1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Carbon Materials for Advanced Technologies Part 4 ppt

35 412 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 35
Dung lượng 645,48 KB

Nội dung

85 plished through a saturation of the transmitted light intensity with increasing incident intensity. Outstanding performance for c60 relative to presently used optical limiting materials has been observed at 5320a for 8 ns pulses using solutions of c60 in toluene and in chloroform (CH3C1) [77]. The proposed mechanism for the optical limiting is that c60 is more absorptive for molecules in the triplet excited state than for the ground state (see s2.4). In this process, the initial absorption of a photon takes an electron from singlet So state to an excited singlet state. This is followed by a rapid inter-system crossing from the singlet to a metastable triplet state from which dipole-allowed transitions to the higher-lying triplet states can occur. Because of the higher excitation cross section for electrons in the metastable triplet state (relative to those in the ground state), an increase in the population of the metastable triplet state promotes further stronger absorption of photons [77]. Another interesting applications area for fuilerenes is based on materials that can be fabricated using fullerene-doped polymers. Polyvinylcarbazole (PVK) and other selected polymers, such as poly(parapheny1ene-vinylene) (PPV) and phenylmethylpolysilane (PMPS), doped with a mixture of CG0 and CTO have been reported to exhibit exceptionally good photoconductive properties [206, 207, 2081 which may lead to the development of future polymeric photoconductive materials. Small concentrations of fullerenes (e.g. ~ ~3%) by weight) lead to charge transfer of the photo-excited electrons in the polymer to the fullerenes, thereby promoting the conduction of mobile holes in the polymer [209]. Fullerene-doped polymers also have significant potential for use in applications, such as photo-diodes, photo-voltaic devices and as photo-refractive materials. Fullerenes have been shown to benefit the synthesis of Sic and diamond. Gruen and coworkers [210] have demonstrated that, by fragmentation of individual (260 molecules, diamond films of very small grain size can be syn- thesized, yielding superior wear resistance, and lubrication properties [2 101. Hamza and coworkers [211] have shown that by use of vacuum deposited C~O films, Sic thin films can be prepared at lower temperatures, and with several desirable properties. For example, by using a patterned Si/SiOz substrate, a patterned Sic surface could be prepared (though no effective etch is known for Sic), exploiting the fact that c60 bonds well to Si, but poorly to SiOz. Thus conventional Si technology could be used to prepare a surface with Si in the regions where the Sic coat is eventually to form, and Si02 in the regions where it should not form. Then the c60 is introduced, covering the Si regions and avoiding the Si02 regions. Finally, heating to 95O-125O0C, converts the CG0 on Si to an adhering Sic patch. Such patterned materials have potential as light-emitting diodes in optoelectronic circuits. In other materials synthesis applications, the utilization of the strong bonding of fullerenes to clean silicon surfaces, has led to the application of a monolayer of Cs0 as a bonding agent between thin silicon wafers [208]. This strong bonding property, together with the low chemical reactivity of fullerenes, have been utilized in the passivation of reactive surfaces by the adsorption of monolayers of CSO on aluminum and silicon surfaces [208]. Many research opportunities exist for the controlled manipulation of struc- tures of nm dimensions. Advances made in the characterization and ma- nipulation of carbon nanotubes should therefore have a substantial general impact on the science and technology of nanostructures. The exceptionally high modulus and strength of thin multi-wall carbon nanotubes can be used in the manipulation of carbon nanotubes and other nanostructures [212,213]. Many of the carbon nanotube applications presently under consideration relate to multi-wall carbon nanotubes, partly because of their greater availabil- ity, and because the applications do not explicitly depend on the 1D quantum effects associated with the small diameter singlewall carbon nanotubes. The caps of carbon nanotubes were shown to be more chemically reactive than the cylindrical sections [214], and the caps have been shown to be efficient electron emitters [215, 216, 2171. Therefore, applications of nanotubes for displays and for electron probe tips have thus been discussed in the litera- ture. The ability of carbon nanotubes to retain relatively high gas pressures within their hollow cores suggest another possible area for applications [218]. Carbon nanotubes have also been proposed as a flexible starting point for the synthesis of new nano-scale and nano-structured carbides, whereby the carbon nanotube serves as a template for the subsequent formation of car- bides. The sandwiching of layers of carbon cylinders surrounded by insulating BN cylinders on either side offers exciting possibilities for electronic applica- tions [219]. By analogy with carbon fibers which are used commercially in composites for structural strengthening and for enhancement of the electrical conductivity, it should also be possible to combine carbon nanotubes with a host polymer (or metal) to produce composites with physical properties that can be tailored to specific applications. The small size of carbon nanotubes allow them to be used in polymer composite materials that can be extruded through an aperture (die) to form shaped objects with enhanced strength and stiffness. Carbon nanotubes can be added to low viscosity paints that can be sprayed onto a surface, thereby enhancing the electrical conductivity of the coating. As further research on fullerenes and carbon nanotubes materials is carried out, it is expected, because of the extreme properties exhibited by these carbon-based materials, that other interesting physics and chemistry will be discovered, and that promising applications will be found for fullerenes, carbon nanotubes and related materials. 87 5 Acknowledgments The authors acknowledge fruitful discussions with Professors M. Endo, R. Saito, and R. A. Jishi. The MIT authors gratefully acknowledge support from NSF Grant #DMR-95-10093 and from AFOSR grant F49620-93-1- 0160. The work at UK was supported by NSF OSR-94-52895 and also the US-Japan exchange program NSF INT 93- 15 165. 6 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 References H. W. Kroto, J. R. Heath, S. C. O’Brien, R. E Curl, and R. E. Smalley, Nature (London) 318,162-163 (1985). R. Buckminster Fuller. In The Artifacts of R. 3uckminster Fuller A Cornpre- hensive Collection of His Designs and Drawings, edited by W. Marlin, Garland Publishing, New York, 1984. E. A. Rohlfing, D. M. Cox, and A. Kaldor, J. Chem. Phys. 81,3322 (1984). W. Kratschmer, L. D. Lamb, K. Fostiropoulos, and D. R. Hufhan, Nature (London) 347,354-358 (1990). R. E Curl and R. E. Smalley, Science 242,1017 (1988). R. C. Haddon,A. E Hebard, M. J. Rosseinsky, D. W. Murphy, S. J. Duclos, K. B. Lyons, B. Miller, J. M. Rosamilia, R. M. Fleming, A. R. Kortan, S. H. Glarum; A. V. Makhija, A. J. Muller, R. H. Eick, S. M. Zahurak, R. Tycko, G. Dabbagh. and F. A. Thiel, Nature (London) 350,320 (1991). M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, Science of Fullerenes and Carbon Nanotubes (Academic Press, New York, NY, 1996). A. E Hebard, M. J. Rosseinsky, R. C. Haddon, D. W. Murphy, S. H. Glarum, T. T. M. Palstra, A. P. Ramirez, and A. R. Kortan, Nature (London) 350, 600 (1991). A. E Hebard, Phys. Today 45,26 (1992). November issue. T. T. M. Palstra, 0. Zhou, Y Iwasa, P. Sulewski, R. Fleming, and B. Zegarski, Solid State Commun. 93,327 (1995). M. Endo. Mecanisme de croissance en phase vaparr &fibres de carbone (The growth mechanism of vapor-grown carbon Jibers). PhD thesis, University of Orleans, Orleans, France, 1975. (in French). M. Endo. PhD thesis, Nagoya University, Japan, 1978. (in Japanese). D. W. Robertson, D. W. Brenner, and J. W. Mintmire, Phys. Rev. B 45, 12592 (1992). Z. Ya. Kosakovskaya, L. A. Chernozatonskii, and E. A. Fedorov, JETP Lett. (Pis’rna Zh. Eksp. Teor.) 56,26 (1992). E. G. Gal’pern, I. V. Stankevich, A. L. Christyakov, and L. A. Chernozatonskii, JETP Lett. (Pis’ma Zh. Eksp. Teor.) 55,483 (1992). R. L. Meng, D. Ramirez, X. Jiang, P. C. Chow, C. Dim, K. Matsuishi, S. C. Moss, P. H. Hor, and C. W. Chu, Appl. Phys. Lett. 59,3402 (1991). M. HaluSka, H. Kuzmany, M. Vybornov, P. Rogl, and P. Fejdi, Appl. Phys. A 56, 161 (1993). M. A. Verheijen, H. Meekes, G. Meijer, E. Raas, andP. Bennema, Chem. Phys. Lett. 191,339 (1992). R. E. Smdley, Accounts Chem. Res. 25,98 (1992). D. S. Bethune, R. D. Johnson, J. R. Salem, M. S. de Vries, and C. S. Yannoni, Nature (London) 366,123 (1993). M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, J. Mater. Res. 8,2054 (1993). 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 M. S. Dresselhaus and G. Dresselhaus, Advances in Phys. 30,139-326 (1981). L. S. Wang, J. Conceicao, C. Jin, and R. E. Smalley, Chem. Phys. Lett. 182, 5 (1991). W. R. Datars, T. R. Chien, R. K. Nkum, and P. K. Ummat, Phys. Rev. B 50,4937 (1 994). M. J. Rosseinsky, D. W. Murphy, R. M. Fleming, R. Tycko, A. P. Ramirez, T. Siegrist, G. Dabbagh, and S. E. Barrett, Nature (London) 356,416 (1992). K. Tanigaki, T. W. Ebbesen, S. Saito, J. Mizuki, J. S. Tsai, Y. Kubo, and S. Kuroshima, Nature (London) 352,222 (1991). A. R. Kortan, N. Kopylov, S. H. Glarum, E. M. Gyorgy, A. P. Ramirez, R. M. Fleming, F. A. Thiel, and R. C. Haddon, Nature (London) 355,529 (1992). A. R. Kortan, N. Kopylov, E. Ozdas, A. F! Ramirez, R. M. Fleming, and R. C. Haddon, Chem. Phys. Lett. 223,501 (1994). Y Chen, E Stepniak, J. H. Weaver, L. P. F. Chibante, and R. E. Smalley, Phys. Rev. B 45,8845-8848 (1992). R. Taylor and D. R. M. Walton, Nature (London) 363,685 (1993). G. A. Olah, I. Bucsi, R. Aniszfeld, and G. K. Surya Prakash, Carbon 30, 1203- 121 l(1992). R. Taylor, J. F! Hare, A. K. Abdul-Sada, and H. W. Kroto, J. Chem. SOC. Chem. Commun. 20,1423-1425 (1990). R. D. Johnson, G. Meijer, and D. S. Bethune, J. Amer. Chem. SOC. 112,8983-8984 (1 990). G. Dresselhaus, M. S. Dresselhaus, and P. C. Eklund, Phys. Rev. B 45,6923 (1992). D. S. Fischer, Phys. Rev. B 43,130-159 (1991). J. E. Fischer, P. A. Heiney, and A. B. Smith 111, Accounts Chem. Res. 25, 112 (1 992). E Diederich and R. L. Whetten, Accounts Chem. Res. 25,119 (1992). J. M. Hawkins, Accounts Chem. Res. 25,150 (1992). K. Kikuchi, N. Nakahara, T. Wakabayashi, S. Suzuki, H. Shiramaru, Y Miyake, K. Saito, I. Ikemoto, M. Kainosho, and Y. Achiba, Nature (London) 357, 142 (1 992). D. E. Manolopoulos and P. W. Fowler, Chem. Phys. Lett. 187,l (1991). P. W. Stephens, L. Mihaly, P. L. Lee, R. L. Whetten, S. M. Huang, R. Kaner, E Diederich, and K. Holczer, Nature (London) 351,632 (1991). R. M. Fleming, M. J. Rosseinsky, A. P. Ramirez, D. W. Murphy, J. C. Tully, R. C. Haddon, T. Siegrist, R. Tycko, S. H. Glarum, F! M. Marsh, G. Dabbagh, S. M. Zahurak, A. V. Makhija, and C. Hampton, Nature (London) 352,701 (1991). P. A. Heiney, G. B. M. Vaughan, J. E. Fischer, N. Coustel, D. E. Cox, J. R. D. Copley, D. A. Neumann, W. A. Kamitakahara, K. M. Creegan, D. M. Cox, J. P. McCauley, Jr., and A. B. Smith, 111, Phys. Rev. B 45,4544-4547 (1992). R. M. Fleming, A. P. Ramirez, M. J. Rosseinsky, D. W. Murphy, R. C. Haddon, S. M. Zahurak, and A. V. Makhija, Nature (London) 352,787 (1991). I? A. Heiney, J. E. Fischer, A. R. McGhie, W. J. Romanow,A. M. Denenstein, J. P. McCauley, Jr., A. €3. Smith, 111, and D. E. Cox, Phys. Rev. Lett. 67,1468 (1991). W. I. E David, R. M. Ibberson, T. J. S. Dennis, J. P. Hare, and K. Prassides, Europhys. Lett. 18,219 (1992). J. D. Axe, S. C. Moss, and D. A. Neumann. In Solid State Physics: Advances in Research and Applications, edited by H. Ehrenreich and E Spaepen, pages 149- 224, Academic Press, New York, 1994. Chapter 3. G. B. Vaughan, I? A. Heiney, J. E. Fischer, D. E. Luzzi, D. A. Ricketts-Foot, A. R. McGhie, Y W. Hui, A. L. Smith, D. E. Cox, W. J. Romanow, B. H. Allen, N. Coustel, J. P. McCauley, Jr., and A. B. Smith 111, Science 254, 1350 (1991). 89 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 M. A. Verheijen, H. Meekes, G. Meijer, P. Bennema, J. L. de Boer, S. van Smaalen, 6. Van Tendeloo, S. Amelinckx, S. Muto, and J. van Landuyt, Chem. Phys. 166, 287 (1992). G. Van Tendeloo, S. Amelinckx, M. A. Verheijen, P. H. M. van Loosdrecht, and G. Meijer, Phys. Rev. Lett. 69, 1065 (1992). G. B. M. Vaughan, P. A. Heiney, D. E. Cox, J. E. Fischer, and A. R. McGhie, Chem. Phys. 178,599 (1993). A. R. McGhie, J. E. Fischer, I? W. Stephens, R. L. Cappelletti, D. A. Neumann, W. H. Mueller, H. Mohn, and H. U. ter Meer, Phys. Rev. B 49,12614 (1994). J. F. Armbruster, H. A. Romberg, P. Schweiss, P. Adelmann, M. Knupfer, J. Fink, R. H. Michel, J. Rockenberger, F. Hennrich, H. Schreiber, and M. M. Kappes, Z. Phys. B 95,469474 (1994). G. Roth, I?. Adelmann, and R. Knitter, Materials Lett. 16, 357-363 (1993). J. H. Weaver and D. M. Poirier. In Solid State Physics, edited by H. Ehrenreich and E Spaepen, page 1, Academic Press. New York, 1994. Chapter 1. C. M. Lieber and C. C. Chen. In Solidstate Physics, edited by H. Ehrenreich and E Spaepen, page 109, Academic Press, New York, 1994. D. M. Poirier, D. W. Owens, and J. H. Weaver, Phys. Rev. B 51,1830-1843 (1995). R. M. Fleming, T. Siegrist, P. M. Marsh, E. Hessen, A. R. Kortan, D. W. Murphy, R. C. Haddon, R. Tycko, G. Dabbagh, A. M. Mujsce, M. L. Kaplan, and S. M. Zahurak. In Clusters and Cluster-Assembled Materials, MRS Symposia Proceedings, Boston, edited by R. S. Averback, J. Bernholc, and D. L. Nelson. pages 691-696. Materials Research Society Press, Pittsburgh, PA, 1991. A. R. Kortan, N. Kopylov, and E A. Thiel, J. Phys. Chem. Solids 53, 1683-1688 (1992). S. Saito and A. Oshiyama, Phys. Rev. Lett. 66,2637 (1991). E Negri, G. Orlandi, and E Zerbetto, J. Am. Chem. SOC. 114,2910 (1992). A. Oshiyama, S. Saito, N. Hamada, and Y Miyamoto, J. Phys. Chem. Solids 53, S. C. Erwin and M. R. Pederson, Phys. Rev. Lett. 67, 1610 (1991). W. E. Pickett. In Solid State Physics, edited by H. Ehrenreich and F. Spaepen, page 225, Academic Press, Volume 48, New York, 1994. M. P. Gelfand, Superconductivity Review 1, 103-150 (1994). A. M. Rao, P. Zhou, K A. Wang, G. T. Hager, J. M. Holden. Ying Wang, W. T. Lee, Xiang-Xin Bi, F? C. Eklund, D. S. Cornett, M. A. Duncan, and I. J. Amster, Science 259,955-957 (1993). H. Ajie, M. M. Alvarez, S. J. Anz, R. D. Beck, E Diederich, K. Fostiropoulos, D. R. Huffman, W. Kratschmer, Y. Rubin, K. E. Schriver, D. Sensharma, and R. L. Whetten, J. Phys. Chem. 94,8630-8633 (1990). T. Pichler, M. Matus, J. Kurti, and H. Kuzmany, Solid State Commun. 81, 859 (1992). S. P. Sibley, S. M. Argentine, and A. H. Francis, Chem. Phys. Lett. 188,187-193 (1992). M. Matus, H. Kuzmany, and E. Sohmen, Phys. Rev. Lett. 68,2822 (1992). Ying Wang, J. M. Holden, A. M. Rao, P. C. Eklund, U. Venkateswaran, D. East- wood, R. L. Lidberg, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B 51, 4547-4556 (1995). F. Diederich, R. Ettl, Y Rubin, R. L. Whetten, R. Beck, M. Alvarez, S. Anz. D. Sensharma, E Wudl, K. C. Khemani, and A. Koch, Science 252,548 (1991). J. B. Birks, in, (Wiley and Sons, London, 1970). A general review of the molecular spectroscopy of aromatic molecules. R. R. Hung and J. J. Grabowski, J. Phys. Chem. 95,6073-6074 (1991). 1457-1471 (1992). 90 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 T. W. Ebbesen, K. Tanigaki, and S. Kuroshima, Chem. Phys. Lett. 181,501 (1991). L. W. Tutt andT. F. Boggess, Progress in QuantumElectronics 17,299-338 (1993). L. W Tutt and A. Kost, Nature (London) 356,225 (1992). S. L. Ren, Y. Wang, A. M. Rao, E. McRae, G. T. Hager, K. A. Wang, W. T. Lee, H. E Ni, J. Selegue, and P. C. Eklund, Appl. Phys. Lett. 59,2678 (1991). S. L. Ren, K. A. Wang, P. Zhou, Y. Wang, A. M. Rao, M. S. Meier, J. Selegue, and P. C. Eklund, Appl. Phys. Lett. 61, 124 (1992). E. Sohmen, J. Fink, and W. Kratschmer, Z. Phys. B 86,87 (1992). A. E Hebard, R. C. Haddon, R. M. Fleming, and A. R. Kortan, Appl. Phys. Lett. B. Pevmer, A. E Hebard, R. C. Haddon, S. D. Senturia, and M. S. Dresselhaus. In Science and Technology of Fullerene Materials: MRS Symposia Proceedings, Volume 359, Boston, Fall 1994, edited by P. Bernier, T. W. Ebbesen, D. S. Bethune, R. M. Metzger, L. Y Chiang, and J. W. Mintmire, pages 423-428, Materials Research Society Press, Pittsburgh, PA, 1995. H. Romberg, E. Sohmen, M. Merkel, et al., Synthetic Metals 56, 3038-3043 (1993). Y Wang, J. M. Holden, A. M. Rao, W. T. Lee, X. X. Bi, S. L. Ren, G. W Lehman, G. T. Hager, and P. C. Eklund, Phys. Rev. B 45,14396-14399 (1992). Z. H. Kafafi, J. R. Lindle, R. G. S. Pong, E J. Bartoli, L. J. Lingg, and J. Milliken, Chem. Phys. Lett. 188,492 (1992). S. R. Flom, R. G. S. Pong, E J. Bartoli, and Z. H. Kafafi, Phys. Rev. B 46,15598 (1992). H. Hoshi, N. Nakamura, Y Maruyama, T. Nakagawa, S. Sumki, H. Shiromaru, and Y. Achiba, Jpn. J. Appl. Phys. 30, L1397 (1991). D. S. Bethune, G. Meijer, W. C. Tang, and H. J. Rosen, Chem. Phys. Lett. 174,219 (1990). P. C. Eklund, Ping Zhou, Kai-An Wang, G. Dresselhaus, and M. S. Dresselhaus, J. Phys. Chem. Solids 53, 1391 (1992). A. M. Vassallo, L. S. Pang, P. A. Cole-Clark, and M. A. Wilson, J. Am. Chem. SOC. 113,7820 (1991). E. Chase, N. Herron, and E. Holler, J. Phys. Chem. 96,4262 (1992). K. A. Wang, Y Wang, Ping Zhou, J. M. Holden, S. L. Ren, G. T. Hager, H. E Ni, P. C. Eklund, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B 45, 1955 (1992). Ping Zhou, Kai-An Wang, Ying Wang, P. C. Eklund, M. S. Dresselhaus, G. Dres- selhaus, and R. A. Jishi, Phys. Rev. B 46,2595 (1992). P. H. M. van Loosdrecht, P. J. M. van Bentum, and G. Meijer, Phys. Rev. Lett. 68, 1176(1992). D. S. Bethune, G. Meijer, W. C. Tang, H. J. Rosen, W. G. Golden, H. Seki, C. A. Brown, and M. S. de Vries, Chem. Phys. Lett. 179,181 (1991). G. Meijer, D. S. Bethune, W. C. Tang, H. J. Rosen, R. D. Johnson, R. J. Wilson, D. D. Chambliss, W. G. Golden, H. Seki, M. S. de Vries, C. A. Brown, J. R. Salem, H. E. HunzikeG and H. R. Wendt. In Clusters and Cluster-Assembled Materials, MRS Symposia Proceedings, Boston, edited by R. S. Averback, J. Bernholc, and D. L. Nelson, page 619. Materials Research Society Press, Pittsburgh, PA, 1991. S. J. Duclos, R. C. Haddon, S. H. Glarum, A. E Hebard, and K. B. Lyons, Science 254, 1625 (1991). R. E. Stanton and M. D. Newton, J. Phys. Chem. 92,2141 (1988). P. Zhou, A. M. Rao, K. A. Wang, J. D. Robertson, C. Eloi, M. S. Meier, S. L. Ren, X. X. Bi, P. C. Eklund, and M. S. Dresselhaus, Appl. Phys. Lett. 60, 2871 (1 992). 59,2109-21 11 (21 Oct 1991). 91 100 A. M. bo, K. A. Wag, P. Zhou, Y Wang, S. L. Ren, and P. C. Eklund. Springer- 101 Z. H. Dong, P. Zhou, J. M. Holden, P. C. Eklund, M. S. Dresselhaus, and 102 K. A. Wang, A. M. Rao, P. C. Eklund, M. S. Dresselhaus, and G. Dresselhaus, 103 R. A. Jishi, M. S. Dresselhaus, G. Dresselhaus, K. A. Wang, Ping Zhou, A. M. 104 D. W. Snoke. I! S. Raptis, and K. Syassen, Phys. Rev. B 45, 14419-14422 (1992). 105 R. A. Jishi, R. M. Mirie, M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, 106 T. Pichler, M. Matus, J. Kiirfi, and H. Kumany, Phya Rev. B 45,13841 (1992). 107 S. K. Glarum, S. J. Duclos, and R. C. Haddon, J. Am. Chem. SOC. 114,1996-2001 108 F? Zhou, K. A. Wang, P. C. Eklund, G. Dresselhaus, and M. S. Dresselhaus, Phys. 109 M. G. Mitch and J. S. Lannin, J. Phys. Chem. Solids 54, I801 (1993). 110 M. S. Dresselhaus and G. Dresselhaus, Light Scattering in Solids I11 51,3 (1982). edited by M. Cardona and G. Guntherodt, Springer-Verlag Berlin, Topics in Applied Physics. 11 1 R. A. Jishi and M. S. Dresselhaus, Phys. Rev. B 45, 6914 (1992). 112 6. P. Kochanski, A. E Hebad, R. C. Haddon, and A. T. Fiory, Science 255,184 (1992). 113 E Stepniak, P. J. Benning, D. M. Poirier, and J. H. Weaver, Phys. Rev. B 48, 1899 (1993). 114 X D. Xiang, J, G. Rou, G. Bncefio, W. A. Vareka, R. Mostovoy, A. Zettl, V. H. Crespi, and M. L. Cohen, Science 256,1190 (1992). 115 Y Maruyama, T. Inabe, H. Ogata, Y Achiba, S. Suzuki, K. Kikuchi, and I. Ikemoto, Chem. Lett. 10, 1849 (1991). The Chemical Society of Japan. 1 I6 T. T. M. Palstra, R. C. Haddon, A. E Hebard, and J. Zaanen, Phys. Rev. Lett. 68, 1054 (1992). 11 7 M. N6iiez Regueiro, P. Monceau, A. Rassat, P. Bernier, and A. Zahab, Nature (London) 354,289 (1991). 118 N. B. Hannay, T. H. Geballe, B. T. Matthias, K. Andres, l? Schmidt, and D. MacNair, Phys. Rev. Lett. 14,225-226 (1965). 119 A. Chaiken, M. S. Dresselhaus, T. P. Orlando, G. Dresselhaus, P.M. Tedrow, D. A. Neumann, and W. A. Kamitakahara, Phys. Rev. B 41,71 (1990). 120 I. T. Belash, A. D. Bronnikov, 0. V. Zharikov, and A. V. Pal’nichenko. Synth. Metals 36,283 (1990). 121 K. Holczer, 0. Klein, G. Griiner, S M. Huang, R. B. Kaner, K J. Fu, R. L. Whetten, and E Diederich, Science 252, 11 54 (1 991). 122 M. S. Dresselhaus, G. Dresselhaus, and R. Saito. In Physical Properties of High Temperature Superconductors IV, edited by D. M. Ginsberg, World Scientific Publishing Co., Singapore, 1994. Vol. IV, Chapter 7. 123 K. Tanigaki, I. Hirosawa, T. W. Ebbesen, J. Mizuki, Y Shimakawa, Y Kubo, J. S. Tsai, and S. Kuroshima, Nature (London) 356,419421 (1992). I24 G. Sparn, J. D. Thompson, S M. Huang, R. B. Kaner, E Diederich, R. L. Whetten, G. Griiner, and K. Holczer, Science 252, 1829 (1991). 125 G. Sparn, J. D. Thompson, R. L. Whetten, S M. Huang, R. B. Kaner, E Diederich, G. Griiner, and K. Holczer, Phys. Rev. Lett. 68,1228 (1992). 126 J. E. Schirber, D. L. Overmyer, H. H. Wang, J. M. Wang, K. D. Carlson, A. M. Kini, M. J. Pellin. W. Welp, and W K. Kwok, Physica C 178,137 (1991). Verlag, New York, Berlin, 1992. Springer series in solid-state sciences. G. Dresselhaus, Phys. Rev. B 48,2862 (1993). Phys. Rw. B 48,11375-11380(1993). Rao, and P. C. Eklund, Chem. Phys. Lett. 206, I87 (1993). Phys. Rev. B 48,5634-5642(1993). (1992). Rev. B48,8412(1993). 127 C. M. Varma, J. Zaanen, and K. Raghavachari, Science 254,989 (1991). 128 K. E-I. Johnson, M. E. McHenry, and D. P. Clougherty, Physica C 183,319 (1991). 129 L. Degiorgi, P. Wachter, G. Griiner, S. M Huang, J. Wiley, and R. B. Kaner, Phys. 130 M. P. GelfandandJ. P. Lu, AppLPhys. A56,215(1993). 131 Z. Zhang, C. C. Chen, and C. M. Lieber, Science 254,1619 (1991). 132 A. P. Ramirez, A. R. Kortan, M. J. Rosseinsky, S. J. Duclos, A. M. Mujsce, R. C. Haddon, D. W. Murphy, A. V. Makhija, S. M. Zahurak, and K. B. Lyons, Phys. Rev. Lett. 68, 1058 (1992). Rev. Lett. 69,2987 (1992). 133 C C. Chen andC. M. Lieber, J. Am. Chem. SOC. 114,3141 (1992). 134 T. W. Ebbesen, J. S. Tsai, K. Tanigaki, J. Tabuchi, Y Shimakawa, Y. Kubo, I. Hirosawa, and J. Mizuki, Nature (London) 355, 620 (1992). 135 A. A. Zakhidov, K. Imaeda, D. M. Petty, K. Yakushi, H. Inokuchi, K. Kikuchi, I. Ikemoto, S. Suzuki, and Y. Achiba, Phys. Lett. A 164,355 (1992). 136 M. L. Cohen, Mater. Sci. Eng. B19,lll-116(1993). 137 Z. Zhang, C C. Chen, S. P. Kelty, H. Dai, and C. M. Lieber, Nature (London) 353,333 (1991). 138 R. Tycko, G. Dabbagh, M. J. Rosseinsky, D. W. Murphy, A. P. Ramirez, and R. M. Fleming, Phys. Rev. Lett. 68,1912 (1992). 139 K. Holczer, 0. Klein, H. Alloul, Y Yoshinari, and F. Hippert, Europhys. Lett. 23, 63 (1993). 140 R. F. Kiefl, W. A. MacFarlane, K. H. Chow, S. Dunsiger, T. L. Duty, T. M. S. Johnston, J. W. Schneider, J. Sonier, L. Brard, R. M. Strongin, J. E. Fischer, and A. B. Smith IIT, Phys. Rev. Lett. 70,3987 (1993). 141 L. D. Rotter, Z. Schlesinger, J. P. McCauley, Jr., N. Coustel, J. E. Fischer, and A. B. Smith IIT, Nature (London) 355,532 (1992). 142 L. Degiorgi, G. Griiner, P. Wachter, S. M Huang, J. Wiley, R. L. Whetten, R. B. Kaner, K. Holczer, and E Diederich, Phys Rev. B 46, 11250 (1992). 143 K. Holczer and R. L. Whetten, Carbon 30,1261 (1992). 144 A. I. Sokolov, Yu. A. Kufaev, and E. B. Sonin, Physica C 212,19-22 (1993). 145 S. Foner, E. J. McNiff, Jr., D. Heiman, S. M. Huang, and R. B. Kaner, Phys. Rev. B 46, 14936 (1992). 146 G. S. Boebinger, T. T. M. Palstra, A. Passner, M. J. Rosseinsky, D. W. Murphy, and I. I. Mazin, Phys. Rev. B 46,5876 (1992). 147 R. D. Johnson, D. S. Bethune, and C. S. Yannoni, Accounts Chem. Res. 25, 169 (1992). 148 Y J. Uemura, A. Keren, L. P. Le, G. M. Luke, B. J. Sternlieb, W. D. Wu, J. H. Brewer, R. L. Whetten, S. M. Huand, S. Lin, R. B. Kaner, E Diedaich, S. Donovan, and G. Griiner, Nature (London) 352,605-607 (1991). 149 L. Degiorgi, E. J. Nicol, 0. Klein, G. Griiner, P. Wachter, S. M. Huang, J. Wiley, and R. B. Kaner, Phys. Rev. B 49,7012 (1994). 150 A. P. Ramirez, M. J. Rosseinsky, D. W. Murphy, and R. C. Haddon, Phys. Rev. Lett. 69, 1687-1 690 (1 992). 151 S. Iijima, Nature (London) 354,56 (1991). 152 T. W. Ebbesen and P. M. Ajayan, Nature (London) 358,220 (1 992). 153 T. W. Ebbesen, H. Hiura, J. Fujita, Y. Ochiai, S. Matsui, and K. Tanigaki, Chem. 154 S. Iijima and T. Ichihashi, Nature (London) 363,603 (1993). 155 D. S. Bethune, C. H. Kiang, M. S. de Vries, G. Gorman, R. Savoy, J. Vazqucz, and R. Beyers, Nature (London) 363,605 (1993). 156 A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tominek, J. E. Fischer, and Phys. Lett. 209,83-90 (1993). 93 R. E. Smalley, Science 273,483 (1996). 157 C. Journet, W. K. Maser, P. Bernier, A. Loiseau, M. Lamy de la Chapelle, S. Lefrant, P. Deniard, R. Lee, and 3. E. Fischer, Nature(London)388,756 (1997). 158 M. Endo, H. Fujiwara, and E. Fukunaga, Meeting of Japanese Carbon Society pages 34-35 (1991). (unpublished). 159 M. Endo, H. Fujiwara, and E. Fukunaga, Second C~O Symposium in Japan pages 10 1-104 (1 992). (unpublished). 160 T. W. Ebbesen, Annu. Rev. Mater. Sci. 24,235-264 (1994). 161 M. Endo, CHEMTECH 18,568 (1988). September issue. 162 M. S. Dresselhaus, G. Dresselhaus, and R. Saito, Phys. Rev. B 45,6234 (1992). 163 T. Guo, C M. Jin, and R. E. Smalley, Chem. Phys. Lett. 243,49-54 (1995). 164 J. C. Charlier and J. P. Michenaud, Phys. Rev. Lett. 70, 1858-1861 (1993). 165 J C. Charlier, T. W. Ebbesen, and Ph. Lambin, Phys. Rev. B 53, 11 108 (1996). 166 R. Bacon, J. Appl. Phys. 31,283-290 (1 960). 167 K. Sattler, Carbon 33,915 (1995). 168 M. S. Dresselhaus, G. Dresselhaus, and R. Saito, Carbon 33,883-891 (1995). 169 R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Appl. Phys. Lett. 68, 170 R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Chem. Phys. Lett. 195, 537 171 J. W. Mintmire, B. I. Dunlap, and C. T. White, Phys. Rev. Lett. 68,631-634(1992). 172 T. Hamada, M. Furuyama, T. Tomioka, and M. Endo, J. Mater. Res. 7, 1178- 173 K. Harigaya, Chem. Phys. Lett. 189,79 (1992). 174 K. Tanaka, M. Okada, K. Okahara, and T. Yamabe, Chem. Phys. Lett. 191,469 (1 992). 175 R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus. In Electrical, Optical and Magnetic Properties of Organic Solid State Materials, MRS Symposia Proceedings, Boston, edited by L. Y Chiang, A. E Garito, and D. J. Sandman, page 333, Materials Research Society Press, Pittsburgh, PA, 1992. 176 Riichiro Saito, Mitsutaka Fujita, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B 46, 1804-6242(1992). 177 G. S. Painter and D. E. Ellis, Phys. Rev. B 1,4747 (1970). 178 R. Saito, G. Dresselhaus, and M. S. Dresselhaus, J. Appl. Phys. 73,494 (1993). 179 M. S. Dresselhaus, R. A. Jishi, G. Dresselhaus, D. Inomata, K. Nakao, and Riichiro Saito, Molecular Materials 4,2740 (1994). 180 S. Wang and D. Zhou, Chem. Phys. Lett. 225,165 (1994). I 81 J. W. G. Wildoer, L. C. Venema, A. G. Rinzler, R. E. Smalley, and C. Dekker, 182 C. W. OIk and J. P. Heremans, J. Mater. Res. 9,259 (1994). 183 M. Ge and K. Sattler, Science 260,515 (1993). 184 V. P. Dravid. X. Lin, Y Wang, X. K. Wang, A. Yee, J. B. Ketterson, and R. P. H. 185 S. Amelinckx, D. Bernaerts, X. B. Zhang, G. Van Tendeloo, and J. Van Landuyt, 186 Z. Zhang and C. M. Lieber, Appl. Phys. Lett. 62,2792-2794 (1993). 187 T. Ebbesen. In Fullerenes and Nanotuhes, edited by Pierre Delhaks and P. M. Ajayan, Gordon and Breach, Pans, France, 1998. Series: World of Carbon, volume 2. 188 J. E. Fischer, H. Dai, A. Thess, N. M. Hanjani, D. L. Dehaas, and R. E. Smalley, Phys. Rev. B 55, R4921 (1997). 189 S. J. Tans, M. H. Devoret, H. Dal, A. Thess, R. E. Smalley, L. J. Geerligs, and 2204-2201 (1 992). (1 992). 1188 (1992). ibid., 2612-2620. Nature (London) 388 (1 997). Chang, Science 259,1601 (1993). Science 267,1334 (1995). 94 C. Dekker, Nature (London) 386,474 (1997). 190 M. Bockrath, D. H. Cobden, P. L. McEuen, N. G. Chopra, A. Zettl, A. Thess, and R. E. Smalley, Science 275,1922 (1997). 191 L. Kouwenhoven, Science 275,1896 (1997). 192 L. Langer, V. Bayot, J. P. Issi, L. Stockman, C. Van Haesendonck, Y. Bruynser- aede, J. P. Heremans, and C. H. Olk, Extended Abstracts of the Carbon Confer- ence page 348 (1995). 193 T. W. Ebbesen, Phys. Today 49,26 (1996). June issue. 194 R. A. Jishi, L. Venkataraman, M. S. Dresselhaus, and G. Dresselhaus, Chem. Phys. Lett. 209, 77-82 (1993). 195 A. M. Rao, E. Richter, S. Bandow, B. Chase, P. C. Eklund, K. W. Williams, M. Menon, K. R. Subbaswamy, A. Thess, R. E. Smalley, G. Dresselhaus, and M. S. Dresselhaus, Science 275, 187-191 (1997). 196 M. S. Dresselhaus, G. Dresselhaus, K. Sugihara, I. L. Spain, and H. A. Goldberg, Graphite Fibers and Filaments (Springer-Verlag, Berlin, 1988), Vol. 5 of Springer Series in Materials Science. 197 E. Richter and K. R. Subbaswamy, Phys. Rev. Lett. (1 997). in press. 198 R. Saito, T. Takeya, T. Kimura, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B (1998). 199 M. Endo, K. Takeuchi, S. Igarashi, K. Kobori, M. Shiraishi, andH. W. Kroto, J. Phys. Chem. Solids 54,1841-1848 (1993). 200 J. Tersoff and R. S. Ruoff, Phys. Rev. Lett. 73,676 (1994). 201 R. S. Ruoff and D. C. Lorents, Carbon 33,925 (1995). 202 B. T. Kelly, in Physics of Graphite, (Applied Science (London), 1981). 203 J. Tersoff, Phys. Rev. B 46, 15546 (1 992). 204 M. M. J. Treacy, T. W. Ebbesen, and J. M. Gibson, Nature (London) 381, 678 205 G. Overney, W. Zhong, and D. Tominek, Z. Phys. D 27,93 (1993). 206 Y. Wang, Nature (London) 356,585-587 (1992). 207 M. E. Orczyk and P. N. Prasad, Photonics Science News 1,3-11 (1994). 208 Q Y Tong, C. B. Eom, U. Gosele, and A. E Hebard, J. Electrochem. SOC. 141, 209 N. S. Sariciftci and A. J. Heeger, Int. J. Mod. Phys. B 8,237-274 (1994). 210 D. M. Gruen, Shengzhong Liu, A. R. Krauss, Jianshu Luo, and Xianzheng Pan, 211 A. V. Hamza, J. Dykes, W. D. Mosley, L. Dinh, and M. Balooch, Surf. Sci. 318, 212 B. I. Yakobson and R. E. Smalley, American Scientist 85,324 (1997). 213 M. R. Falvo, G. J. Clary, R. M. Taylor 11, V. Chi, E P. Brooks Jr, S Washburn, 214 D. L. Carroll, €? Redlich, l? M. Ajayan, J. C. Charlier, X. Blase, A. De Vita, and 215 W. A. de Heer, A. Chltelain, and D. Ugarte, Science 270, 1179 (1995). see also 216 A. G. Rinzler, J. H. Hafner, P. Nikolaev, L. Lou, S. G. Kim, D. Tomknek, 217 P. G. Collins and A. Zettl, Appl. Phys. Lett. 69, 1969 (1996). 218 A. C. Dillon, K. M. Jones T. A. Bekkedahl, C H. Kiang, D. S. Bethune, and M. J. 219 K. Suenaga, C. Colliex, N. Demoncy, A. Loiseau, H. Pascard, and E Willaime, (1 996). L137-L13 8 (1 994). Appl. Phys. Lett. 64, 1502 (1 994). 368-378 (1994). and R. Superfine, Nature (London) 385 (1997). R. Car, Phys. Rev. Lett. 78,2811 (1997). ibid page 1 1 19. P. Nordlander, D. T. Colbert, and R. E. Smalley, Science 269, 1550 (1995). Heben, Nature (London) 386,377 (1996). Science 278 (1997). [...]... activated carbon fibers, J Muter Sci., 1993, 28( 1l), 2950 29 54 113 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 Economy, J., Daley, M., Hippo, E J and Tandon, D., Elucidating the pore structure of activated carbon fibers through direct imaging using scanning tunneling microscopy (STM), Carbon, 1995,33(3), 344 345 Kieffer, J., Investigation of the transitional pore structure of activated carbon. .. this stage to consider active carbons generally, before leading on to introduce active carbon fibers, which axe a relatively recent development of these materials 98 carbon materials 7 i active carbons active carbon fibers Fig 1 Venn diagram illustrating where active carbon fibers lie in the classification of carbon materials 2.2 Active carbons Active carbons, AC, comprise carbons that have been prepared... student in the Department of Materials Science and Engineering, University of Bath, U.K., and H L South, Subject Librarian, University of Bath, for their help in compiling references for h s chapter 6 References 1 2 3 4 5 6 7 8 9 10 11 12 13 Edie, D D and McHugh, J J., High performance carbon fibers In Carbon Materials for Advanced Technologies, ed T D Burchell, Elsevier Science, Oxford, 1999, pp 119... purification for instance, and in the gas-phase as adsorbents for gas storage and separations [10,13], and as catalysts and catalyst supports [ 14] Traditionally, active carbons are made in particulate form, either as powders (particle size 100 pm, with an average diameter of -20 pm) or granules (particle size in the range 100 pm to several mm) The main precursor materials for particulate active carbons,... include: transmission electron microscopy [ 34, 35], scanning tunneling microscopy [36,37], small-angle scattering [38,39], x-ray diffraction [40 -42 1, surface analysis [43 -45 1, electrical/magnetic properties [46 ,47 ], mechanical properties [48 ,49 ], adsorption [50-531 plus various other characterization methods [ 54- 583 Measurements of adsorption, including evidence for high adsorption capacities and (especially)... Elsevier Science, Oxford, 1999, pp 119 138 Burchell, T D., Porous carbon fiber -carbon binder composites In Carbon Materials f o r Advanced Technologies, ed T D Burchell, Elsevier Science, Oxford, 1999, pp 169 2 04 Economy, J., Daley, M and Mangun C., Activated carbon fibers - past, present and future, ACS Preprints (Fuel Chemistry Division), 1996 ,41 (1), 321 325 Dresselhaus, M S., Dresselhaus, G., Sugihara,... 1973 ,43 (9), 539 543 Arons, G N., Macnair, R N., Coffin, L G and Hogan, H D., Sorptive textile systems containing activated carbon fibers, Text Res J., 19 74, 44 (11), 8 74 883 Arons, G N and Macnair, R N., Activated carbon fabric prepared by pyrolysis and activation of phenolic fabric, Text Res J., 1975 ,45 (l), 9 1 Macnair, R N., Arons, G N and Coffin, L G., Sorptive composite fabrics containing activated carbon. .. not be suitable for some processes 2.3 Active carbonfibers Essentially, the technology of active carbon fibers is a combination of the technologies for carbon fibers and active carbons summarized above This section is an o u t h e of the historical development of ACF As already mentioned, the driving force behind the development of modern carbon fibers was the demand in the late-1950s for high strength... Adsorbent storage for natural gas vehicles In Carbon Materialsfor Advanced Technologies, ed T D Burchell, Elsevier Science, Oxford, 1999, pp 269 302 Matranga, K R., Myers, A L and Glandt, E D., Storage of natural-gas by adsorption on activated carbon, Chem.Eng Sci., 1992 ,47 (7), 1569 1579 Mangun, C L., Daley, M A., Braatz, R D and Economy, J., Effect of pore size on adsorption of hydrocarbons in phenolic-based... capacitor, J Electrochem SOC.,19 84, 131(6), 145 7 145 9 Tanahashi, I., Yoshida, A and Nishino, A., Activated carbon fiber sheets as polarizable electrodes of electric double layer capacitors, Carbon, 1990, 28 (4) , 47 7 48 2 118 116 117 118 119 120 121 122 123 Tanahashi, I., Yoshida, A and Nishino, A., Electrochemical characterization of activated carbon fiber cloth polarizable electrodes for electric double layer . and P. C. Eklund, J. Mater. Res. 8,20 54 (1993). 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 M. S. Dresselhaus and G. Dresselhaus,. Phys. Rev. B 48 ,2862 (1993). Phys. Rw. B 48 ,11375-11380(1993). Rao, and P. C. Eklund, Chem. Phys. Lett. 206, I87 (1993). Phys. Rev. B 48 ,56 34- 5 642 (1993). (1992). Rev. B48, 841 2(1993) consider active carbons generally, before leading on to introduce active carbon fibers, which axe a relatively recent development of these materials. 98 7 carbon materials i active carbons active

Ngày đăng: 10/08/2014, 11:21

TỪ KHÓA LIÊN QUAN