Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 20 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
20
Dung lượng
148,69 KB
Nội dung
The formula for the cumulative hazard function of the Gumbel distribution (maximum) is The following is the plot of the Gumbel cumulative hazard function for the maximum case. 1.3.6.6.16. Extreme Value Type I Distribution http://www.itl.nist.gov/div898/handbook/eda/section3/eda366g.htm (8 of 12) [5/1/2006 9:58:22 AM] Survival Function The formula for the survival function of the Gumbel distribution (minimum) is The following is the plot of the Gumbel survival function for the minimum case. The formula for the survival function of the Gumbel distribution (maximum) is The following is the plot of the Gumbel survival function for the maximum case. 1.3.6.6.16. Extreme Value Type I Distribution http://www.itl.nist.gov/div898/handbook/eda/section3/eda366g.htm (9 of 12) [5/1/2006 9:58:22 AM] Inverse Survival Function The formula for the inverse survival function of the Gumbel distribution (minimum) is The following is the plot of the Gumbel inverse survival function for the minimum case. 1.3.6.6.16. Extreme Value Type I Distribution http://www.itl.nist.gov/div898/handbook/eda/section3/eda366g.htm (10 of 12) [5/1/2006 9:58:22 AM] The formula for the inverse survival function of the Gumbel distribution (maximum) is The following is the plot of the Gumbel inverse survival function for the maximum case. Common Statistics The formulas below are for the maximum order statistic case. Mean The constant 0.5772 is Euler's number. Median Mode Range Negative infinity to positive infinity. Standard Deviation Skewness 1.13955 Kurtosis 5.4 Coefficient of Variation 1.3.6.6.16. Extreme Value Type I Distribution http://www.itl.nist.gov/div898/handbook/eda/section3/eda366g.htm (11 of 12) [5/1/2006 9:58:22 AM] Parameter Estimation The method of moments estimators of the Gumbel (maximum) distribution are where and s are the sample mean and standard deviation, respectively. The equations for the maximum likelihood estimation of the shape and scale parameters are discussed in Chapter 15 of Evans, Hastings, and Peacock and Chapter 22 of Johnson, Kotz, and Balakrishnan. These equations need to be solved numerically and this is typically accomplished by using statistical software packages. Software Some general purpose statistical software programs, including Dataplot, support at least some of the probability functions for the extreme value type I distribution. 1.3.6.6.16. Extreme Value Type I Distribution http://www.itl.nist.gov/div898/handbook/eda/section3/eda366g.htm (12 of 12) [5/1/2006 9:58:22 AM] Cumulative Distribution Function The formula for the cumulative distribution function of the beta distribution is also called the incomplete beta function ratio (commonly denoted by I x ) and is defined as where B is the beta function defined above. The following is the plot of the beta cumulative distribution function with the same values of the shape parameters as the pdf plots above. 1.3.6.6.17. Beta Distribution http://www.itl.nist.gov/div898/handbook/eda/section3/eda366h.htm (2 of 4) [5/1/2006 9:58:23 AM] Percent Point Function The formula for the percent point function of the beta distribution does not exist in a simple closed form. It is computed numerically. The following is the plot of the beta percent point function with the same values of the shape parameters as the pdf plots above. Other Probability Functions Since the beta distribution is not typically used for reliability applications, we omit the formulas and plots for the hazard, cumulative hazard, survival, and inverse survival probability functions. Common Statistics The formulas below are for the case where the lower limit is zero and the upper limit is one. Mean Mode Range 0 to 1 Standard Deviation Coefficient of Variation Skewness 1.3.6.6.17. Beta Distribution http://www.itl.nist.gov/div898/handbook/eda/section3/eda366h.htm (3 of 4) [5/1/2006 9:58:23 AM] Parameter Estimation First consider the case where a and b are assumed to be known. For this case, the method of moments estimates are where is the sample mean and s 2 is the sample variance. If a and b are not 0 and 1, respectively, then replace with and s 2 with in the above equations. For the case when a and b are known, the maximum likelihood estimates can be obtained by solving the following set of equations The maximum likelihood equations for the case when a and b are not known are given in pages 221-235 of Volume II of Johnson, Kotz, and Balakrishan. Software Most general purpose statistical software programs, including Dataplot, support at least some of the probability functions for the beta distribution. 1.3.6.6.17. Beta Distribution http://www.itl.nist.gov/div898/handbook/eda/section3/eda366h.htm (4 of 4) [5/1/2006 9:58:23 AM] Cumulative Distribution Function The formula for the binomial cumulative probability function is The following is the plot of the binomial cumulative distribution function with the same values of p as the pdf plots above. 1.3.6.6.18. Binomial Distribution http://www.itl.nist.gov/div898/handbook/eda/section3/eda366i.htm (2 of 4) [5/1/2006 9:58:24 AM] [...]... 0. 451 54 1.7 0.46080 1.8 0.46 856 1.9 0.4 750 0 2. 0 0.48030 2. 1 0.48461 2. 2 0.48809 2. 3 0.49086 2. 4 0.493 05 0.07 926 0.106 42 0.11791 0.14431 0. 155 42 0.180 82 0.19146 0 .21 56 6 0 .22 57 5 0 .24 857 0 . 25 804 0 .27 9 35 0 .28 814 0.307 85 0.3 159 4 0.33398 0.34134 0. 357 69 0.36433 0.37900 0.38493 0.39796 0.40 320 0.41466 0.41 924 0. 429 22 0.43319 0.44179 0.44 52 0 0.4 52 5 4 0. 455 43 0.46164 0.46407 0.46 926 0.47 128 0.4 755 8 0.47 7 25 0.48077... 0.090 95 0.09483 0.09871 0. 129 30 0.13307 0.13683 0.16640 0.17003 0.17364 0 .20 194 0 .20 54 0 0 .20 884 0 .23 56 5 0 .23 891 0 .24 2 15 0 .26 730 0 .27 0 35 0 .27 337 0 .29 673 0 .29 955 0.3 023 4 0. 323 81 0. 326 39 0. 328 94 0.34849 0. 350 83 0. 353 14 0.37076 0.3 728 6 0.37493 0.390 65 0.3 9 25 1 0.394 35 0.40 824 0.40988 0.41149 0. 423 64 0. 4 25 07 0. 426 47 0.43699 0.43 822 0.43943 0.448 45 0.44 950 0. 450 53 0. 458 18 0. 459 07 0. 459 94 0.46638 0.467 12 0.46784... critical value 0.10 0.001 0. 05 0. 0 25 0.01 1 3.078 63. 657 318.313 2 1.886 9. 9 25 22 . 327 3 1.638 5. 841 10 .21 5 4 1 .53 3 4.604 7.173 5 1.476 4.0 32 5. 893 6 1.440 3.707 5 .20 8 6.314 12. 706 31. 821 2. 920 4.303 6.9 65 2. 353 3.1 82 4 .54 1 2. 1 32 2.776 3.747 2. 0 15 2. 57 1 3.3 65 1.943 2. 447 3.143 0.0 05 http://www.itl.nist.gov/div898 /handbook/ eda/section3/eda36 72. htm (2 of 8) [5/ 1 /20 06 9 :58 : 25 AM] ... 0.48870 0.48 956 0.49134 0.4 920 2 0.49343 0.08706 0.11409 0. 1 25 52 0. 151 73 0.1 627 6 0.18793 0.19847 0 .22 240 0 .23 237 0 . 25 490 0 .26 424 0 .28 52 4 0 .29 389 0.31 327 0. 321 21 0.33891 0.34614 0.3 621 4 0.36864 0.3 829 8 0.38877 0.40147 0.40 658 0.41774 0. 422 20 0.43189 0.4 357 4 0.44408 0.44738 0. 454 49 0. 45 728 0.46 327 0.4 65 62 0.470 62 0.4 7 25 7 0.47670 0.47831 0.48169 0.48300 0.4 857 4 0.48679 0.48899 0.48983 0.49 158 0.4 922 4 0.49361... 0.48077 0.4 821 4 0.4 850 0 0.48610 0.48840 0.48 928 0.49111 0.49180 0.49 324 0.08317 0.11 026 0. 121 72 0.14803 0. 159 10 0.18439 0.19497 0 .21 904 0 .22 907 0 . 25 1 75 0 .26 1 15 0 .28 230 0 .29 103 0.31 057 0.31 859 0.33646 0.343 75 0. 359 93 0.36 650 0.38100 0.38686 0.39973 0.40490 0.41 621 0. 420 73 0.43 056 0.43448 0.4 429 5 0.44630 0. 453 52 0. 456 37 0.4 624 6 0.464 85 0.469 95 0.47193 0.476 15 0.47778 0.48 124 0.4 8 25 7 0.4 853 7 0.486 45 0.48870... 0.0 358 6 0.04776 0. 051 72 0. 055 67 0. 059 62 0.0 753 5 http://www.itl.nist.gov/div898 /handbook/ eda/section3/eda3671.htm (2 of 4) [5/ 1 /20 06 9 :58 : 25 AM] 0. 05 0.06 1.3.6.7.1 Cumulative Distribution Function of the Standard Normal Distribution 0 .2 0.1 0 25 7 0.3 0.14 058 0.4 0.17 724 0 .5 0 .21 226 0.6 0 .24 53 7 0.7 0 .27 637 0.8 0.3 051 1 0.9 0.33147 1.0 0. 355 43 1.1 0.37698 1 .2 0.39617 1.3 0.41308 1.4 0. 427 85 1 .5 0.440 62 1.6... 0.0 05 0.010 0. 0 25 0. 050 0.100 Zp -3.090 -2. 57 6 -2. 326 -1.960 -1.6 45 -1 .28 2 p 0.999 0.9 95 0.990 0.9 75 0. 950 0.900 Zp +3.090 +2. 57 6 +2. 326 +1.960 +1.6 45 +1 .28 2 These are critical values for the normal distribution Area under the Normal Curve from 0 to X X 0.07 0.00 0.08 0.01 0.09 0. 02 0.03 0.04 0.0 0. 023 92 0.1 0.06 356 0.00000 0. 027 90 0.03983 0.06749 0.00399 0.03188 0.04380 0.071 42 0.00798 0.01197 0.0 159 5... 0.47 320 0.47381 0.47441 0.478 82 0.479 32 0.479 82 0.48341 0.483 82 0.48 422 0.48713 0.487 45 0.48778 0.49010 0.49036 0.49061 0.4 924 5 0.4 926 6 0.4 928 6 http://www.itl.nist.gov/div898 /handbook/ eda/section3/eda3671.htm (3 of 4) [5/ 1 /20 06 9 :58 : 25 AM] 1.3.6.7.1 Cumulative Distribution Function of the Standard Normal Distribution 2. 5 0.49477 2. 6 0.49609 2. 7 0.49711 2. 8 0.49788 2. 9 0.49846 3.0 0.49889 3.1 0.49 921 3 .2. .. 0.49973 3 .5 0.49981 3.6 0.49987 3.7 0.499 92 3.8 0.49994 3.9 0.49996 4.0 0.49998 0.49379 0.494 92 0.4 953 4 0.49 621 0.49 653 0.49 720 0.49744 0.497 95 0.49813 0.49 851 0.498 65 0.49893 0.49903 0.49 924 0.49931 0.49946 0.499 52 0.499 62 0.49966 0.49974 0.49977 0.499 82 0.49984 0.49988 0.49989 0.499 92 0.49993 0.499 95 0.499 95 0.49996 0.49997 0.49998 0.49396 0.4 950 6 0.4 954 7 0.496 32 0.49664 0.49 728 0.497 52 0.49801 0.49819... 0.49819 0.49 856 0.49869 0.49896 0.49906 0.49 926 0.49934 0.49948 0.49 953 0.49964 0.49968 0.499 75 0.49978 0.49983 0.499 85 0.49988 0.49990 0.499 92 0.49993 0.499 95 0.499 95 0.49997 0.49997 0.49998 0.49413 0.49 52 0 0.4 956 0 0.49643 0.49674 0.49736 0.49760 0.49807 0.49 8 25 0.49861 0.49874 0.49900 0.49910 0.49 929 0.49936 0.49 950 0.49 955 0.499 65 0.49969 0.49976 0.49978 0.49983 0.499 85 0.49989 0.49990 0.499 92 0.49993 . 0.17364 0.17 724 0.180 82 0.18439 0.18793 0 .5 0.19146 0.19497 0.19847 0 .20 194 0 .20 54 0 0 .20 884 0 .21 226 0 .21 56 6 0 .21 904 0 .22 240 0.6 0 .22 57 5 0 .22 907 0 .23 237 0 .23 56 5 0 .23 891 0 .24 2 15 0 .24 53 7 0 .24 857 0 . 25 1 75 0 . 25 490 0.7. 0 . 25 804 0 .26 1 15 0 .26 424 0 .26 730 0 .27 0 35 0 .27 337 0 .27 637 0 .27 9 35 0 .28 230 0 .28 52 4 0.8 0 .28 814 0 .29 103 0 .29 389 0 .29 673 0 .29 955 0.3 023 4 0.3 051 1 0.307 85 0.31 057 0.31 327 0.9 0.3 159 4 0.31 859 0. 321 21. 0. 450 53 0. 451 54 0.4 52 5 4 0. 453 52 0. 454 49 1.7 0. 455 43 0. 456 37 0. 45 728 0. 458 18 0. 459 07 0. 459 94 0.46080 0.46164 0.4 624 6 0.46 327 1.8 0.46407 0.464 85 0.4 65 62 0.46638 0.467 12 0.46784 0.46 856 0.46 926