1. Trang chủ
  2. » Luận Văn - Báo Cáo

Báo cáo sinh học: "Breeding value estimation with incomplete marker data" pptx

14 255 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 14
Dung lượng 648,78 KB

Nội dung

Original article Breeding value estimation with incomplete marker data Marco C.A.M. Bink Johan A.M. Van Arendonk a Richard L. Quaas a Animal Breeding and Genetics Group, Wageningen Institute of Animal Sciences, Wageningen Agricultural University, PO Box 338, 6700 AH Wageningen, the Netherlands b Department of Animal Science, Cornell University, Ithaca, NY 14853, USA (Received 20 January 1997; accepted 17 November 1997) Abstract - Incomplete marker data prevent application of marker-assisted breeding value estimation using animal model BLUP. We describe a Gibbs sampling approach for Bayesian estimation of breeding values, allowing incomplete information on a single marker that is linked to a quantitative trait locus. Derivation of sampling densities for marker genotypes is emphasized, because reconsideration of the gametic relationship matrix structure for a marked quantitative trait locus leads to simple conditional densities. A small numerical example is used to validate estimates obtained from Gibbs sampling. Extension and application of the presented approach in livestock populations is discussed. © Inra/Elsevier, Paris breeding values / quantitative trait locus / incomplete marker data / Gibbs sampling Résumé - Estimation des valeurs génétiques avec information incomplète sur les marqueurs. Un typage incomplet pour les marqueurs empêche l’estimation des valeurs génétiques de type BLUP utilisant l’information sur les marqueurs. On décrit une procédure d’échantillonnage de Gibbs pour l’estimation bayésienne des valeurs génétiques permettant une information incomplète pour un marqueur unique lié à un locus quantitatif. On développe le calcul des densités de probabilités des génotypes au marqueur parce que la reconsidération de la structure de la matrice des corrélations gamétiques pour un locus quantitatif marqué conduit à des densités conditionnelles simples. Un petit exemple numérique est donné pour valider les estimées obtenues par échantillonnage de Gibbs. L’application de l’approche aux populations d’animaux domestiques est discutée. © Inra/Elsevier, Paris valeur génétique / locus quantitatif / marqueurs incomplets / échantillonnage de Gibbs * Correspondence and reprints 1. INTRODUCTION Identification of a genetic marker closely linked to a gene (or a cluster of genes) affecting a quantitative trait, allows more accurate selection for that trait [5]. The possible advantages of marker-assisted genetic evaluation have been described extensively (e.g. [13, 16, 17]). Fernando and Grossman [1] demonstrated how best linear unbiased prediction (BLUP) can be performed when data are available on a single marker linked to quantitative trait locus ((aTL). The method of Fernando and Grossman has been modified for including multiple unlinked marked QTL [23], a different method of assigning QTL effects within animals [26]; and marker brackets [5]. These methods are efficient when marker data are complete. However, in practice, incompleteness of marker data is very likely because it is expensive and often impossible (when no DNA is available) to obtain marker genotypes for all animals in a pedigree. For every unmarked animal, several marker genotypes can be fitted, each resulting in a different marker genotype configuration. When the proportion or number of unmarked animals increases, identification of each possible marker genotype con- figuration becomes tedious and analytical computation of likelihood of occurrence of these configurations becomes impossible. Gibbs sampling [3] is a numerical integration method which provides opportuni- ties to solve analytically intractable problems. Applications of this technique have recently been published in statistics (e.g. [2, 3]) as well as animal breeding (e.g. [18, 25]). Janss et al. [10] successfully applied Gibbs sampling to sample genotypes for a bi-allelic major gene, in the absence of markers. Sampling genotypes for multiallelic loci, e.g. genetic markers, may lead to reducible Gibbs chains [15, 20]. Thompson [21] summarizes approaches to resolve this potential reducibility and concludes that a sampler can be constructed that efficiently samples multiallelic genotypes on a large pedigree. The objective of this paper is to describe the Gibbs sampler for marker-assisted breeding value estimation for situations where genotypes for a single marker locus are unknown for some individuals in the pedigree. Derivation of the conditional, discrete, sampling distributions for genotypes at the marker is emphasized. A small numerical example is used to compare estimates from Gibbs sampling to true posterior mean estimates. Extension and application of our method are discussed. 2. METHODOLOGY 2.1. Model and priors We consider inferences about model parameters for a mixed inheritance model of the form where y and e are n-vectors representing observations and residual errors, (3 is a p-vector of ’fixed effects’, u and v are q and 2q-vectors of random polygenic and QTL effects, respectively, X is a known n x p matrix of full column rank, and Z and W are known n x q and n x 2q matrices, respectively. For each individual we consider three random genetic effects, i.e. two additive effects at a marked QTL (v! and v2, see figure 1) and a residual polygenic effect (u;). Here e is assumed to have the distribution Nn (O, 1 0 &dquo;;), independently of (3, u and v. Also u is taken to be Nq(0, AO,2 ), where A is the well-known numerator relationship matrix. Finally, v is taken to be N2q(OGQ!), where G is the gametic relationship matrix (2q x 2q) computed from pedigrees, a full set of marker genotypes and the known map distance between marker and QTL [26]. In case of incomplete marker data, we augment genotypes for ungenotyped individuals. We then denote f fi( k) and G( k) as the marker genotype configuration k and as the corresponding gametic relationship matrix. Further, /3, u, v, and missing marker genotypes are assumed to be independent, a priori. We assume complete knowledge on variance components and map distance between marker and QTL. 2.2. Joint posterior density and full conditional distributions for location parameters The conditional density of y given /3, u, and v for the model given in equation (1) is proportional to exp{ -1/2a; 2 (y - X,3 - Zu - Wv)’(y - X/3 - Zu - Wv}, so the joint posterior density is given by The joint posterior density includes a summation (n c) over all consistent marker genotype configurations (M(k ))- In the derivation of the sampling densities for marked QTL effects, however, one particular marker genotype configuration, m( k ), is fixed. The summation needs to be considered only when the sampling of marker genotypes is concerned. To implement the Gibbs sampling algorithm, we require the conditional posterior distributions of each of (3, u, and v given the remaining parameters, the so-called full conditional distributions, which are as follows and gametic covariances in the pedigree, respectively. Note that the means of the distributions (3), (4) and (5) correspond to the updates obtained when mixed model equations are solved by Gauss-Seidel iteration. Methods for sampling from these distributions are well known (e.g. [24, 25]). 2.3. Sampling densities for marker genotypes Suppose m is the current vector of marker genotypes, some observed and some of which were augmented (e.g. sampled by the Gibbs sampler). Let m- i denote the complete set except for the ith (ungenotyped) individual, and let gm denote a particular genotype for the marker locus. Then the posterior distribution of genotype gm is the product of two factors with, where G- 1 corresponds to marker genotype set IM-i, Mi = gm ). Thus, equation (7) shows that phenotypic information needed for sampling new genotypes for the marker is present in the vector of QTL effects (v). Now, it suffices to compute equation (6) for all possible values of gm, and then randomly select one from that multinomial distribution [20]. In practice consid- ering only those gm that are consistent with m- i and Mendelian inheritance can minimize the, computations. Furthermore, computations can be simplified because &dquo;transmission of genes from parents to offspring are conditionally independent given the genotypes of the parents&dquo; [15]. Adapting notation from Sheehan and Thomas [15], let Sj denote the set of mates (spouses) of individual i and 0;,! be the set of offspring of the pair i and j. Furthermore, the parents of individual i are denoted by s (sire) and d (dam). Then, equation (6) can be more specifically written as p(mi = gm, m-i IV, oV 2 ,Mobs, r) When parents of individual i are not known, then the first two terms on the right-hand side of equation (8) are replaced by x(m;), which represents frequen- cies of marker genotypes in a population. The probability p(m; = 9. 1 M ., Md ). cor- responds to Mendelian inheritance rules for obtaining marker genotype gi given parental genotypes ms and md, similar for p(m 1 Im¡ = gm, m!). The computation of p{v i lv d ,m¡,m s ,m d ,r} (and p{v 1 Iv¡, Vj,m i ,m j ,m 1 ,r}) can efficiently be performed by utilizing special characteristics of the matrix G- 1. Let Qi denote a gametic contribution matrix relating the QTL effects of individual i to the QTL effects of its parents. The matrix Qi is 2(i — 1) x 2. For founder animals, matrix Qi is simply zero. The recursive algorithm to compute G- 1 of Wang et al. (1995, equation [18] ) can be rewritten as where D¡1 = (C; - Q;G¡- 1Q ¡)- 1 (which reduces to D¡ 1 = (C i - QfG i -,Q i )-’ with no inbreeding), Oi is a 2(q—i) x 2 null matrix. The off-diagonals in C; equal the inbreeding coefficient at the marked QTL [26]. Equation (8) shows the similarity to Henderson’s rules for A- 1 [6]. The nonzero elements of G- 1 pertaining to an animal arise from its own contribution plus those of its offspring. So, when sampling the ith animal’s marker genotype, only those contribution matrices need be considered that contain elements pertaining to animal i. These are the individual’s own contributions and those of its progeny when i appears as a parent. where Vk is the vector of animal k’s two marked QTL effects, and Qp denotes the rows of Qk pertaining to P, one of k’s parents. Again, we recognize each term in the sum is the kernel of a (bivariate) normal which is pfv i Iv s, vd, m¡, ms, md, r} or p{v1Iv¡, Vj, m¡, mj,m1, r}. 2.4. Running the Gibbs sampling The Gibbs sampler is used to obtain a sample of a parameter from the posterior distribution and can be seen as a chained data augmentation algorithm [19]. So, one augments data (y and mobs) with parameters (0) to obtain, for example, p(e 1 Ie 2 , , Od, y). For the purpose of breeding value estimation, Gibbs sampling works as follows: 1) set arbitrary initial values for 9!°!, we use zeros for fixed and genetic effects and for each unmarked animal, we augment a genotype that is consistent with pedigree, Mendelian inheritance, and observed marker data; 2) sample 01’+ll from [3], i = 1, 2, , p; for fixed effects, [4], i = p + 1, p + 2, , p + q; for polygenic effects, [5], i = p + q + 1, p + q + 2, , p + q + 2q; for marked QTL effects, or [6], i = p + 3q + 1, p + 3q + 2, , p + 3q + t; for marker genotypes, and replace 6!T! with ei T+1 ]; . 3) repeat 2) N (length of chain) times. For any individual parameter, the collection of n values can be viewed as a simulated sample from the appropriate marginal distribution. This sample can be used to calculate a marginal posterior mean or to estimate the marginal posterior distribution. For small pedigrees with only a few animals missing observed marker genotypes, posterior means can be evaluated directly using where B* is a fixed, polygenic or marked QTL effect. This provides a criterion to compare the estimates obtained from Gibbs sampling. 3. NUMERICAL EXAMPLE A small numerical example is used to verify the use of the Gibbs sampler to obtain posterior mean estimates and illustrate the effect of the data on the estimates obtained from two different estimators, i.e. a posterior mean and the well-known BLUP estimator (by solving the MME given in the Appendix). Pedigree and data of the example are in figure 2. Both sire (01) and dam (02) have observed marker genotypes, AB and CD, respectively, but do not have phenotypes observed. Three full sibs have a marker genotype BC and a phenotype +20 (denoted FS 03, 04, 05); three other full sibs have a marker genotype AD and a phenotype -20 (denoted FS 06, 07, 08). Both animals 09 and 10 have no marker genotypes but have a phenotype +20 and -20, respectively. Complete knowledge was assumed on variance components and recombination rate between marker and MQTL (table I). The thinning factor in Gibbs sampling chain was 50 cycles and the burn in period was twice the thinning factor, and 20 000 thinned samples were used for analysis. 3.1. Estimates for genetic effects The posterior estimates obtained from Gibbs sampling were similar to the TRUE posterior estimates, as shown in table 11. The posterior estimates of MQTL effects of animals 09 and 10 (f0.70) were much less divergent than those of their full sibs that had their marker genotypes observed (f2.48). These less divergent values reflect the uncertainty on marker genotypes of animals 09 and 10. The TRUE and GIBBS posterior densities for an MQTL effect of animal 09 were also very similar (figure 3). The posterior variance was 52.3, which was larger than the prior variance (ufl = 50) and reveals that the data are not decreasing the prior uncertainty on MQTL effects for animals 09 and 10 in this situation. For the other full sibs, the posterior variance was 47.02, which was lower than the prior variance because segregation of MQTL effects was known with higher certainty, i.e. marker genotypes were known. The BLUP estimates for MQTL effects of animal 09 and 10 were equal to 1/6 of the polygenic effects of these animals, which equaled the variance ratio of the MQTL and the polygenes. [...]... number of genetically superior animals from the population In a marker- assisted selection scheme marker genotypes will be collected largely on these animals, with sufficient animals having marker genotypes observed to improve selection of superior individuals Straightforward application in large commercial populations with thousands of marker genotypes missing, is not a valid option because of computational... single marker locus Using information from multiple linked markers can increase accuracy of predicting genetic effects at the QTL The principles applied here have been extended to situations where genotypes for all the linked markers are known for all individuals [5, 22] In order to incorporate individuals with unknown genotypes, the method presented in this paper needs to be extended to a multiple marker. .. A1.1 Computation Wang et al of average G with [26] suggested computing an incomplete average marker data G, here denoted G, as gametic relationship matrix given a particular marker genotype configuration ); and p( is the probability of m( given mobs This ) k k m( ,) ob )lM k ( M equation is not conditioned on phenotypic information where ) k G( is the Al.2 Marker- assisted best linear unbiased Mixed... random effects are (MME) prediction of breeding values to obtain BLUE for fixed effects and BLUP for where a&dquo; Qe !Qu, a&dquo; Qe !Q! and G are all known Solutions can be obtained by iteration on the data [14] These equations can be used in three situations First, G is unique (complete marker data) Second, with missing markers, a linear estimator G Third, with G is obtained by taking G G!!!, they are... of Metropolis-coupled samplers [11], importance sampling, with 0/1 weights [15], and ’heating’ in the Metropolis-Hastings steps [12] Alternatively, Jansen et al [9] sampled IBD values for all marker loci indicating parental origin of alleles instead of actual alleles to avoid the reducibility problem In extending the method to multiple linked markers, attention also needs to be paid to an efficient... constant in this study The next step, therefore, comprises estimation of variance components, both marked QTL and polygenic, given a fixed map position of the QTL And, eventually, one could estimate the most likely position of the QTL within a linkage map containing multiple markers The complete phenotypes a MCMC algorithm can then be used for the with complex pedigree structures, such as analysis in QTL... mapping [22] [23] [24] Stat Sci 9 (1994) 355366 Uimari P., Thaller G., Hoeschele I., The use of multiple markers in a Bayesian method for mapping quantitative trait loci, Genetics 143 (1996) 1831-1842 VanArendonk J.A.M., Tier B., Kinghorn B.P., Use of multiple genetic markers in prediction of breeding values, Genetics 137 (1994) 319-329 VanTassell C.P., Casella G., Pollak E.J., Effects of selection on... multiple marker situation In extending the method to multiple markers, the problem of reducibility deserves special attention Reducibility of Gibbs chains can arise when sampling genotypes for a polymorphic locus with more than two alleles [20] The reducibility problems will become more severe when sampling genotypes for multiple linked markers Thompson [21] suggested several, workable, approaches... model for analysis of data on multiple genetic markers, Theor Appl Genet 83 (1992) 878-886 Henderson C.R., A simple method for computing the inverse of a numerator relationship matrix used in prediction of breeding values, Biometrics 32 (1976) 69-83 Hoeschele I., Elimination of quantitative trait loci equations in an animal model incorporating genetic marker data, J Dairy Sci 76 (1993) 1693-1713 Jansen... requirements of Markov chain Monte Carlo (MCMC) algorithms such as Gibbs sampling Hybrid schemes will need to be developed to incorporate information from the commercial population into the marker- assisted prediction of breeding values of nucleus animals Similar schemes have been implemented to incorporate foreign information into national evaluations in dairy cattle Our Bayesian approach can also be considered . - Incomplete marker data prevent application of marker- assisted breeding value estimation using animal model BLUP. We describe a Gibbs sampling approach for Bayesian estimation. Original article Breeding value estimation with incomplete marker data Marco C.A.M. Bink Johan A.M. Van Arendonk a Richard L. Quaas a . QTL effects within animals [26]; and marker brackets [5]. These methods are efficient when marker data are complete. However, in practice, incompleteness of marker data is

Ngày đăng: 09/08/2014, 18:22

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN