Tài liệu tham khảo |
Loại |
Chi tiết |
[1] Bourbaki, N, “Groupes et alg` ebres de Lie,” Ch 4-6, Hermann, Paris 1968 |
Sách, tạp chí |
Tiêu đề: |
“Groupes et alg`ebres de Lie,” |
|
[2] A. S. Buch, A Littlewood-Richardson Rule for the K -Theory of Grassmannians, Acta |
Sách, tạp chí |
Tiêu đề: |
A Littlewood-Richardson Rule for theK-Theory of Grassmannians |
|
[3] S. Fomin and C. Greene. Noncommutative Schur functions and their applications, Discrete Math, 193, (1998), 179–200 |
Sách, tạp chí |
Tiêu đề: |
Noncommutative Schur functions and their applications |
Tác giả: |
S. Fomin and C. Greene. Noncommutative Schur functions and their applications, Discrete Math, 193 |
Năm: |
1998 |
|
[4] S. Fomin and A. N. Kirillov, Grothendieck polynomials and the Yang-Baxter equation, Proc. Formal Power Series and Alg. Comb, (1994), 183–190 |
Sách, tạp chí |
Tiêu đề: |
Grothendieck polynomials and the Yang-Baxter equation |
Tác giả: |
S. Fomin and A. N. Kirillov, Grothendieck polynomials and the Yang-Baxter equation, Proc. Formal Power Series and Alg. Comb |
Năm: |
1994 |
|
[5] S. Fomin and A. N. Kirillov, The Yang-Baxter equation, symmetric functions and Schubert polynomials, Discrete Math, 153 (1996) 123–143 |
Sách, tạp chí |
Tiêu đề: |
The Yang-Baxter equation, symmetric functions andSchubert polynomials |
|
[6] V. Gasharov, A short proof of the Littlewood-Richardson rule, European J. Combin.19 (1998) 451–453 |
Sách, tạp chí |
Tiêu đề: |
A short proof of the Littlewood-Richardson rule |
|
[7] G. D. James and M. H. Peel, Specht series for skew representations of symmetric groups, J. Algebra 56 (1979), 343–364 |
Sách, tạp chí |
Tiêu đề: |
Specht series for skew representations of symmetricgroups |
Tác giả: |
G. D. James and M. H. Peel, Specht series for skew representations of symmetric groups, J. Algebra 56 |
Năm: |
1979 |
|
[8] D. E. Littlewood and A. R. Richardson, Group characters and algebra, Philos. Trans |
Sách, tạp chí |
Tiêu đề: |
Group characters and algebra |
|
[9] A. Lascoux, “Interpolation”, Lectures at Tianjin University, June 1996 |
Sách, tạp chí |
|
[10] A. Lascoux and M. P. Sch¨ utzenberger, Structure de Hopf de l’anneau de cohomologie et de l’anneau de Grothendieck d’une vari´ et´ e de drapeaux, C.R. Acad. Sci. Parix S´ er.I Math, 295 (1982), 629–633 |
Sách, tạp chí |
Tiêu đề: |
Structure de Hopf de l’anneau de cohomologieet de l’anneau de Grothendieck d’une vari´et´e de drapeaux |
Tác giả: |
A. Lascoux and M. P. Sch¨ utzenberger, Structure de Hopf de l’anneau de cohomologie et de l’anneau de Grothendieck d’une vari´ et´ e de drapeaux, C.R. Acad. Sci. Parix S´ er.I Math, 295 |
Năm: |
1982 |
|
[11] C. Lenart, Combinatorial Aspects of the K-Theory of Grassmannians, Ann. Comb, 4 (2000), 67–82 |
Sách, tạp chí |
Tiêu đề: |
Combinatorial Aspects of the K-Theory of Grassmannians |
Tác giả: |
C. Lenart, Combinatorial Aspects of the K-Theory of Grassmannians, Ann. Comb, 4 |
Năm: |
2000 |
|
[12] I. G. Macdonald, Schur functions: theme and variations, in “Actes 28-e S´ eminaire Lotharingien”, Publ. I.R.M.A. Strasbourg, 1992, 498/S–27, 5–39 |
Sách, tạp chí |
Tiêu đề: |
Schur functions: theme and variations", in “Actes 28-e S´eminaireLotharingien |
|
[13] I. G. Macdonald, “Symmetric Functions and Hall Polynomials,” 2nd edition, Oxford University Press, Oxford 1995 |
Sách, tạp chí |
Tiêu đề: |
“Symmetric Functions and Hall Polynomials,” |
|
[14] A. I. Molev and B. E. Sagan, A Littlewood-Richardson Rule For Factorial Schur Functions, Trans. Amer. Math. Soc, 351 (1999), 4429–4443 |
Sách, tạp chí |
Tiêu đề: |
A Littlewood-Richardson Rule For Factorial SchurFunctions |
Tác giả: |
A. I. Molev and B. E. Sagan, A Littlewood-Richardson Rule For Factorial Schur Functions, Trans. Amer. Math. Soc, 351 |
Năm: |
1999 |
|
[15] A. Molev, Factorial Supersymmetric Schur Functions and Super Capelli Identities, Amer. Math. Soc. Transl, 181 (1998), 109–137 |
Sách, tạp chí |
Tiêu đề: |
Factorial Supersymmetric Schur Functions and Super Capelli Identities |
Tác giả: |
A. Molev, Factorial Supersymmetric Schur Functions and Super Capelli Identities, Amer. Math. Soc. Transl, 181 |
Năm: |
1998 |
|
[16] A. Okounkov, Quantum immanants and higher Capelli identities, Transformation Groups 1 (1996) 99–126 |
Sách, tạp chí |
Tiêu đề: |
Quantum immanants and higher Capelli identities |
|
[17] B. E. Sagan, “The symmetric group: representations, combinatorial algorithms, and symmetric functions,” 2nd edition, Springer, New York 2001 |
Sách, tạp chí |
Tiêu đề: |
“The symmetric group: representations, combinatorial algorithms, andsymmetric functions,” |
|
[18] A. V. Zelevinsky, A generalization of the Littlewood–Richardson rule and the Robinson–Schensted–Knuth correspondence, J. Algebra 69 (1981), 82–94 |
Sách, tạp chí |
Tiêu đề: |
A generalization of the Littlewood–Richardson rule and theRobinson–Schensted–Knuth correspondence |
Tác giả: |
A. V. Zelevinsky, A generalization of the Littlewood–Richardson rule and the Robinson–Schensted–Knuth correspondence, J. Algebra 69 |
Năm: |
1981 |
|