Tài liệu tham khảo |
Loại |
Chi tiết |
[1] D. Bressoud. Proofs and Confirmations: The Story of the Alternating Sign Matrix Conjec- ture. Cambridge University Press, Cambridge, England, 1999 |
Sách, tạp chí |
Tiêu đề: |
Proofs and Confirmations: The Story of the Alternating Sign Matrix Conjec-ture |
|
[2] L. Carlitz. “Enumeration of Two-line Arrays.” Fibonacci Quarterly, 11 (1973), pp. 113–130 |
Sách, tạp chí |
Tiêu đề: |
Enumeration of Two-line Arrays.”"Fibonacci Quarterly |
Tác giả: |
L. Carlitz. “Enumeration of Two-line Arrays.” Fibonacci Quarterly, 11 |
Năm: |
1973 |
|
[3] T. S. Chihara. Introduction to Orthogonal Polynomials. Gordon & Breach Science Publish- ers, New York, 1978 |
Sách, tạp chí |
Tiêu đề: |
Introduction to Orthogonal Polynomials |
|
[4] ¨ O. E˘ gecio˘ glu and C. Ryavec. “Polynomial Families Satisfying a Riemann Hypothesis.” Con- gressus Numerantium, 2002 (to appear) |
Sách, tạp chí |
Tiêu đề: |
Polynomial Families Satisfying a Riemann Hypothesis |
|
[5] G. Kuperberg. “Another Proof of the Alternating-Sign Matrix Conjecture.” Internat. Math |
Sách, tạp chí |
Tiêu đề: |
Another Proof of the Alternating-Sign Matrix Conjecture.” |
|
[6] G. Kuperberg. “Symmetry classes of alternating-sign matrices under one roof.” preprint, arXiv:math.Co/0008184, 24 August, 2000 |
Sách, tạp chí |
Tiêu đề: |
Symmetry classes of alternating-sign matrices under one roof.” preprint,"arXiv:math.Co/0008184 |
|
[7] W. H. Mills, D. P. Robbins, and H. Rumsey, Jr., “Alternating sign matrices and descending plane partitions.” J. Combin. Theory Ser. A, 34 (1983), pp. 340–359 |
Sách, tạp chí |
Tiêu đề: |
Alternating sign matrices and descendingplane partitions.” "J. Combin. Theory Ser. A |
Tác giả: |
W. H. Mills, D. P. Robbins, and H. Rumsey, Jr., “Alternating sign matrices and descending plane partitions.” J. Combin. Theory Ser. A, 34 |
Năm: |
1983 |
|
[8] T. Muir. A Treatise on the Theory of Determinants. (revised and enlarged by W. H. Met- zler), Dover Publications, New York, 1933 |
Sách, tạp chí |
Tiêu đề: |
A Treatise on the Theory of Determinants |
|
[9] T. Redmond, “A Class of Polynomial Riemann Hypotheses,” preprint |
Sách, tạp chí |
Tiêu đề: |
A Class of Polynomial Riemann Hypotheses |
|
[10] D. P. Robbins and H. Rumsey, Jr., “Determinants and Alternating Sign Matrices.” Advances in Math., 62 (1986), pp. 169–184 |
Sách, tạp chí |
Tiêu đề: |
Determinants and Alternating Sign Matrices.”"Advancesin Math |
Tác giả: |
D. P. Robbins and H. Rumsey, Jr., “Determinants and Alternating Sign Matrices.” Advances in Math., 62 |
Năm: |
1986 |
|
[11] R. P. Stanley. “A baker’s dozen of conjectures concerning plane partitions,” in Combinatoire Enumerative, Lecture Notes in Mathematics, Vol. 1234, New York: Springer-Verlag (1984), pp. 285–293 |
Sách, tạp chí |
Tiêu đề: |
A baker’s dozen of conjectures concerning plane partitions,” in"CombinatoireEnumerative, Lecture Notes in Mathematics, Vol. 1234 |
Tác giả: |
R. P. Stanley. “A baker’s dozen of conjectures concerning plane partitions,” in Combinatoire Enumerative, Lecture Notes in Mathematics, Vol. 1234, New York: Springer-Verlag |
Năm: |
1984 |
|
[12] K. Wegschaider. Computer Generated Proofs of Binomial Multi-sum Identities, Ph.D. the- sis, Research Institute for Symbolic Computation, Institut f¨ ur Mathematik, Johannes Ke- pler Universit¨ at, Linz, May 1997 |
Sách, tạp chí |
Tiêu đề: |
Computer Generated Proofs of Binomial Multi-sum Identities |
|
[13] D. Zeilberger. “Proof of the Alternating Sign Matrix Conjecture.” Electronic J. Combina- torics 3, No. 2 (1996), R13, pp. 1–84 |
Sách, tạp chí |
Tiêu đề: |
Proof of the Alternating Sign Matrix Conjecture.” "Electronic J. Combina-torics |
Tác giả: |
D. Zeilberger. “Proof of the Alternating Sign Matrix Conjecture.” Electronic J. Combina- torics 3, No. 2 |
Năm: |
1996 |
|
[14] D. Zeilberger. “Proof of the Refined Alternating Sign Matrix Conjecture.” New York J.Math. 2 (1996), pp. 59–68 |
Sách, tạp chí |
Tiêu đề: |
Proof of the Refined Alternating Sign Matrix Conjecture.” "New York J."Math |
Tác giả: |
D. Zeilberger. “Proof of the Refined Alternating Sign Matrix Conjecture.” New York J.Math. 2 |
Năm: |
1996 |
|