of applications listed in the Table. (i) Testing temperature of -32 °C (-25 °F). (j) Charpy V-notch impact testing at the specified test temperature with an energy value of 18 J (13 ft · lbf) min for two specimens and an average of three. (k) Testing temperature of -46 °C (-50 °F). (l) Specified residual elements of 0.03% V, 0.50% Cu, 0.50% Ni, 0.40% Cr, and 0.25% Mo, with total amount not exceeding 1.00%. Sulfur and phosphorus content, each 0.025% max Table 2 Summary of specification requirements for various alloy steel castings with chromium contents up to 10% Tensile strength (b) Yield strength (b) Composition (c) ,% Material class (a) MPa ksi MPa ksi Minimum elongation in 50 mm (2 in.), % Minimum reduction in area, % C Mn Si Cr Ni Mo Other ASTM A 148: steel castings for structural applications (d) 115-95 795 115 655 95 14 30 . . . . . . . . . . . . . . . . . . (e) 135-125 930 135 860 125 9 22 . . . . . . . . . . . . . . . . . . (e) 150-135 1035 150 930 135 7 18 . . . . . . . . . . . . . . . . . . (e) 160-145 1105 160 1000 145 6 12 . . . . . . . . . . . . . . . . . . (e) 165-150 1140 165 1035 150 5 20 . . . . . . . . . . . . . . . . . . (f) 165-150L 1140 165 1035 150 5 20 . . . . . . . . . . . . . . . . . . (f) 210-180 1450 210 1240 180 4 15 . . . . . . . . . . . . . . . . . . (f) 210-180L 1450 210 1240 180 4 15 . . . . . . . . . . . . . . . . . . (f) 260-210 1795 260 1450 210 3 6 . . . . . . . . . . . . . . . . . . (f) 260-210L 1795 260 1450 210 3 6 . . . . . . . . . . . . . . . . . . (f) SAE J435c: see Table 1 for the carbon steel castings specified in SAE J435c (g) 0105 725 105 586 85 17 35 . . . . . . . . . . . . . . . . . . (h) 0120 827 120 655 95 14 30 . . . . . . . . . . . . . . . . . . (h) 0150 1035 150 862 125 9 22 . . . . . . . . . . . . . . . . . . (h) 0175 1207 175 1000 145 6 12 . . . . . . . . . . . . . . . . . . (h) ASTM A 217: alloy steel castings for pressure-containing parts and high-temperature service WC1 450- 620 65- 90 240 35 24 35 0.25 0.50- 0.80 0.60 0.35 (i) 0.50 (i) 0.45- 0.65 (i)(j) WC4 485- 655 70- 95 275 40 20 35 0.20 0.50- 0.80 0.60 0.50- 0.80 0.70- 1.10 0.45- 0.65 (j) , (k) WC5 485- 655 70- 95 275 40 20 35 0.20 0.40- 0.70 0.60 0.50- 0.90 0.60- 1.00 0.90- 1.20 (j) , (k) WC6 485- 655 70- 95 275 40 20 35 0.20 0.50- 0.80 0.60 1.00- 1.50 0.50 (i) 0.45- 0.65 (i) , (j) WC9 485- 655 70- 95 275 40 20 35 0.18 0.40- 0.70 0.60 2.00- 2.75 0.50 (i) 0.9- 1.20 (i) , (j) WC11 550- 725 80- 105 345 50 18 45 0.15- 0.21 0.50- 0.80 0.30- 0.60 1.00- 1.75 0.50 (i) 0.45- 0.65 (i) , (l) C5 620- 795 90- 115 415 60 18 35 0.20 0.40- 0.70 0.75 4.00- 6.50 0.50 (i) 0.45- 0.65 (i) , (j) C12 620- 795 90- 115 415 60 18 35 0.20 0.35- 0.65 1.00 8.00- 10.00 0.50 (i) 0.90- 1.20 (i) , (j) ASTM A 389: alloy steel castings (NT) suitable for fusion welding and pressure-containing parts at high temperatures C23 485 70 275 40 18 35 0.20 0.30- 0.80 0.60 1.00- 1.50 . . . 0.45- 0.65 (h) , (m) C24 550 80 345 50 15 35 0.20 0.30- 0.80 0.60 1.00- 1.25 . . . 0.90- 1.20 (h) , (m) ASTM A 487: alloy steel castings (NT or QT) for pressure-containing parts at high temperatures 1A (NT) 585- 760 85- 110 380 55 22 40 0.30 1.00 0.80 0.35 (n) 0.50 (n) 0.25 (n) , (o) 0.5Cu (h) , (n) 2B (QT) 620- 795 90- 115 450 65 22 45 0.30 1.00 0.80 0.35 (n) 0.50 (n) 0.25 (n) , (o) 0.5Cu (h) , (n) 1C (NT or QT) 620 90 450 65 22 45 0.30 1.00 0.80 0.35 (n) 0.50 (n) 0.25 (n) , (o) 0.5Cu (h) , (n) 2A (NT) 585- 760 85- 110 365 53 22 35 0.30 1.10- 1.40 0.80 0.35 (i) 0.50 (i) 0.10- 0.30 (i) , (p) 2B (QT) 620- 795 90- 115 450 65 22 40 0.30 1.10- 1.40 0.80 0.35 (i) 0.50 (i) 0.10- 0.30 (i) , (p) 2C (NT or QT) 620 90 450 65 22 40 0.30 1.10- 1.40 0.80 0.35 (i) 0.50 (i) 0.10- 0.30 (i) , (p) 4A (NT or QT) 620- 795 90- 115 415 60 20 40 0.30 1.00 0.80 0.40- 0.80 0.40- 0.80 0.15- 0.30 (k) , (p) 4B (QT) 725- 895 105- 130 585 85 17 35 0.30 1.00 0.80 0.40- 0.80 0.40- 0.80 0.15- 0.30 (k) , (p) 4C (NT or QT) 620 90 415 60 20 40 0.30 1.00 0.80 0.40- 0.80 0.40- 0.80 0.15- 0.30 (k) , (p) 4D (QT) 690 100 515 75 17 35 0.30 1.00 0.80 0.40- 0.80 0.40- 0.80 0.15- 0.30 (k) , (p) 4E (QT) 795 115 655 95 15 35 0.30 1.00 0.80 0.40- 0.80 0.40- 0.80 0.15- 0.30 (k) , (p) 6A (NT) 795 115 550 80 18 30 0.38 1.30- 1.70 0.80 0.40- 0.80 0.40- 0.80 0.30- 0.40 (k) , (p) 6B (QT) 825 120 655 95 15 35 0.38 1.30- 1.70 0.80 0.40- 0.80 0.40- 0.80 0.30- 0.40 (k) , (p) 7A (QT) (q) 795 115 690 100 15 30 0.20 0.60- 1.00 0.80 0.40- 0.80 0.70- 1.00 0.40- 0.60 (k) , (p) , (r) 8A (NT) 585- 760 85- 110 380 55 20 35 0.20 0.50- 0.90 0.80 2.00- 2.75 . . . 0.90- 1.10 (k) , (p) 8B (QT) 725 105 585 85 17 30 0.20 0.50- 0.90 0.80 2.00- 2.75 . . . 0.90- 1.10 (k) , (p) 8C (QT) 690 100 515 75 17 35 0.20 0.50- 0.90 0.80 2.00- 2.75 . . . 0.90- 1.10 (k) , (p) 9A (NT or QT) 620 90 415 60 18 35 0.33 0.60- 1.00 0.80 0.75- 1.10 0.50 (i) 0.15- 0.30 (i) , (p) 9B (QT) 725 105 585 85 16 35 0.33 0.60- 1.00 0.80 0.75- 1.10 0.50 (i) 0.15- 0.30 (i) , (p) 9C (NT or QT) 620 90 415 60 18 35 Composition same as 9A (NT or QT) but with a slightly higher tempering temperature 9D (QT) 690 100 515 75 17 35 0.33 0.60- 1.00 0.80 0.75- 1.10 0.50 (i) 0.15- 0.30 (i) , (p) 10A (NT) 690 100 485 70 18 35 0.30 0.60- 1.00 0.80 0.55- 0.90 1.40- 2.00 0.20- 0.40 (k) , (p) 10B (QT) 860 125 690 100 15 35 0.30 0.60- 1.00 0.80 0.55- 0.90 1.40- 2.00 0.20- 0.40 (k) , (p) 11A (NT) 485- 655 70- 95 275 40 20 35 0.20 0.50- 0.80 0.60 0.50- 0.80 0.70- 1.10 0.45- 0.65 (p) , (s) 11B (QT) 725- 895 105- 130 585 85 17 35 0.20 0.50- 0.80 0.60 0.50- 0.80 0.70- 1.10 0.45- 0.65 (p) , (s) 12A (NT) 485- 655 70- 95 275 40 20 35 0.20 0.40- 0.70 0.60 0.50- 0.90 0.60- 1.00 0.90- 1.20 (p) , (s) 12B (QT) 725- 895 105- 130 585 85 17 35 0.20 0.40- 0.70 0.60 0.50- 0.90 0.60- 1.00 0.90- 1.20 (p) , (s) 13A (NT) 620- 795 90- 115 415 60 18 35 0.30 0.80- 1.10 0.60 0.40 (t) 1.40- 1.75 0.20- 0.30 (p) , (t) 13B (QT) 725- 895 105- 130 585 85 17 35 0.30 0.80- 1.10 0.60 0.40 (t) 1.40- 1.75 0.20- 0.30 (p) , (t) 14A (QT) 825- 1000 120- 145 655 95 14 30 0.55 0.80- 1.10 0.60 0.40 (t) 1.40- 1.75 0.20- 0.30 (p) , (t) 16A (NT) (u) 485- 655 70- 95 275 40 22 35 0.12 (v) 2.10 (v) 0.50 0.20 (s) 1.00- 1.40 0.10 (s) (s) , (w) (a) NT, normalized and tempered; QT, quenched and tempered. (b) When a single value is shown, it is a minimum. (c) When a single value is shown, it is a maximum. (d) Unless specified by the purchaser, the compositions of cast steels in ASTM A 148 are selected by the producer and therefore may include either carbon or alloy steels; see Table 1 for the lower-grade steels specified in ASTM A 148. (e) 0.06% S (max), 0.05% P (max). (f) 0.020% S (max, 0.020% P (max). (g) Similar to the cast steel in ASTM A 148. (h) 0.045% S (max), 0.040% P (max). (i) When residual maximums are specified for copper, nickel, nickel, chromium, tungsten, and vanadium, their total content shall not exceed 1.00%. (j) 0.050% Cu (max), 0.10% W (max), 0.045% S(max), 0.04% P (max). (k) When residual maximums are specified for copper, nickel, chromium, tungsten, and vanadium, their total residual content shall not exceed 0.60%. (l) 0.35% Cu (max), 0.03% V (max), 0.015% S (max), 0.020% P (max). (m) 0.15-0.25% V. (n) The specified residuals of copper, nickel, chromium, and molybdenum (plus tungsten), shall not exceed a total content of 1.00%. (o) Includes the residual content of tungsten. (p) 0.50% Cu (max), 0.10% W (max), 0.03% V (max), 0.045% S (max), 0.04% P (max). (q) Material class 7A is a proprietary steel and has a maximum thickness of 63.5 mm (2 1 2 in.). (r) Specified elements include 0.15-0.50% Cu, 0.03-0.10% V, and 0.002-0.006% B. (s) When residual maximums are specified for copper, nickel, chromium, tungsten, molybdenum, and vanadium, their total content shall not exceed 0.50%. [...]... tempered; 25 heats (c) Nickel steel, 0.20C-2.25Ni, normalized and tempered; 200 heats (d) Mn-Mo steel, 0.30C-1.50Mn-0.35Mo, normalized and tempered; 40 heats (e) Mn-Mo steel, 0.30C-1.50Mn-0.35Mo, quenched and tempered; 268 to 302 HB; 50 heats (f) Mn-Mo steel, 0.30C-1.50Mn-0.35Mo, quenched and tempered; 300 to 321 HB; 50 heats Physical Properties The physical properties of cast steel are generally similar... °C (-5 0 °F) Steel Room temperature JIc Jc Kc KIc kJ/m2 in · lbf/in2 kJ/m2 in · lbf/in2 MPa 0030 73 415 130 118 0050A 37( a) 209 92(a) 84 25(b) 145 77 (b) 70 C-Mn 84 479 138 126 Mn-Mo 139 79 4 179 163 8630 80 456 135 123 Steel -4 5 °C (-5 0 °F) JIc m ksi in MPa m ksi in Percent decrease Jc KIc Kc kJ/m2 in · lbf/in2 MPa 49(a) 282 108(a) 98 32 93(b) 85 40 17( a)... 8620(b) 3 0-4 0 HRC 82 5-9 65 12 0-1 40 110 5-1 240 16 0-1 80 5 5-1 10 4 0-8 0 65 5160(c) 1 97 275 40 72 5 105 10 7 55 1095(c) 192 380 55 655 95 3 2 45 (a) Where 1212 represents 100% (b) Quenched and tempered (c) Annealed In rolling-contact bearings, it is essential to maintain an adequate strength throughout the region of maximum subsurface shear stresses Figure 3 shows an estimated relationship between hardness and shear... ferritic-pearlitic cast steels (0030 and 0050A) The 8630 cast steel had the largest decrease in fracture toughness at -4 5 °C (-5 0 °F) compared to room temperature The C-Mn and Mn-Mo steels had ductile stable crack growth and the highest J values at both room temperature and -4 5 °C (-5 0 °F) Based on J-integral tests, they were the best steels at both temperatures Machinability Extensive lathe and drilling... properties of a water-quenched cast 8630 steel as a function of tempering temperature Section size effects were discussed in the section "Mechanical Properties" of this article Fig 15 Distribution of mechanical properties and carbon and alloy contents for alloy steel castings (a) Cr-Mo-V steel, 1.00Cr-1.00Mo-0.25V, normalized and tempered; 25 heats (b) Cr-Mo steel, 1.00Cr-1.00Mo, normalized and tempered;... for Testing and Materials, 1 970 , p 28 0-3 02 2 M.T Groves and J.F Wallace, Cast Steel Plane Fracture Toughness, Charpy V-Notch and Dynamic Tear Test Correlations, Steel Cast Res., No 70 , March 1 975 , p 1-9 3 "Fatigue and Fracture Toughness of Five Carbon or Low-Alloy Steels at Room or Low Climatic Temperatures," Research Report 9A, Steel Founders' Society of America, Oct 1982 4 H.D Greenberg and W.G Clark,... 0050A kJ/m2 0030 in · lbf/in2 78 56(b) 51 46 m ksi in MPa m ksi in C-Mn 75 428 132 120 11 Mn-Mo 118 674 166 151 15 8630 38(a) 218 94(a) 86 52 30(b) 174 85(b) 77 62 Source: Ref 3 (a) Average value (b) Lowest value For cost-effective testing, the J-integral approach was used to estimate the fracture toughness of some of the steels in Table 7 The J-integral approach can be used... Nickel-vanadium and nickel-manganese cast steels are used for structural purposes requiring wear resistance and high strength The manganese-molybdenum cast steels are also used in these applications Nickel-Chromium-Molybdenum Cast Steels The addition of molybdenum to nickel-chromium steel significantly improves hardenability and makes the steel relatively immune to temper embrittlement Nickel-chromium-molybdenum... steel castings are, first, a medium-carbon steel corresponding to ASTM A 27 6 5-3 5 or SAE 0030 and second, a higher-strength steel, often alloyed and fully heat treated, similar to ASTM A 148 10 5-8 5 or SAE 010 5 Particularly when the purchaser heat treats a part after other processing, a casting will be ordered to compositional limits closely equivalent to the AISI-SAE wrought steel compositions, with... mechanical properties of low-alloy steels plotted against yield strength These properties are, of course, a function of alloy content, heat treatment, and section size Figure 15 shows the wide range of properties obtainable through changes in carbon and alloy content and heat treatment (note the properties for 0.30% C, 1.50% Mn, and 0.35% Mo steel) Figure 16 shows the variations in mechanical properties . 48 5- 655 7 0- 95 275 40 20 35 0.20 0.5 0- 0.80 0.60 0.5 0- 0.80 0 .7 0- 1.10 0.4 5- 0.65 (j) , (k) WC5 48 5- 655 7 0- 95 275 40 20 35 0.20 0.4 0- 0 .70 0.60 0.5 0- 0.90 0.6 0- 1.00 0.9 0- 1.20. WC6 48 5- 655 7 0- 95 275 40 20 35 0.20 0.5 0- 0.80 0.60 1.0 0- 1.50 0.50 (i) 0.4 5- 0.65 (i) , (j) WC9 48 5- 655 7 0- 95 275 40 20 35 0.18 0.4 0- 0 .70 0.60 2.0 0- 2 .75 0.50 (i) 0. 9- 1.20. WC11 55 0- 72 5 8 0- 105 345 50 18 45 0.1 5- 0.21 0.5 0- 0.80 0.3 0- 0.60 1.0 0- 1 .75 0.50 (i) 0.4 5- 0.65 (i) , (l) C5 62 0- 79 5 9 0- 115 415 60 18 35 0.20 0.4 0- 0 .70 0 .75 4.0 0- 6.50 0.50 (i)

Ngày đăng: 10/08/2014, 12:21

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
5. W.C. Leslie, The Physical Metallurgy of Steels, McGraw-Hill, 1981, p 200, 370 Sách, tạp chí
Tiêu đề: The Physical Metallurgy of Steels
21. Welding Handbook, Vol 4, Metals and Their Weldability, 7th ed., American Welding Society, 1982, p 24- 32 Sách, tạp chí
Tiêu đề: Welding Handbook," Vol 4, "Metals and Their Weldability
22. P.E. Repas, Metallurgical Fundamentals for HSLA Steels, in Microalloyed HSLA Steels, ASM INTERNATIONAL, 1988, p 5 Sách, tạp chí
Tiêu đề: Microalloyed HSLA Steels
23. E.E. Fletcher, High-Strength Low-Alloy Steels: Status Selection and Physical Metallurgy, Battelle Press, 1979 Sách, tạp chí
Tiêu đề: High-Strength Low-Alloy Steels: Status Selection and Physical Metallurgy
24. F.B. Pickering, Physical Metallurgy and Design of Steels, Applied Science Publishers, 1978, p 65, 80 25. A.J. DeArdo, An Overview of Microalloyed Steels, in Effects of Microalloying on the Hot-WorkingBehavior of Ferrous Alloys, 8th Process Technology Development Proceedings, American Iron and Steel Institute, 1988 Sách, tạp chí
Tiêu đề: Physical Metallurgy and Design of Steels," Applied Science Publishers, 1978, p 65, 80 25. A.J. DeArdo, An Overview of Microalloyed Steels, in "Effects of Microalloying on the Hot-Working "Behavior of Ferrous Alloys
26. L.F. Porter, High-Strength Low-Alloy Steels, in Encyclopedia of Materials Science and Engineering, Vol 3, M.B. Bever, Ed., Pergamon Press and MIT Press, 1986, p 2157-2162 Sách, tạp chí
Tiêu đề: Encyclopedia of Materials Science and Engineering
27. L. Meyer, F. Heisterkamp, and W. Mueschenborn, Columbium, Titanium, and Vanadium in Normalized, ThermoMechanically Treated and Cold-Rolled Steels, in Microalloying '75, Conference Proceedings (Washington, D.C., Oct 1975), Union Carbide Corporation, 1977, p 153-167 Sách, tạp chí
Tiêu đề: Microalloying '75
28. G. Tither, Developments in HSLA Steels Particularly for Pipe Line and Offshore Structural Applications, in Metallurgical and Welding Advances in High Strength Low-Alloy Steels, The Danish Corrosion Centre and The Danish Welding Institute, 1984 Sách, tạp chí
Tiêu đề: Metallurgical and Welding Advances in High Strength Low-Alloy Steels
29. C.I. Garcia and A.J. DeArdo, Structure and Properties of ULCB Plate Steels for Heavy Section Application, in Microalloyed HSLA Steels, ASM INTERNATIONAL, 1988, p 291-299 Sách, tạp chí
Tiêu đề: Microalloyed HSLA Steels
31. W.B. Morrison, The Influence of Small Niobium Additions on Properties of Carbon-Manganese Steels, J. Iron Steel Inst., Vol 201, 1963, p 317-325 Sách, tạp chí
Tiêu đề: J. "Iron Steel Inst
32. P. Choquet et al., Optimization of the Hot Rolling of High Grade Pipeline Steels at the Hot Strip Mill, in Microalloyed HSLA Steels, ASM INTERNATIONAL, 1988, p 571-579 Sách, tạp chí
Tiêu đề: et al"., Optimization of the Hot Rolling of High Grade Pipeline Steels at the Hot Strip Mill, in "Microalloyed HSLA Steels
34. D.H. Stone and W.S. Pellini, Application of HSLA Steels for Construction of Railroad Tank Cars, in Microalloyed HSLA Steels, ASM INTERNATIONAL, 1988, p 411-420 Sách, tạp chí
Tiêu đề: Microalloyed HSLA Steels
37. S. Hayami and T. Furukawa, A Family of High-Strength, Cold-Rolled Steels, in Microalloying '75, Conference Proceedings (Washington, DC, Oct 1975), Union Carbide, 1977, p 311-320 Sách, tạp chí
Tiêu đề: Microalloying '75
39. "Trend 71: Depicting Steel in Modern Architecture," 30.5M/BP/8901/01, Stelco Steel, Jan 1989 40. The Design of the Retractable Roof System, Eng. Dig. (Canada), June 1989 Sách, tạp chí
Tiêu đề: Trend 71: Depicting Steel in Modern Architecture
42. "Structural Steels: Selection and Uses," 10M/SC/8344/6, 5th ed., Stelco Inc., Dec 1983 Sách, tạp chí
Tiêu đề: Structural Steels: Selection and Uses
33. K.E. Richter, Cold- and Hot-Rolled Microalloyed Steel Sheet in Opel Cars--Experience and Applications Khác

TỪ KHÓA LIÊN QUAN