© 2002 by CRC Press LLC The temperature distributions and resin flows were determined by models using the same cure temperature and pressures as employed during the test. The results of the models are shown as solid lines in Figures 7.25 to 7.28. It is evident from the figures that the calculated and measured temperatures FIGURE 7.25 Theoretical and experimental plots of temperature as a function of time at three positions inside a 64-ply composite. The temperature cure cycle is shown in Figure 7.29. The cure and bleeder pressures were constant at 586 kPa (85 psi) and 101 kPa (14.7 psi), respectively. (Reprinted from Loos, A.C. and Springer, G.S., J. Composite Mater., 17, 135, 1983. With permission from Technomic Publishing Company.) FIGURE 7.26 The mass loss, normal to the tool plate (bottom), parallel to the tool plate (center), and the total mass loss (top) as a function of time for a 64-ply composite. The temperature cure cycle is shown in Figure 7.29. The bleeder pressure was constant at 101 kPa (14.7 psi). The initial resin content was 42%. (Reprinted from Loos, A.C. and Springer, G.S., J. Composite Mater., 17, 135, 1983. With permission from Technomic Publishing Company, Inc.) © 2002 by CRC Press LLC The temperature distributions and resin flows were determined by models using the same cure temperature and pressures as employed during the test. The results of the models are shown as solid lines in Figures 7.25 to 7.28. It is evident from the figures that the calculated and measured temperatures FIGURE 7.25 Theoretical and experimental plots of temperature as a function of time at three positions inside a 64-ply composite. The temperature cure cycle is shown in Figure 7.29. The cure and bleeder pressures were constant at 586 kPa (85 psi) and 101 kPa (14.7 psi), respectively. (Reprinted from Loos, A.C. and Springer, G.S., J. Composite Mater., 17, 135, 1983. With permission from Technomic Publishing Company.) FIGURE 7.26 The mass loss, normal to the tool plate (bottom), parallel to the tool plate (center), and the total mass loss (top) as a function of time for a 64-ply composite. The temperature cure cycle is shown in Figure 7.29. The bleeder pressure was constant at 101 kPa (14.7 psi). The initial resin content was 42%. (Reprinted from Loos, A.C. and Springer, G.S., J. Composite Mater., 17, 135, 1983. With permission from Technomic Publishing Company, Inc.) . figures that the calculated and measured temperatures FIGURE 7.25 Theoretical and experimental plots of temperature as a function of time at three positions inside a 64-ply composite. The temperature. cycle is shown in Figure 7.29. The cure and bleeder pressures were constant at 586 kPa (85 psi) and 101 kPa (14.7 psi), respectively. (Reprinted from Loos, A.C. and Springer, G.S., J. Composite Mater.,. 7.25 Theoretical and experimental plots of temperature as a function of time at three positions inside a 64-ply composite. The temperature cure cycle is shown in Figure 7.29. The cure and bleeder pressures