1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Introduction to Thermodynamics and Statistical Physics phần 6 pot

17 419 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 17
Dung lượng 248,94 KB

Nội dung

Chapter 2. Ideal Gas V p 1 p 2 p a b d c V p 1 p 2 p a b d c Fig. 2.11. V p V 1 V 2 a b c d V p V 1 V 2 a b c d Fig. 2.12. two isentropic processes (constant entropy) b→candd→a, as shown in Fig. 2.12. Assume that the heat capacities C V and C p are temperature independent. Calculate the e fficiency η of this engine. Eyal Buks Thermodynam ics and Statistical Physics 78 2.9. Solutions Set 2 29. Consider two vessels A and B each containing ideal classical gas of par- ticles having no internal degrees of freedom . The pressure and num ber of particles in both ves sels are p and N respectively, and the tempera- ture is τ A in vessel A and τ B in vessel B. The two vessels are brought into thermal contact. No heat is exchanged with the environment during this process. Moreover, the pressure is kept constant at the value p in both vessels during this process. Find the change in the total en tropy ∆σ = σ final − σ initial . 2.9 Solutions Set 2 1. The entropy is give n by σ = N ( log " µ Mτ 2π} 2 ¶ 3/2 V N # + 5 2 ) , (2.162) or using pV = Nτ σ = N ( log " µ M 2π} 2 ¶ 3/2 τ 5/2 p # + 5 2 ) , (2.163) thus C p = τ µ ∂σ ∂τ ¶ p = 5 2 N. (2.164) 2. Since ∂ 2 F ∂V ∂τ = ∂ 2 F ∂τ∂V , (2.165) where F is Helmholtz free energy, one has µ ∂ ∂V µ ∂F ∂τ ¶ V ¶ τ = µ ∂ ∂τ µ ∂F ∂V ¶ τ ¶ V . (2.166) By definition µ ∂F ∂V ¶ τ = −p. Moreover, using F = U −τσ one finds µ ∂F ∂τ ¶ V = µ ∂U ∂τ ¶ V − τ µ ∂σ ∂τ ¶ V − σ = µ ∂U ∂τ ¶ V − µ ∂U ∂σ ¶ V µ ∂σ ∂τ ¶ V − σ = −σ, (2.167) Eyal Buks Thermodynam ics and Statistical Physics 79 Chapter 2. Ideal Gas thus µ ∂σ ∂V ¶ τ = µ ∂p ∂τ ¶ V . (2.168) 3. We have found in class the following relations n Q = µ Mτ 2π~ 2 ¶ 3/2 , (2.169) η = − µ τ , (2.170) log Z gc = e −η Z int Vn Q , (2.171) U = µ 3τ 2 − ∂ log Z int ∂β ¶ log Z gc , (2.172) N =logZ gc . (2.173) a) Using Eqs. (2.171) and (2.173) one finds log n n Q Z int = µ τ , (2.174) thus µ = τ µ log n n Q − log Z int ¶ . (2.175) b) Using Eqs. (2.172) and (2.173) U = N µ 3τ 2 − ∂ log Z int ∂β ¶ . (2.176) c) Using the relations F = U −τσ , (2.177) σ =logZ gc + βU + ηN , (2.178) one finds F = U −τσ (2.179) = Nτ (−η −1) (2.180) = Nτ ³ µ τ − 1 ´ (2.181) = Nτ µ log n n Q − log Z int − 1 ¶ . (2.182) (2.183) Eyal Buks Thermodynam ics and Statistical Physics 80 2.9. Solutions Set 2 d) Using the relation σ = − µ ∂F ∂τ ¶ V , (2.184) one finds σ = − µ ∂F ∂τ ¶ V = N   −   ∂ ³ τ log n n Q ´ ∂τ   V + ∂ (τ log Z int ) ∂τ +1   = N   −τ   ∂ ³ log n n Q ´ ∂τ   V − log n n Q + ∂ (τ log Z int ) ∂τ +1   = N µ 3 2 − log n n Q + ∂ (τ log Z int ) ∂τ +1 ¶ = N µ 5 2 +log n Q n + ∂ (τ log Z int ) ∂τ ¶ . (2.185) e) By definition c V = τ µ ∂σ ∂τ ¶ V = N µ 3 2 + τ ∂ 2 (τ log Z int ) ∂τ 2 ¶ . (2.186) f) The following holds c p = τ µ ∂σ ∂τ ¶ p (2.187) = τ µ ∂σ ∂τ ¶ V + τ µ ∂σ ∂V ¶ τ µ ∂V ∂τ ¶ p = c V + τ µ ∂σ ∂V ¶ τ µ ∂V ∂τ ¶ p . Using Vp= Nτ and Eq. (2.185) one finds c p = c V + τ N V N p = c V + N. (2.188) Eyal Buks Thermodynam ics and Statistical Physics 81 Chapter 2. Ideal Gas 4. Using Eqs. (1.87), (1.70) and (1.71), and noting that ∂ ∂τ = − 1 τ 2 ∂ ∂β , (2.189) one finds that c = τ ∂σ ∂τ = ∂U ∂τ = − 1 τ 2 ∂U ∂β = D (∆U) 2 E τ 2 . (2.190) 5. The internal partition function is given by Z int = 1 2sinh ~ω 2τ ' τ ~ω , (2.191) thus using Eqs. (2.186) and (2.188) c V = N à 3 2 + τ ∂ 2 ¡ τ log τ ~ω ¢ ∂τ 2 ! = 5N 2 , (2.192) c p = 7N 2 . (2.193) 6. Energy conservation requires that the temperature of the mixture will remain τ . The entropy of an ideal gas of density n, which contains N particles, is given by σ (N,n)=N µ log n Q n + 5 2 ¶ thus the change in entropy is given by ∆σ = σ mix − σ A − σ B = σ µ N A , N A V A + V B ¶ + σ µ N B , N B V A + V B ¶ − σ µ N A , N A V A ¶ − σ µ N B , N B V B ¶ = N A log V A + V B V A + N B log V A + V B V B 7. The probabilit y t o find a m olecule in the volume v is given by p = v/V . Thus, p n is given by p n = N! n!(N − n)! p n (1 − p) N−n . (2.194) Using the solution of problem 4 of set 1 p n = λ n n! e −λ , where λ = Nv/V. Eyal Buks Thermodynam ics and Statistical Physics 82 2.9. Solutions Set 2 8. The partition function of a single atom is given b y Z 1 =exp(µ 0 Hβ)+exp(−µ 0 Hβ)=2cosh(µ 0 Hβ) , where β =1/τ , thus the partition function of the entire system is Z =(2cosh(µ 0 Hβ)) N , a) The free energy is given by F = −τ lo g Z = −Nτ log(2cosh(µ 0 Hβ)) . (2.195) The magnetization is given by M = − µ ∂F ∂H ¶ τ = Nµ 0 tanh (µ 0 Hβ) . (2.196) b) The energy U is given by U = − ∂ log Z ∂β = −Nµ 0 H tanh (µ 0 Hβ) , (2.197) thus C = τ µ ∂σ ∂τ ¶ H = µ ∂U ∂τ ¶ H = −Nµ 0 H à ∂ tanh µ 0 H τ ∂τ ! H = N à µ 0 H τ 1 cosh µ 0 H τ ! 2 . (2.198) c) The entropy σ,whichisgivenby σ = β (U −F) = N · log µ 2cosh µ 0 H τ ¶ − µ 0 H τ tanh µ 0 H τ ¸ , (2.199) and which remains constant, is a function of the ratio H/τ,therefore τ 2 = τ 1 H 2 H 1 . (2.200) 9. The partition function of a single atom is given b y Eyal Buks Thermodynam ics and Statistical Physics 83 Chapter 2. Ideal Gas Z = 1 X m=1 exp ( m ) =1+2exp()cosh(à 0 H) , (2.201) where =1/ . T he free energy is given by F = N log Z, (2.202) thus the m agnetization is given by M = à F H ả = 2Nà 0 exp ()sinh(à 0 H) 1+2exp()cosh(à 0 H) . (2.203) and the magnetic su sceptibility is given by = Nà 2 0 Ă 1+ 1 2 exp ()  , (2.204) 10. The partition function of a s ingle atom is given by Z = J X m=J exp (màH) , where =1/ . By multiplying by a factor sinh (àH/2) one nds sinh à àH 2 ả Z = 1 2 ã exp à àH 2 ả exp à àH 2 ảá J X m=J exp (màH) = 1 2 ã exp ãà J + 1 2 ả àH á exp ã à J + 1 2 ả àH áá , (2.205) thus Z = sinh ÊĂ J + 1 2  àH Ô sinh àH 2 . (2.206) a) The free energy is given by F = N log Z = N log sinh ÊĂ J + 1 2  àH Ô sinh àH 2 . (2.207) Eyal Buks Thermodynam ics and Statistical Physics 84 2.9. Solutions Set 2 b) The magnetization is given by M = − µ ∂F ∂H ¶ τ = Nµ 2 ½ (2J +1)coth · (2J +1) µH 2τ ¸ − coth µ µH 2τ ¶¾ . (2.208) 11. The intern al chemical potential µ g is giv en by Eq. (2.131). In thermal equilibrium the to tal chemical potential µ tot = µ g + mgz , (2.209) (m is the mass of the eac h dia tom ic molecule N 2 , g is the gravity accel- eration constant, and z is the height) is z inde pendent. Thus, the density n as a function of height above see lev e l z can be expressed as n (z)=n (0) exp µ − mgz k B T ¶ . (2.210) The condition n (z)=0.5 × n (0) yields z = k B T ln 2 mg = 1.3806568 × 10 −23 JK −1 × 300 K × ln 2 14 × 1.6605402 × 10 −27 kg × 9.8ms −2 =12.6km. (2.211) 12. The Helmholtz free energy of an ideal gas of N particles is given by F = −τN log " µ Mτ 2π} 2 ¶ 3/2 V # + τN log N − τN , (2.212) th us the chemical potential is µ = µ ∂F ∂N ¶ τ,V = −τ log à µ Mτ 2π} 2 ¶ 3/2 V ! + τ log N, (2.213) and the pressure is p = − µ ∂F ∂V ¶ τ,V = Nτ V . (2.214) Using these results the fugacity λ =exp(βµ) can be expressed in terms of p λ = e βµ = µ Mτ 2π} 2 ¶ −3/2 N V = µ M 2π} 2 ¶ −3/2 τ −5/2 p. (2.215) At equilibrium the fugacity of the gas and that of the system of absorb- ing sites is the same. The grand canonical partition function of a single absorption site is given by Eyal Buks Thermodynam ics and Statistical Physics 85 Chapter 2. Ideal Gas Z =1+e à + e (2à) , (2.216) or in terms of the fugacity =exp(à) Z =1+ + 2 e . (2.217) Thus hN a i = N 0 log Z = N 0 +2 2 e 1+ + 2 e , (2.218) where is given by Eq. (2.215). 13. The internal partition function is given by Z int = g 1 + g 2 exp . (2.219) Using Eq. (2.135) c V = 3 2 N + N ã 2 2 ( log Z int ) á V = N ( 3 2 + 2 g 1 g 2 exp Ă Â Ê g 1 + g 2 exp Ă ÂÔ 2 ) . (2.220) Using Eq. (2.136) c p = N ( 5 2 + 2 g 1 g 2 exp Ă Â Ê g 1 + g 2 exp Ă ÂÔ 2 ) . (2.221) 14. Using Maxwells relation à V ả ,N = à p ả V,N , (2.222) and the equation of state one nds that à V ả ,N = N V b . (2.223) a) Using the denitions c V = à ả V,N , (2.224) c p = à ả p,N , (2.225) Eyal Buks Thermodynam ics and Statistical Physics 86 2.9. Solutions Set 2 and the general identit y µ ∂z ∂x ¶ α = µ ∂z ∂x ¶ y + µ ∂z ∂y ¶ x µ ∂y ∂x ¶ α , (2.226) one finds c p − c V = τ µ ∂σ ∂V ¶ τ,N µ ∂V ∂τ ¶ p,N , (2.227) or with the help of Eq. (2.223) and the equation of state c p − c V = N Nτ p (V − b) = N. (2.228) b) Using the identity µ ∂U ∂V ¶ τ,N = µ ∂U ∂V ¶ σ,N + µ ∂U ∂σ ¶ V,N µ ∂σ ∂V ¶ τ,N , (2.229) together with Eq. (2.223) yields µ ∂U ∂V ¶ τ,N = −p + Nτ V − b =0. (2.230) Thus, the energy U is independent on the volume V (it can b e ex- pressed as a function of τ and N only), and therefore for processes for whic h d N = 0 the c hange in energy dU can be expressed as dU = c V dτ. (2.231) For an isentropic pr ocess no heat is exchanged, and therefore dW = −dU,thussincec V is independent on temperature one has W = −∆U = −c V (τ 2 − τ 1 ) . (2.232) 15. Using the definitions c V = τ µ ∂σ ∂τ ¶ V,N , (2.233) c p = τ µ ∂σ ∂τ ¶ p,N , (2.234) and the general iden tity µ ∂z ∂x ¶ α = µ ∂z ∂x ¶ y + µ ∂z ∂y ¶ x µ ∂y ∂x ¶ α , (2.235) Eyal Buks Thermodynam ics and Statistical Physics 87 [...]... from the hot bath per cycle h and delivered −Q0 heat to the cold one per cycle, where W = Q0 + Q0 l l h and ηc = W τl = 1− Q0 τh h (2. 262 ) According to Clausius principle Ql + Q0 ≤ 0 , l (2. 263 ) thus γ= Q0 Q0 − W τh τl Ql ≤− l = h = −1= W W W τh − τl τh − τl (2. 264 ) 21 Using Eq (2. 264 ) τl A (τ h − τ l ) = , P τh − τl (2. 265 ) µ ¶ P τ 2 − 2τ l τ h + + τ2 = 0 , l h 2A (2. 266 ) thus or P ± τl = τh + 2A... σ,N ∂σ V,N ∂V τ ,N ∂V τ ,N Eyal Buks Thermodynamics and Statistical Physics 88 2.9 Solutions Set 2 (2.244) and Maxwell’s relation µ ¶ µ ¶ ∂p ∂σ = , ∂V τ ,N ∂τ V,N (2.245) one finds µ µ ¶ ¶ ∂U ∂p =τ −p ∂V τ ,N ∂τ V,N (2.2 46) In the present case µ ¶ a ∂U Nτ −p= 2 , = ∂V τ ,N V −b V (2.247) thus ∆U = Z V2 V1 µ ∂U ∂V ¶ dV = a Z V2 V1 τ ,N V2 − V1 dV =a , V2 V2 V1 (2.248) and Q = ∆U + W = N τ 0 log V2 − b ... 2A s µ ¶2 P − τ2 τh + h 2A The solution for which τ l ≤ τ h is sµ ¶2 P P − − τ2 τl = τh + τh + h 2A 2A 22 Using Eq (2.244) µ µ ¶ ¶ ∂U ∂p =τ −p, ∂V τ ,N ∂τ V,N Eyal Buks Thermodynamics and Statistical Physics (2. 267 ) (2. 268 ) (2. 269 ) 91 Chapter 2 Ideal Gas thus 3Aτ 3 2Aτ 3 Bτ n = −p= , V V V (2.270) therefore B = 2A , n=3 (2.271) (2.272) 23 In general the following holds µ ¶ ∂ 2 (τ log Zint ) 3 +τ... the following holds µ n ¶ 1 ∂ Zgc hE n i = , − Zgc ∂β n η (2.249) (2.250) and µ ∂ log Zgc U =− ∂β ¶ (2.251) η Thus the variance is given by D E ­ ® (∆E)2 = E 2 − hEi2 µ 2 ¶ µ ¶2 1 1 ∂ Zgc ∂Zgc = − 2 Zgc ∂β η ∂β 2 η Zgc µ 2 ¶ ∂ log Zgc = ∂β 2 η (2.252) Furthermore, the following holds: Eyal Buks Thermodynamics and Statistical Physics 89 Chapter 2 Ideal Gas D E ­ ® (∆E)3 = E 3 − 3E 2 U + 3EU 2 − U 3... given by ∆σ = σfinal − σ1 − σ 2 µ ¶ µ ¶ µ ¶ (p1 + p2 ) τ nQ 5 τ nQ 5 τ nQ 5 = 2N log + + + − N log − N log 2p1 p2 2 p1 2 p2 2 = N log (p1 + p2 )2 4p1 p2 (2.288) Eyal Buks Thermodynamics and Statistical Physics 93 Chapter 2 Ideal Gas 26 Using σ = log Zc + βU = log Zgc + βU + ηN one finds log Zc = log Zgc + ηN (2.289) The following holds for classical ideal gas having no internal degrees of freedom log... (2. 260 ) The function f (x) = x − 1 − log x in the range 0 < x < ∞ satisfy f (x) ≥ 0, where f (x) > 0 unless x = 1 Eyal Buks Thermodynamics and Statistical Physics 90 2.9 Solutions Set 2 19 The efficiency is given by η = 1+ p2 (V1 − V2 ) Qca Cp (τ a − τ c ) Ql = 1−γ , (2. 261 ) = 1+ = 1+ Qh Qab Cv (τ b − τ a ) V2 (p1 − p2 ) where γ = Cp /CV 20 Energy conservation requires that W = Ql + Qh Consider a Carnot... + 3 exp − , τ thus a) CV is given by  ¡ ∆ ¢2 (2.275) −∆ τ  3 e  3 CV = N  + ³ τ ´2  , ∆ 2 1 + 3e− τ b) and Cp is given by   ¡ ¢2 ∆ 3 ∆ e− τ  5 Cp = N  + ³ τ ´2  , ∆ 2 1 + 3e− τ (2.2 76) (2.277) 24 Consider an infinitesimal change in the temperatures of both bodies dτ 1 and dτ 2 The total change in entropy associated with the reversible process employed by the heat engine vanishes, thus µ... heat engine vanishes, thus µ ¶ dQ1 dQ2 dτ 1 dτ 2 + =C + (2.278) 0 = dσ = dσ 1 + dσ 2 = τ1 τ2 τ1 τ2 a) Thus, by integration the equation dτ 2 dτ 1 =− , τ1 τ2 (2.279) one finds Eyal Buks Thermodynamics and Statistical Physics 92 2.9 Solutions Set 2 Z τf τ1 dτ 1 =− τ1 Z τf τ2 dτ 2 , τ2 (2.280) or log τf τ2 = log , τ1 τf (2.281) thus τf = √ τ 1τ 2 (2.282) b) Employing energy conservation law yields √ √... (2.2 56) b) Using Eq (2.253) D E ∂ 3N 3N 8U 3 (∆E)3 = − = 3 = ∂β 2β 2 9N 2 β 18 The entropy change of the body is Z τb τb dτ = C log ∆σ1 = C , τ τa τa (2.257) (2.258) and that of the bath is ∆σ2 = ∆Q C (τ a − τ b ) = , τb τb thus ∆σ = C µ τa τa − 1 − log τb τb ¶ (2.259) (2. 260 ) The function f (x) = x − 1 − log x in the range 0 < x < ∞ satisfy f (x) ≥ 0, where f (x) > 0 unless x = 1 Eyal Buks Thermodynamics. .. process a → b, while Ql is associated with process c → d In both isentropic processes (b → c and d → a) no heat is exchanged Thus η =1+ Eyal Buks Cp (τ d − τ c ) Ql =1+ Qh Cp (τ b − τ a ) Thermodynamics and Statistical Physics (2.294) 94 . (2.225) Eyal Buks Thermodynam ics and Statistical Physics 86 2.9. Solutions Set 2 and the general identit y µ ∂z ∂x ¶ α = µ ∂z ∂x ¶ y + µ ∂z ∂y ¶ x µ ∂y ∂x ¶ α , (2.2 26) one finds c p − c V = τ µ ∂σ ∂V ¶ τ,N µ ∂V ∂τ ¶ p,N ,. per cycle and delivered −Q 0 l heat to the cold one per cycle, where W = Q 0 l + Q 0 h and η c = W Q 0 h =1− τ l τ h . (2. 262 ) According to Clausius principle Q l + Q 0 l ≤ 0 , (2. 263 ) thus γ. τ l . (2. 264 ) 21. Using Eq. (2. 264 ) A (τ h − τ l ) P = τ l τ h − τ l , (2. 265 ) thus τ 2 l − 2τ l µ τ h + P 2A ¶ + τ 2 h =0, (2. 266 ) or τ l = τ h + P 2A ± s µ τ h + P 2A ¶ 2 − τ 2 h . (2. 267 ) The

Ngày đăng: 08/08/2014, 15:21

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN