1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Communication Systems Engineering Episode 1 Part 3 docx

12 291 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 12
Dung lượng 117,88 KB

Nội dung

Lecture 3: The Sampling Theorem Eytan Modiano AA Dept. Eytan Modiano Slide 1 Sampling • Given a continuous time waveform, can we represent it using discrete samples? – How often should we sample? – Can we reproduce the original waveform? � � � � � � � � � � Eytan Modiano Slide 2 The Fourier Transform • Frequency representation of signals ∞ () = ∫ −∞ x(t)e − jft dt • Definition: Xf 2 π ∞ 2 π xt() = ∫ −∞ X( f )e jft df • Notation: X(f) = F[x(t)] X(t) = F-1 [X(f)] x(t) � X(f) Eytan Modiano Slide 3 δδ δ Unit impulse δ (t) t 0, δ () =∀t ≠ 0 ∞ δ () =1 ∫ −∞ t ∞ δ () () = x(0) ∫ −∞ txt ∫ ∞ δ (t − τ )x( τ ) = x(t) −∞ δ ∞ 2 π t F[(t)] δ F[(t)] = ∫ −∞ δ (t)e − jft dt = e 0 = 1 δ () t δ () ⇔ 1 0 Eytan Modiano Slide 4 1 jt jf Rectangle pulse t  1 ||< 1/ 2  t / / Π() =  12 | t |= 12   0 otherwise 12 Π ∞ 2 π / F[(t)] = ∫ −∞ Π(t)e − jft dt = ∫ −12 e − j 2 π ft dt / e − π − e π π f = = Sin() = Sinc f − jf π f 2 π () Π()t 1 1/2 1/2 Eytan Modiano Slide 5 αα α ββ β αα α ββ β ττ τ ππ π ττ τ Properties of the Fourier transform • Linearity – x1(t) <=> X1(f), x2(t) <=>X2(f) => α x1(t) + β x2(t) <=> α X1(f) + β X2(f) • Duality – X(f) <=> x(t) => x(f) <=> X(-t) and x(-f)<=> X(t) • Time-shifting: x(t- τ ) <=> X(f)e -j2 π f τ • Scaling: F[(x(at)] = 1/|a| X(f/a) • Convolution: x(t) <=> X(f), y(t) <=> Y(f) then, – F[x(t)*y(t)] = X(f)Y(f) – Convolution in time corresponds to multiplication in frequency and visa versa ∞ xt xt − τ )y( τ )d τ ()* y(t) = ∫ −∞ ( Eytan Modiano Slide 6 ΠΠ Π ππ π ΠΠ Π ΠΠ Π Fourier transform properties (Modulation) 2 π xt e jf o t ⇔ X( f − f o )() e jx + e − jx Now, cos(x) = 2 xt e jf o t + x t e − j 2 π f o t xt() cos( 2 π f o t) = () 2 π () 2 ( x tHence,( ) cos( 2 π f o t) ⇔ Xf − f o ) + X( f + f o ) 2 • Example: x(t)= sinc(t), F[sinc(t)] = Π (f) • Y(t) = sinc(t)cos(2 π f o t) <=> ( Π (f-f o )+ Π (f+f o ))/2 1/2 Eytan Modiano -f o +f o Slide 7 |( More properties • Power content of signal • Autocorrelation • Sampling Eytan Modiano Slide 8 ∫ ∞ ∞ xt −∞ |( ) | 2 dt = ∫ −∞ Xf ) | 2 df ∞ * R x () = ∫ −∞ x(t)x (t − τ )dt τ R x () ⇔ | X( f ) | 2 τ xt o ( ) δ (t − t o )() = xt ∞ xt() ∑ δ (t − nt o ) = sampled version of x(t) n =−∞ ∞ ∞ F[ ∑ δ (t − nt o )] = 1 ∑ δ ( f − n )] t t n =−∞ o n =−∞ o The Sampling Theorem Xf() () = 0, for all f ,| f | ≥ W • Band-limited signal Xf – Bandwidth < W -w w Sampling Theorem: If we sample the signal at intervals Ts where Ts <= 1/ 2W then signal can be completely reconstructed from its samples using the formula ∞ xt() = ∑ 2W © T s x(nT s )sin c[2W © (t − nT s )] n =−∞ Where, W ≤ W © ≤ 1 − W T s ∞ 1 t WithT = => xt s () = ∑ x(nT s )sin c[( − n)] 2 W T n =−∞ s ∞ n n () = ∑ x( )sin [ 2 xt cW(t − )] 2 W 2 W n =−∞ Eytan Modiano Slide 9 Proof ∞ xt () ∑ δ (t − nT s ) δ () = x t n =−∞ ∞ Xf ()* F[ ∑ δ (t − nT s )] δ () = X f n =−∞ ∞ ∞ F[ ∑ δ (t − nT s )] = 1 ∑ δ ( f − n ) n =−∞ T s n =−∞ T s 1 ∞ n δ () = ∑ Xf − )Xf ( Ts n =−∞ T s • The Fourier transform of the sampled signal is a replication of the Fourier transform of the original separated by 1/Ts intervals -1/Ts -w w 1/Ts 2/Ts Eytan Modiano Slide 10 [...]... sample at a rate somewhat greater than 2W which makes reconstruction filters that are easier to realize • Given any set of arbitrary sample points that are 1/ 2W apart, can construct a continuous time signal band-limited to W Eytan Modiano Slide 12 ... rectangular pulse • Now the recovered signal after low pass filtering f ) 2W f )] x (t ) = F 1[ Xδ ( f )Ts Π( 2W ∞ t x (t ) = ∑ x (nTs )Sinc( − n) Ts n = −∞ X ( f ) = Xδ ( f )Ts Π( Eytan Modiano Slide 11 f ) 2W Notes about Sampling Theorem • When sampling at rate 2W the reconstruction filter must be a rectangular pulse – Such a filter is not realizable – For perfect reconstruction must look at samples...Proof, continued • If 1/ Ts > 2W then the replicas of X(f) will not overlap and can be recovered • How can we reconstruct the original signal? – Low pass filter the sampled signal H ( f ) = Ts Π( • Ideal low pass filter is a rectangular pulse • Now the recovered signal after low pass filtering f ) 2W f )] x (t ) = F 1[ Xδ ( f )Ts Π( 2W ∞ t x (t ) = ∑ x (nTs )Sinc( − n) . = ∫ −∞ δ (t)e − jft dt = e 0 = 1 δ () t δ () ⇔ 1 0 Eytan Modiano Slide 4 1 jt jf Rectangle pulse t  1 ||< 1/ 2  t / / Π() =  12 | t |= 12   0 otherwise 12 Π ∞ 2 π / F[(t)]. the Fourier transform of the original separated by 1/ Ts intervals -1/ Ts -w w 1/ Ts 2/Ts Eytan Modiano Slide 10 Proof, continued • If 1/ Ts > 2W then the replicas of X(f) will not overlap. αα α ββ β αα α ββ β ττ τ ππ π ττ τ Properties of the Fourier transform • Linearity – x1(t) <=> X1(f), x2(t) <=>X2(f) => α x1(t) + β x2(t) <=> α X1(f) + β X2(f) • Duality – X(f) <=> x(t) =>

Ngày đăng: 07/08/2014, 12:21

TỪ KHÓA LIÊN QUAN