Section 2: Glasses 288 Wavelength (nm O-I EY-1 (discontinued) 325 442 632.8 1064 Verdet constant, V(rad/T m) –273 –98.0 –41.9 –11.9 Loss coefficient, α (cm –1 ) — — — <0.005 Index of refraction, n 1.665 1.639 1.624 1.615 Wavelength (nm) O-I EY-2 (discontinued) 325 442 632.8 1064 Verdet constant, V(rad/T m) —— — –11 Loss coefficient, α (cm –1 ) — — — <0.010 Index of refraction, n — — — 1.607 Optical Properties of Paramagnetic Faraday Rotator Glasses Glass type Transmission range (µm) Refractive index n D Abbe number ν D dn/dT (10 -6 /K) Nonlinear index n 2 calc. (10 13 esu) FR-4 ~0.4–2.0 1.5732 58.0 2.8 1.59 FR-5 ~0.4–1.5* 1.6864 53.5 7.5 2.45 FR-7 ~0.4–1.5* 1.5316 74.9 – 0.95 M-18 ~0.4–1.5* 1.682 48.8 7.5 2.7 M-24 ~0.4–1.5* 1.701 52.0 – 2.6 M-32 ~0.4–1.5* 1.727 51.1 – 2.9 * Tb 3+ absorption line at ~0.54 µm. Mechanical and Thermal Properties of Paramagnetic Faraday Rotator Glasses Glass type Density (g/cm 3 ) Young’s modulus E (10 3 N/mm 2 ) Poisson’s ratio µ Knoop hardness (N/mm 2 ) Thermal expansion ( 10 -6 /°C) Transform. temp (°C) FR-4 3.10 65.2 0.244 6020 98 625 FR-5 4.28 108 0.22 7310 47 756 FR-7 4.32 – – 5070 17.1 398 M-18 4.33 113 0.339 7380 5.63 757 M-24 4.45 121 0.326 7500 5.59 775 M-32 4.85 120 0.306 7930 6.00 774 Data from manufactures’ sheets. © 2003 by CRC Press LLC Section 2: Glasses 289 2.11.4 Gradient-Index Glasses Gradient-index (GRIN) glasses are ones in which the index of refraction varies spatially within the glass. A radial gradient is one that is symmetric about a line; therefore the surfaces of constant index of refraction are cylinders. There are two commonly used mathematical representations for such gradients. The first, used to specify products manufactured by Nippon Sheet Glass, is N(r)= N 0 (1 – Ar 2 /2 + h 4 r 4 + h 6 r 6 + . . . ); the second is N(r)= N 00 + N 10 r 2 + N 20 r 4 + . . . ). In both cases, the quadratic coefficient determines the focal length, numerical aperture, and other first-order properties of the lens. The higher- order coefficients determine the image quality. The tables below present catalog data for Nippon Sheet Glass (NSG) materials and those of Gradient Lens Corporation(GLC) together with calculated maximum numerical aperture (NA) and quarter-pitch length. Other diameters and numerical apertures may be available; the reader should contact the appropriate vendor for current data. NSG Radial Gradient Lenses (Selfoc) SLS SLS SLW SLW SLW SLW SLH Numerical aperture 0.37 0.37 0.46 0.46 0.46 0.46 0.6 Diameter (mm) 1 2 1 1.8 2 31.8 Wavelength (µm) 0.63 0.63 0.63 0.63 0.63 0.63 0.634 2.49E –1 6.10E –2 3.70E –1 1.15E –1 9.24E –2 4.24E –2 1.85E –1 Square root A 0.499 0.247 0.608 0.339 0.304 0.206 0.43 N 00 1.5637 1.5637 1.6075 1.6075 1.6075 1.6075 1.6576 N 10 –1.95E –1 –4.77E –2 –2.97E –1 –9.24E –2 –7.43E –2 –3.41E –2 –1.53E –1 ∆ N –4.87E –2 –4.77E –2 –7.43E –2 –7.48E –2 –7.43E –2 –7.67E –2 –1.24E –1 Index at edge 1.515 1.516 1.5332 1.5326 1.5332 1.5307 1.5334 Quarter-pitch length 3.15 6.36 2.58 4.63 5.17 7.63 3.65 Data from SELFOC Product Guide, NSG America, Inc., Somerset, NJ 08873. GLC Radial Gradient Lenses (BIG GRINS) BG 30 BG 40 BG 50 Numerical aperture 0.19 0.19 0.19 Diameter (mm) 3 45 Wavelength (µm) 0.63 0.63 0.63 A 5.78E –3 3.25E –3 2.12E –3 Square root A 0.076 0.057 0.046 N 00 1.643 1.643 1.643 N 10 –4.74E –3 –2.67E –3 –1.74E –3 ∆ N –1.07E –2 –1.07E –2 –1.09E –2 Index at edge 1.6323 1.6323 1.6321 Quarter-pitch length 20.67 27.56 34.15 Data from Gradient Lens Corporation Data Sheets, Rochester, NY 14608. Tables from Moore, D. T., Gradient-index materials, Handbook of Laser Science and Technology, Suppl. 2: Optical Materials (CRC Press, Boca Raton, 1995), p. 499. © 2003 by CRC Press LLC Section 2: Glasses 290 2.11.5 Mirror Substrate Glasses Properties of Mirror Substrate Glasses Material (supplier) Density (g/cm 3 ) Thermal expansion coefficient (10 -6 /K) Knoop hardness (kg/mm 2 ) Stress-optical coefficient (TPa –1 ) BK 7 (various) 2.51 8.3 520 2.7 fused silica* 2.20 0.55 635 3.5 LE30 (Hoya) 2.58 0.4 657 2.9 Pyrex (Corning) 2.23 3.2 418 3.9 ULE (Corning) 2.21 0.03 460 4.0 Zerodur® (Schott) 2.53 0.10 630 3.0 * For a list of suppliers, see the section on fused silica. 2.11.6 Athermal Glasses Athermal glass compositions are selected such that the optical path length, defined as the refractive index times the actual geometric distance the light traverses in the glass, is independent of temperature. The change in optical path length ∆W with temperature is ∆W = s[α(n – 1) + dn/dT]∆T = sGT, where s is the actual distance in the glass, α is the coefficient of thermal expansion, n is the refractive index, and T is the temperature. G is the thermo-optical coefficient. For ∆w to approach zero, the gradient of the refractive index as a function of temperature must be negative. Examples of glasses with this property can be found in the FK, PK, PSK, SSK, BaLF, F, TiF, and BaSF families on the glass map. Data for several representative athermal optical and laser glasses are given in the table (see, also, sections 2.2.2 and 2.9.2). Properties of Athermal Glasses Glass type n d ν d Thermal expansion coefficient α (10 -6 /K)* dn/dT (10 -6 /K)** Optical glasses Ultran (Schott) 1.5483 74.2 11.9 –6.5 PSK 54 (Schott) 1.5860 64.6 11.9 –7.0 TiF 6 (Schott) 1.6165 31.0 13.9 –6.4 FK 54 (Schott) 1.4370 90.7 14.6 –5.9 ATF4 (Hoya) 1.65376 44.72 12.9 –6.6 Nd-doped laser glasses LHG-8 (Hoya) 1.530 66.5 11.2 –5.3 Q-98 (Kigre) 1.555 63.6 9.9 –4.5 LG-760 (Schott) 1.519 69.2 12.5 –6.8 LG-810 (Schott) 1.537 67.7 14.5 –7.7 * –30 – +70°C; ** +20 – +40°C © 2003 by CRC Press LLC Section 2: Glasses 291 2.11.7 Acoustooptic Glasses Acoustic waves create a time-varying refractive index grating in a material via the photoelastic effect. The grating spacing is equal to the acoustic wavelength; the grating depth is determined by the drive power of the transducer. A light beam traversing the medium is deflected by the grating at the Bragg angle Θ B from the normal to the sound propagation direction given by sin Θ B = (1/2)λ/ Λ, where λ and Λ are the wavelengths of the light and sound beams. The diffraction efficiency for a transducer of height H and interaction length L is I/I 0 = (π 2 /2)(L/H)(n 6 p 2 /νn 3 )P a /λ 2 where P a is the acoustic power, p is the photoelastic constant, ρ is the density, and ν is the sound velocity. Thus an acoustooptic material, in addition to having low losses at the acoustic and optical wavelengths, should also have a large index of refraction and small sound velocity. A figure of merit for an acoustooptic material is M = n 6 p 2 /ρv 3 . Properties and figures of merit for several glasses are compared below. Properties of Acoustooptic Glasses Glass Transmission range (µm) Acoustic wave polar. Sound velocity (km/sec) Optical wave polar. Refract. index (632.8 nm) Relative merit (a) fused silica (SiO 2 ) 0.2–4.0 long. 5.96 ⊥ 1.46 1.0 lead silicate (Schott SF 4) 0.38–1.8 long. 3.63 ⊥ 1.62 3.0 lead silicate (Schott SF 59) 0.46–2.5 long. 3.20 or ⊥ 1.95 12.6 tellurite (Hoya AOT 5) 0.47–2.7 long. shear 3.40 1.96 ⊥ or ⊥ 2.090 23.9 tellurite (Hoya AOT 44B) 0.43–2.5 long. 3.33 1.971 20.9 arsenic trisulfide (As 2 S 3 ) 0.6–11 long. 2.6 2.61 256 Ge 55 As 12 S 33 1.0–14 2.52 2.52 ⊥ 54 (a) Figure of merit relative to that of SiO 2 . Data from Gottlieb, M., Elastooptic materials, Handbook of Laser Science and Technology, Vol. 4 (CRC Press, Boca Raton, FL, 1986), p. 319. © 2003 by CRC Press LLC Section 2: Glasses 292 2.11.8 Abnormal Dispersion Glass Various relative partial dispersions P x,y = (n x – n y )/(n F – n C ) are defined for other wavelengths x and y. The relative partial dispersion of most glasses obeyed a linear relationship on ν d of the form P x,y ≈ a xy + b xy ν d , where a and b are constants. It is not possible to correct for second-order chromatic aberrations using so-called “normal” glasses that satisfy this equation. Because of the linear relationship between the relative partial dispersions and Abbe number, the difference in partial dispersions will always be the same for normal glasses. Correction for second-order chromatic aberration (secondary spectrum) is accomplished using glasses with equal partial dispersions for different Abbe values (the corrected systems are called apochromats). These abnormal dispersion glasses depart from the “normal line” and the linear relationship above. The relative dispersion (n g – n F )/(n F – n C ) of optical glasses is plotted in the figure below and shows the magnitude of the deviations from the normal line that are possible. The deviations can be either positive or negative. Optical glass catalogs list deviations of the relative partial dispersions from the normal for glasses covering a wide range of ν d values. Deviation of the relative partial dispersion P g,f of optical glasses from the normal line (Schott Optical Glass Catalog). ν d 0.50 0.55 0.60 0.65 P g,f = n g – n F n F – n c 100 80 60 40 20 © 2003 by CRC Press LLC Section 3: Polymeric Materials 3.1Optical Plastics 3.2Index of Refraction 3.3Nonlinear Optical Properties 3.4Thermal Properties 3.5Engineering Data © 2003 by CRC Press LLC Section 3: Polymeric Materials 295 Section 3 POLYMERIC MATERIALS Of the large number of known polymers, several exhibit useful optical properties. Various properties of optical plastics are compared with those of glasses below. The documentation of optical properties and the accuracy of data on plastics are generally not comparable to that of optical glasses. In addition, mechanical and chemical resistance properties should be checked with the material supplier because they may vary widely within a polymer group. Numerous caveats about the use and application of plastics in optical systems are noted in reference 1. Property Plastic Glass Optical Refractive index (n d ) 1.31–1.65 1.28–1.95 Abbe number (v d ) 92–20 91–20 Index homogeneity ±1 x 10 - 4 ± 1 x 10 - 6 Index change with temperature (10 − 6 K − 1 ) −143 to −100 −8.5 to 6.0 Birefringence (nm/cm) 60–80,000 5 Transmission range (nm) 200–2500 150–3500 Mechanical Density (g/cm 3 ) 0.83–1.46 2.3–6.3 Young modulus (10 3 N/mm 2 ) 1–10 46–129 Poisson’s ratio 0.192–0.309 Thermal Expansion coefficient (10 − 6 K − 1 ) 25–130 3.7–14.6 Heat capacity (J g − 1 K − 1 ) 1–2 0.31–0.89 Thermal conductivity (W m − 1 K − 1 ) 0.1–0.3 0.51–1.28 Softening temperature (°C) 360–430 750–1100 From Cook, L. M. and Stokowski, S. E., Filter materials, Handbook of Laser Science and Technology, Volume IV: Optical Materials, Part 2 (CRC Press, Boca Raton, FL, 1995), p. 151. Common optical plastics include: polymethyl methacrylate (PMMA) (acrylic) polystyrene (styrene) (PS) methyl methacrylate styrene copolymer (NAS) stryrene acrylonitrile (SAN), acrylic/styrene copolymer polycarbonate (PC) polymethylpentene (TPX) acrylonitrile, butadienne, and styrene terpolymer (ABS) nylon, amorphous polyamide polyetherimide (PEI) polysulfone allyl diglycol carbonate (CR-39) Telfon (Telfon AF ® ) (TPFE), fluorinated-(ethylenic-cyclo oxyaliphatic substituted ethylenic) copolymer In the following tables properties of these and other optical plastics are given in order of decreasing index of refraction. © 2003 by CRC Press LLC Section 3: Polymeric Materials 297 Properties of optical plastics–I—continued Polymer Trade name Manufacturer Density (g/cm 3 ) Index n D Abbe ν D Dicyclopolyolefin Telene B F Goodrich 1.0 1.528 55.3 Epoxy molding compound MG-18 Dexter Corp. (Hysol) 1.35 1.52 Tricyclodecyl co-methacrylate (TCDMA) OZ-1000 Hitachi Chemical 1.16 1.500 57 Low moisture acrylic WF-201 Mitsubishi Rayon 1.495 58 Allyl diglycol carbonate CR-39 PPG Industries 1.32 1.498 59.3 Polymethylmethacrylate Plexiglas Rohm and Haas 1.19 1.491 57.4 PMMA, acrylic Acrylite Cyro 1.19 1.491 57.4 CP ICI 1.18 1.491 57.4 Perspex ICI 1.18 1.491 57.4 Shinkolite P Mitsubishi Rayon 1.19 1.491 57.4 Polymethylmethacrylate impact modified, 20% MI-7 Rohm and Haas 1.17 1.49 impact modified, 40% DR-G Rohm and Haas 1.15 1.49 Poly(4-methylpentene-1) TPX RT-18 Mitsui Plastics 0.833 1.463 56.3 Cellulose acetate butyrate Tenite Eastman 1.15–1.2 1.46–1.49 51.9 (CAB) Fluoropolymer (TPFE) Teflon AF 1600 DuPont 1.8 1.32 92 Optical Transmission Optical plastics transmit well in the visible and the near infrared, but absorb strongly in the ultraviolet (fluoropolymers are an exception) and throughout the infrared. Most plastics degrade somewhat both in physical and optical properties when exposed to ultraviolet radiation. Transmission spectra of optical plastics. sample thickness: 3.2 mm. © 2003 by CRC Press LLC 298 Handbook of Optical Materials Properties of Optical Plastics–II Polymer Relative haze a Hue b Deflect. c temp. (˚C) Comments Polyetherimide (PEI) light amber 200 Good thermal/chemical resistance, high color but good in near IR Polyarylsulfone light yellow 204 Tough Polyurethane light colorless 88 Can be custom tailored, good chemical resistance Polysulfone light yellow 174 Good thermal and moisture stability, high temperature Polyarylate noticeable light straw 158 High temperature, good UV resistance Poly α-methylstyrene slight colorless n/a Brittle, can be modifier for K resin Polyamide, amorphous nylon slight light straw 110 Tough, hard Polystyrene (PS) low colorless 82110 Low haze grades available Polyamide, amorphous nylon noticeable colorless 123 Good abrasion resistance, moisture sensitive Polycarbonate (PC) slight light straw 123129 Very tough, high impact Polystyrene co-maleic anhydride (SMA) slight colorless 96 Brittle Modified polyestercarbonate slight light straw 107 Processes at lower temperature Polystyrene-butadiene copolymer noticeable light straw 76 Tough Polystyrene-coacrylonitrile ∂8 (SAN) slight light straw 93104 Tougher than polystyrene Polyester (PETG) slight light straw 70 Film extruding Polyamide, amorphous (nylon type 6/3) noticeable straw 124 Good abrasion resistance Polystyrene co-methyl- methacrylate (2:1) (SMMA) slight colorless 98 Optical quality Amorphous polyolefin from dicyclopentadiene n/a n/a T g = 141 Optical quality, very low moisture Acrylonitrile-butadiene- styrene terpolymer (ABS) noticeable yellow 79 Tough Polyamide, amorphous (nylon type 12) noticeable straw 150 Good abrasion resistance Polystyrene co-methyl- ethacrylate (1:2) (SMMA) slight colorless 99 Optical quality Amorphous polyolefin (APO) slight light straw 123 Optical quality Dicyclopolyolefin slight light straw 107 Very low moisture (0.01%) Epoxy molding compound slight colorless 120 Semiconductor embedment Epoxy casting resin T g = 110 Two-part casting resin Tricyclodecyl co-methacrylate (TCDMA) low colorless Lower moisture than PMMA (1.2%) Low moisture acrylic sligth light straw 103 Optical quality Allyl diglycol carbonate low light straw 91 Cast thermoset, hard 55–65 Ophthalmic use © 2003 by CRC Press LLC Section 3: Polymeric Materials 299 Properties of optical plastics–II—continued Polymer Relative haze a Hue b Deflect. c temp. (˚C) Comments Polymethylmethacrylate PMMA, acrylic low to slight light straw to colorless 72–102 Optical quality, hard, widely used, scratch resistant Impact modified, 20% light colorless 85 Tougher than PMMA Impact modified, 40% light colorless 79 Tough, will creep with mild force Poly(4-methylpentene-1) slight colorless 90 at 66 psi Unusual properties, lowest density of all thermoplastics, infrared transmission, very tough Cellulose acetate butyrate (CAB) noticeable light straw 43–88 Tough Fluoropolymer (TPFE) noticeable colorless 154 Very low index of refraction, good ultraviolet transmission. a Relative haze estimates: low (<0.7%); slight (to 1.5 %); light (to 3%); noticeable (>3%). b Hue (yellowness) estimates: colorless, light straw, straw, yellow, amber. c Heat deflection temperature at 264 psi. The above tables are from D. Keyes, Optical plastics, Handbook of Laser Science and Technology, Suppl. 2: Optical Materials (CRC Press, Boca Raton, FL, 1995), pp. 85–94. Loss Contributions (in dB/km) for PS, PMMA, and PMMA-d8 Core Fibers Core material PS PMMA PMMA-d8 Wavelength (nm) 552 580 624 672 518 567 650 680 780 850 Total loss 162 138 129 114 57 55 128 20 25 50 Absorption 0 4 22 24 1 7 88 0 9 36 Electronic transition tail 22 11 42000000 Rayleigh scattering 95 78 58 43 28 20 12 10 6 4 Structural imperfections 45 45 45 45 28 28 28 10 10 10 Loss limit 117 93 84 69 29 27 100 10 15 40 Source: Kaino, T., Fujiki, M., and Jinguji, K., Preparation of plastic optical fibers, Rev. Electr. Commun. Lab. 32, 478 (1984). © 2003 by CRC Press LLC [...]... 0.37 0.40 0.40 0.38 0.35 0.30 0.26 0.24 0.22 0.21 0.20 0.20 0.19 0.19 0.329 0.271 0.230 0.206 0.189 0.171 0.154 0.139 0 .118 0 .111 0.109 0 .111 0 .111 0 .111 0.109 0.106 0.097 0.084 0.071 0.059 0.048 0.040 0.035 0.035 0.040 0.044 0.043 0.039 0.032 0.025 0.020 0.017 0.015 0.014 0.013 0.012 0. 011 Energy eV 38.00 39.00 40.00 41.00 42.00 43.00 44.00 45.00 46.00 47.00 48.00 49.00 50.00 51.00 52.00 53.00 54.00 55.00... Assumes χ(3 )111 1 = 3 χ(3 )113 3 b Waveguide measurement; c Copolymer From Garito, A E And Kuzyk, M G., Nonlinear refractive index: organic materials, Handbook o f Laser Science and Technology, Suppl 2 (CRC Press, Boca Raton, FL 1995), p 289 © 2003 by CRC Press LLC Section 3: Polymeric Materials 305 References: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Friberg, S R., and Smith, P W., Nonlinear optical. .. Fair; Poor The above tables are from Keyes, D., Optical plastics, Handbook of Laser Science and Technology, Suppl 2: Optical Materials (CRC Press, Boca Raton, FL, 1995), pp 85–94 © 2003 by CRC Press LLC Section 4: Metals 4.1 4.2 4.3 4.4 4.5 Physical Properties of Selected Metals Optical Properties Mechanical Properties Thermal Properties Mirror Substrate Materials © 2003 by CRC Press LLC Section 4: Metals... χ 111 1 Linear index n 1.585 1.585 1.585 1.61 1.61 1.61 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 1.529 1.562 1.581 1.600 1.623 (10 – 1 2 c m 3 /erg) 330 55 450 330 40 700 500 40 400 25 5.5 2000 15 20 2.9 9 3000 11, 400 7,700 5,500 1,300 30 0.456 2.0 2 6,680 5,000 3,000 700 30 9,000 7,275 2,317 1,025 380 500 1250 6840 0.14 0.50 2.6 11 30 100 7 7 8 8 8 8 8 8 9 9 ( 3) χ 1212 = 13 3.7 1300 10 13 10 10 10 11 11... 0.96 0.96 0.96 0.97 0.97 0.97 0.97 0.96 0.96 0.97 0.97 0.97 0.97 0.97 0.97 0.98 0.98 0.97 0.96 0.18 0.17 0.17 0.16 0.16 0.15 0.15 0.15 0.15 0.14 0.14 0.14 0.13 0.13 0.13 0.12 0.12 0.12 0 .11 0 .11 0 .11 0 .11 0 .11 0 .11 0 .11 0.10 0.10 0.10 0.10 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.08 0.010 0.009 0.009 0.008 0.007 0.007 0.007 0.006 0.006 0.006 0.006 0.005 0.005 0.005 0.005 0.004 0.004 0.004 0.004 0.004 0.004... 11 30 100 7 7 8 8 8 8 8 8 9 9 ( 3) χ 1212 = 13 3.7 1300 10 13 10 10 10 11 11 11 11 12 13 14 15 15 15 15 15 16 17 18 15 15 15 15 15 19 19 19 19 19 19 3 20 21 21 21 21 21 21 a Chemically prepared; b Electrochemically prepared; c Electrochemically doped; d Single crystal waveguides © 2003 by CRC Press LLC 304 Handbook of Optical Materials Nonlinear Refraction Data for Solid Solutions and Copolymers Dye... Garito, A E and Kuzyk, M G., Two-photon absorption: organic materials, Handbook of Laser Science and Technology, Suppl 2: Optical Materials (CRC Press, Boca Raton, FL, 1995), p 329 Techniques for Measuring Nonlinear Refraction Abbreviation DFWM KE MSI OKE SA TBC TRI Method Degenerate four-wave mixing DC Kerr effect Modified Sagnac interferometry Optical Kerr effect Saturated absorption Two-beam coupling... response of optical nonlinearity in polysilane polymers, Appl Phys Lett 53(14), 1245 (1988) Yang, L., Dorsinville, R., Wang, Q Z., Zou, W K., Ho, P P., Yang, N L., and Alfano, R R., Third-order optical nonlinearity in polycondensed thiophene-based polymers and polysilene polymers, J Opt Soc Am B 6(4), 753 (1989) © 2003 by CRC Press LLC 306 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 Handbook of Optical. .. Time-resolved interferometry All measurements in the following tables were made at room temperature © 2003 by CRC Press LLC Ref 1 2 3 4 5 5 6 Section 3: Polymeric Materials 303 Nonlinear Refraction Data for Polymers ( 3) ( ) ( ) 111 1 − 112 2 (10 – 1 2 c m 3 /erg) R e f 3 3 Meth Pulse duration (ns) 4-BCMUr 4-BCMUy DFWM DFWM DFWM DFWM DFWM DFWM DFWM DFWM DFWM DFWM 0.0004 0.00006 0.00035 0.00035 0.00035... 29 30 31 32 33 34 35 36 Handbook of Optical Materials Carter, G M., Thakur, M K., Chen, Y J., and Hryniewicz, J V., Time and wavelength resolved nonlinear optical spectroscopy of a polydiacetylene in the solid state using picosecond dye laser pulses, Appl Phys Lett 47 (5), 457 (1986) Krol, D M., and Thakur, M., Measurement of the nonlinear refractive index of single-crystal polydiacetylene channel waveguides, . 0.51–1.28 Softening temperature (°C) 360–430 750 110 0 From Cook, L. M. and Stokowski, S. E., Filter materials, Handbook of Laser Science and Technology, Volume IV: Optical Materials, Part 2 (CRC. 3: Polymeric Materials 303 Nonlinear Refraction Data for Polymers Material Meth. Pulse duration (ns) Wave- length (nm) Linear index n χχ 111 1 3 () (10 –12 cm 3 /erg) χχ χχ 111 1 3 112 2 3 () () − (10 –12 cm 3 /erg). catalogs list deviations of the relative partial dispersions from the normal for glasses covering a wide range of ν d values. Deviation of the relative partial dispersion P g,f of optical glasses from