1. Trang chủ
  2. » Luận Văn - Báo Cáo

Báo cáo toán học: "A Presentation of the Elements of the Quotient Sheaves Ωk /Θk in Variational Sequences" pdf

11 314 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 11
Dung lượng 137,17 KB

Nội dung

Vietnam Journal of Mathematics 33:3 (2005) 271–281 A Presentation of the Elements of the Quotient Sheaves Ω k r /Θ k r in Variational Sequences Nong Quoc Chinh Thai Nguyen University, Thai Nguyen City, Vietnam Received Ferbuary 05, 2004 Revised Ferbuary 17, 2005 Abstract In this paper we give a concrete presentation of the elements of the quotient sheaves Ω k r /Θ k r in the variational sequence 0 → R → Ω 0 r E 0 −→ Ω 1 r /Θ 1 r E 1 −→ Ω 2 r /Θ 2 r E 2 −→ E P −2 −→ Ω P −1 r /Θ P −1 r → E P −1 −→ Ω P r /Θ P r E P −→ Ω P +1 r E P +1 −→ → Ω N r → 0. 1. Introduction The notion of variational bicomplexes was introduced in studying the problem of characterizing the kernel and image of Euler-Lagrange mapping in the calcu- lus of variations. This problem has been considered by Anderson [1], Duchamp [2], Dedecker [4], Tulczyvew [7], Takens [6] and Krupka [5]. The variational bi- complex was mainly studied on the infinite jet prolongation J ∞ Y of the fibered manifold Y with the base X and the projection π : Y → X, where dimX = n, dimY −n = m. The variational bicomplexes contain Euler-Lagrange mapping as one of its morphisms. Then its developments in the theory of variational bicom- plexes have made an important role in many problems in caculus of variations on manifolds, in diffrential geometry, in the theory of differential equations and in mathematical physics. Krupka [5] studied the sheaves of differential forms on finite r-jet prolonga- tions J r Y . Then he constructed the sequence of quotient sheaves Ω k r /Θ k r .This quotient sequence is called the variational sequence of order r over Y .Itisan acyclic resolution of the constant sheaf R over Y 272 Nong Quoc Chinh 0 → R → Ω 0 r E 0 −→ Ω 1 r /Θ 1 r E 1 −→ Ω 2 r /Θ 2 r E 2 −→ E P −2 −→ Ω P −1 r /Θ P −1 r → E P −1 −→ Ω P r /Θ P r E P −→ Ω P +1 r E P +1 −→ → Ω N r → 0. (1) In the sequence (1), E n is the Euler-Lagrange mapping and E n+1 is the Helmholtz- Sonin mapping. In the study of variational sequence, it is very important to give a concrete presentation of the elements [] ∈ Ω k r /Θ k r . It also has been shown in [5] that []=p k r,0  for all positive integers k satisfying 1 ≤ k ≤ n,  ∈ Ω k r ,where p k r,0  is the horizontal component of k-form . Then Krupka [5] gave a concrete presentation of []for1≤ k ≤ n. The main purpose of this paper is to give a concrete presentation of elements [] ∈ Ω k r /Θ k r for all positive integers k satisfying n +1≤ k ≤ P. For simplicity, we will solve this problem in the case of r =1andr = 2. Then the other cases follow by the same method. 2. Notations and Premilinaries Throughout this paper, the following notations will be used: (Y, π,X) is a fibered manifold with base X and the projection π : Y → X, where dimX = n,dimY − n = m. J r Y is the finite r-jet prolongation of the fibered manifold (Y,π,X).π r : J r Y → X, π r,s : J r Y → J s Y are the canonical jet projections. (V,Ψ) is a fiber chart on Y ,whereΨ=(x i ,y σ ), 1 ≤ i ≤ n, 1 ≤ σ ≤ m. (V r , Ψ r ) is the fiber chart on r-jet prolongation J r Y associated with (V,Ψ), where V r = π −1 r,0 (V ), Ψ r = (x i ,y σ ,y σ j 1 , , y σ j 1 j 2 j r ), 1 ≤ i ≤ n, 1 ≤ σ ≤ m, 1 ≤ j 1 ≤ ≤ j r ≤ n. Ω k r is the sheave of k-forms over J r Y and π ∗ r+1,r is the pull-back of the mapping π r+1,r . We put ω 0 = dx 1 ∧ dx 2 ∧ ∧ dx n , ω i =(−1) i−1 dx 1 ∧ ∧ dx i−1 ∧ dx i+1 ∧···∧dx n , 1 ≤ i ≤ n, ω σ j 1 j 2 j k = dy σ j 1 j 2 j k − y σ j 1 j 2 j k i dx i , 1 ≤ k ≤ r − 1. Note that the forms dx i ,ω σ j 1 j 2 j k ,dy σ j 1 j 2 j r , for 0 ≤ k ≤ r − 1, define a basis of the space of linear forms on V r . Obviously we have dω σ j 1 j 2 j k ∧ ω i = −ω σ j 1 j 2 j k i ∧ ω 0 , for 0 ≤ k ≤ r − 2, dω σ j 1 j 2 j r−1 ∧ ω i = −dy σ j 1 j 2 j r−1 i ∧ ω 0 . Let N = n + m  n + r n  ,M= m  n + r − 1 n  ,P = m  n + r − 1 n  +2n −1. It is clear that N =dimJ r Y and M is the number of linear independent forms ω σ j 1 j 2 j k , where 0 ≤ k ≤ r − 1. A Presentation of the Elements of the Quotient Sheaves Ω k r /Θ k r 273 For any function f :V r → R we have h(df )=  n i=1 d i f.dx i , where d i f = ∂f ∂x i + m  σ=1 r  k=0 ∂f ∂y σ j 1 j k y σ j 1 j k . For any k-form ρ ∈ Ω k r ,wedenotebyρ 0 the horizontal component of ρ,and ρ q , 1 ≤ q ≤ k, is the q-contact component of ρ. Then for any ρ ∈ Ω k r there exists a unique decomposition π ∗ r+1,r ρ = ρ 0 + ρ 1 + ···+ ρ k . We denote by p k r,q :Ω k r → Ω k r+1 the morphism of sheaves defined by p k r,q ρ = ρ q , for 0 ≤ q ≤ k.Ω k r(c) = ker p k r,0 ,1≤ k ≤ n, is the sheave of contact k-forms. Ω k r(c) = ker p k r,k−n , n +1≤ k ≤ N, is the sheave of strongly contact k-forms. Let Θ k r = dΩ k−1 r(c) +Ω k r(c) . In [3] and [5] the authours proved the softness of the sheaves Θ k r , considered the quotient sheaves Ω k r /Θ k r , and they obtained the following short exact sequence 0 → Θ k r i k r →Ω k r τ k r →Ω k r /Θ k r → 0, where i k r is the canonical injective, τ k r is the canonical quotient mapping. Especially, Krupka [5] constructed the following variational sequence of order r over Y 0 → R → Ω 0 r E 0 −→ Ω 1 r /Θ 1 r E 1 −→ Ω 2 r /Θ 2 r E 2 −→··· E P −2 −→ Ω P −1 r /Θ P −1 r → E P −1 −→ Ω P r /Θ P r E P −→ Ω P +1 r E P +1 −→ ···→Ω N r → 0, where the sheaf morphism E k :Ω k r /Θ k r → Ω k+1 r /Θ k+1 r is defined by the formula E k ([]) = [d]. He proved that, the variational sequence of order r is an acyclic resolution of the constant sheaf R over Y ,and[]=p k r,0  for all 1 ≤ k ≤ n and for all  ∈ Ω k r . This is the horizontal component of k-form . Let 1 ≤ k ≤ n − 1and  ∈ Ω k r ,then []= 1 k! f i 1 ···i k dx i 1 ∧···∧dx i k , (2) where f i 1 i k are some functions on V r . Let k = n and  ∈ Ω n r .Then []=fω 0 , (3) where f is some function on V r .Inthiscase[] is called the Lagrange class of . Let n +1≤ k ≤ P. For every s>r,Krupka [5] proved that Ω k r /Θ k r ≈ Im(τ k s .π ∗ s,r+1 .p k r,k−n ), and this implies that for every  ∈ Ω k r []=τ k s (p k s−1,k−n .π ∗ s−1,r ). (4) 274 Nong Quoc Chinh Let k = n + 1. For each element  ∈ Ω n+1 r ,[] is called the Euler-Lagran ge class of (n +1)-forms. Let k = n + 2. For each element  ∈ Ω n+2 r ,[] is called the Helmiholtz-Sonin class of (n +2)-forms. Below we give a concrete presentation of the elements in Ω k r /Θ k r for all pos- itive integer k satisfying n +1≤ k ≤ P in the case of r =1andr =2. 3. TheCaseofr =1 Theorem 1. a) Let  ∈ Ω n+1 1 be a germ. Suppose that in the fiber chart (V,ψ),ψ=(x i ,y σ ), p n+1 1,1  = f σ w σ ∧ w 0 + f i σ w σ i ∧ w 0 , (5) where 1 ≤ σ ≤ m, 1 ≤ i ≤ n ,andf σ , f i σ are functions defined on V 2 ⊂ J 2 Y. Then we have []=(f σ − d i f i σ )w σ ∧ w 0 . (6) b) Let  ∈ Ω n+2 1 be a germ. Suppose that in the fiber chart (V,ψ),ψ=(x i ,y σ ), p n+2 1,2  = f σν w σ ∧ w ν ∧ w 0 + f i σν w σ i ∧ w ν ∧ w 0 + f ij σν w σ i ∧ w ν j ∧ w 0 , (7) where 1 ≤ σ, ν ≤ m, 1 ≤ i, j ≤ n,andf σν ,f i σν ,f ij σν are functions defined on V 2 ⊂ J 2 Y .Then []=((f σν w σ +(f i σν − d i f ij σν )w σ i ) − f ij σν w σ ij ) ∧ w ν ∧ w 0 . (8) c) Let n +3≤ k ≤ P and  ∈ Ω k 1 be a germ. Suppose that in the fiber chart (V,ψ),ψ =(x i ,y σ ), p k 1,k−n  = f σ 1 σ k−n w σ 1 ∧ w σ 2 ∧ ∧ ∧ w σ k−n ∧ w 0 + f i 1 σ 1 σ k−n w σ 1 i 1 ∧ w σ 2 ∧ ∧ ∧ w σ k−n ∧ w 0 + + f i 1 i k−n−1 σ 1 σ k−n w σ 1 i 1 ∧ w σ 2 i 2 ∧ ∧ w σ k−n−1 i k−n−1 ∧ w σ k−n ∧ w 0 + f i 1 i k−n σ 1 σ k−n w σ 1 i 1 ∧ w σ 2 i 2 ∧ ∧ w σ k−n−1 i k−n−1 ∧ w σ k−n i k−n ∧ w 0 , (9) where 1 ≤ σ 1 , , σ k−n ≤ m, 1 ≤ i 1 , i k−n ≤ n and each function defined on V 2 ⊂ J 2 Y. Then we have A Presentation of the Elements of the Quotient Sheaves Ω k r /Θ k r 275 []=  k−n−2  h=0 f i 1 i h σ 1 σ k−n w σ 1 i 1 ∧ ∧ w σ h i h ∧ w σ h+1 ∧ ∧ w σ k−n−1 +(f i 1 i k−n−1 σ 1 σ k−n − d i k−n f i 1 i k−n σ 1 σ k−n )w σ 1 i 1 ∧ ∧ w σ k−n−1 i k−n−1 − k−n−1  t=1 f i 1 i k−n σ 1 σ k−n w σ 1 i 1 ∧ ∧ w σ t−1 i t−1 ∧ w σ t i t i k−n ∧ w σ t+1 i t+1 ∧ ∧ w σ k−n−1 i k−n−1  ∧w σ k−n ∧ w 0 , (10) where each function is well defined on V 3 ⊂ J 3 Y . Proof. a) Considering all the factors in (5) which contains w σ i ,weget f i σ w σ i ∧ w 0 = −f i σ d(w σ ∧ w i )=−d(f i σ w σ ∧ w i )+df i σ ∧ w σ ∧ w i . (11) Since f i σ w σ ∧ w i ∈ Θ n 2 and π ∗ 3,2 (df i σ ∧ w σ ∧ w i )=h(df i σ ) ∧ w σ ∧ w i + p(df i σ ) ∧ w σ ∧ w i , we have []=τ n+1 3 .p n+1 2,1 .π ∗ 2,1 ()=f σ w σ ∧ w 0 + h(df i σ ) ∧ w σ ∧ w i =(f σ − d i f i σ )w σ ∧ w 0 . b) Considering all the factors in (7) which contains w σ i ∧ w ν j , we get f ij σν w σ i ∧ w ν j ∧ w 0 = −f ij σν w σ i ∧ d(w ν ∧ w j )= = f ij σν d(w σ i ∧ w ν ∧ w j ) − f ij σν dw σ i ∧ w ν ∧ w j = d(f ij σν w σ i ∧ w ν ∧ w j ) − df ij σν ∧ w σ i ∧ w ν ∧ w j + + n  l=1 f ij σν dy σ il ∧ dx l ∧ w ν ∧ w j . (12) Since f ij σν w σ i ∧ w ν ∧ w j ∈ Θ n+1 2 , we have []=τ n+2 3 .p n+2 2,2 .π ∗ 2,1 () = f σν w σ ∧ w ν ∧ w 0 + f i σν w σ i ∧ w ν ∧ w 0 − d j f ij σν w σ i ∧ w ν ∧ w 0 − f ij σν w σ ij ∧ w ν ∧ w 0 . (13) Therefore we have []=((f σν w σ +(f i σν − d i f ij σν )w σ i ) − f ij σν w σ ij ) ∧ w ν ∧ w 0 . c) In the formula (9), we consider all the factors containing w σ k−n i k−n .Theyare f i 1 i k−n σ 1 σ k−n w σ 1 i 1 ∧ ∧ w σ k−n i k−n ∧ w 0 . We get 276 Nong Quoc Chinh f i 1 i k−n σ 1 σ k−n w σ 1 i 1 ∧ ∧ w σ k−n i k−n ∧ w 0 = − f i 1 i k−n σ 1 σ k−n w σ 1 i 1 ∧ ∧ w σ k−n−1 i k−n−1 ∧ d(w σ k−n ∧ w i k−n ) =(−1) k−n f i 1 i k−n σ 1 σ k−n d(w σ 1 i 1 ∧ ∧ w σ k−n−1 i k−n−1 ∧ w σ k−n ∧ w i k−n ) + k−n−1  t=1 (−1) k−n+t f i 1 i k−n σ 1 σ k−n w σ 1 i 1 ∧ ∧ w σ t−1 i t−1 ∧ dw σ t i t ∧ ∧ w σ t+1 i t+1 ∧ ∧ w σ k−n−1 i k−n−1 ∧ w σ k−n ∧ w i k−n =(−1) k−n d(f i 1 i k−n σ 1 σ k−n w σ 1 i 1 ∧ ∧ w σ k−n−1 i k−n−1 ∧ w σ k−n ∧ w i k−n ) − (−1) k−n df i 1 i k−n σ 1 σ k−n ∧ w σ 1 i 1 ∧ ∧ w σ k−n−1 i k−n−1 ∧ w σ k−n ∧ w i k−n + k−n−1  t=1 n  l=1 (−1) k−n+t+1 f i 1 i k−n σ 1 σ k−n w σ 1 i 1 ∧ ∧ w σ t−1 i t−1 ∧ dy σ t i t l ∧ dx l ∧ ∧ w σ t+1 i t+1 ∧ ∧ w σ k−n−1 i k−n−1 ∧ w σ k−n ∧ w i k−n . (14) Since f i 1 i k−n σ 1 σ k−n w σ 1 i 1 ∧ ∧ w σ k−n−1 i k−n−1 ∧ w σ k−n ∧ w i k−n ∈ Θ k−1 2 , we have τ k 3 .p k 2,k−n (f i 1 i k−n σ 1 σ k−n w σ 1 i 1 ∧ ∧ w σ k−n i k−n ∧ w 0 ) = − d i k−n f i 1 i k−n σ 1 σ k−n w σ 1 i 1 ∧ ∧ w σ k−n−1 i k−n−1 ∧ w σ k−n ∧ w 0 − k−n−1  t=1 f i 1 i k−n σ 1 σ k−n w σ 1 i 1 ∧ ∧ w σ t−1 i t−1 ∧ w σ t i t i k−n ∧ w σ t+1 i t+1 ∧ ∧ w σ k−n−1 i k−n−1 ∧ w σ k−n ∧ w 0 . (15) Then [] can be presented in the following form []=  k−n−2  h=0 f i 1 i h σ 1 σ k−n w σ 1 i 1 ∧ ∧ w σ h i h ∧ w σ k+1 ∧ ∧ w σ k−n−1 +(f i 1 i k−n−1 σ 1 σ k−n − d i k−n f i 1 i k−n σ 1 σ k−n )w σ 1 i 1 ∧ ∧ w σ k−n−1 i k−n−1 − k−n−1  t=1 f i 1 i k−n σ 1 σ k−n w σ 1 i 1 ∧ ∧ w σ t−1 i t−1 ∧ w σ t i t i t−1 ∧ w σ t+1 i t+1 ∧ ∧ w σ k−n−1 i k−n−1  ∧w σ k−n ∧ w 0 , where each function is defined on V 3 ⊂ J 3 Y .  4. TheCaseofr =2 Theorem 2. a) Let  ∈ Ω n+1 2 be a germ. Suppose that in the fiber chart (V,ψ),ψ=(x i ,y σ ), p n+1 2,1  = f σ w σ ∧ w 0 + f i σ w σ i ∧ w 0 + f ij σ w σ ij ∧ w 0 , (16) A Presentation of the Elements of the Quotient Sheaves Ω k r /Θ k r 277 where 1 ≤ σ ≤ m, 1 ≤ i, j ≤ m, f σ ,f i σ ,f ij σ are functions well defined on V 3 ⊂ J 3 Y . Then we have []=(f σ − d i f i σ + d i d j f ij σ )w σ ∧ w 0 , (17) where each function is well defined on V 5 ⊂ J 5 Y . b) Let  ∈ Ω n+2 2 be a germ. Suppose that in the fiber chart (V,ψ),ψ=(x i ,y σ ), p n+2 2,2  =(f J σν w σ J ∧ w ν ∧ w 0 + f Ji σν w σ J ∧ w ν i ∧ w 0 + f Jij σν w σ J ∧ w ν ij ∧ w 0 , (18) where 0 ≤|J|≤2, 1 ≤ σ, ν ≤ m, 1 ≤ i, j ≤ n, and functions f J σν ,f Ji σν ,f Jij σν are wel l defined on V 3 ⊂ J 3 Y . Then we have []=((f J σν − d i f Ji σν + d i d j f Jij σν )w σ J +(−f Ji σν +2d j f Jij σν )w σ Ji + f Jij σν w σ Jij ) ∧ w ν ∧ w 0 , (19) where each function is well defined on V 5 ⊂ J 5 Y . c) Let n +3≤ k ≤ P and  ∈ Ω k 2 be a germ. Suppose that in the fiber chart (V,ψ),ψ =(x i ,y σ ) we have p k 2,k−n  = 2  q=0 f J 1 J k−n−1 j 1 j q σ 1 σ k−n w σ 1 J 1 ∧ ∧ w σ k−n−1 J k−n−1 ∧ w σ k−n j 1 j q ∧ w 0 , (20) where 0 ≤|J 1 |, , |J k−n−1 |≤2, 1 ≤ σ 1 , , σ k−n ≤ m, 1 ≤ j 1 , , j q ≤ n, and every function f J 1 J k−n−1 j 1 j q σ 1 σ k−n is well defined on V 3 ⊂ J 3 Y .Thenwe have []=  (f J 1 J k−n−1 σ 1 σ k−n − d j 1 f J 1 J k−n−1 j 1 σ 1 σ k−n + d j 1 d j 2 f J 1 J k−n−1 j 1 j 2 σ 1 σ k−n )w σ 1 J 1 ∧ ∧ w σ k−n−1 J k−n−1 + k−n−1  t=1 (−f J 1 J k−n−1 j 1 σ 1 σ k−n +2d j 2 f J 1 J k−n−1 j 1 j 2 σ 1 σ k−n )w σ 1 J 1 ∧ ∧ w σ t−1 J t−1 ∧ w σ t J t j 1 ∧ w σ t+1 J t+1 ∧ ∧ w σ k−n−1 J k−n−1 (21) + k−n−1  h=1 h=t k−n−1  t=1 f J 1 J k−n−1 j 1 j 2 σ 1 σ k−n w σ 1 J 1 ∧ ∧ w σ h−1 J h−1 ∧ w σ h J h j 1 ∧ w σ h+1 J h+1 ∧ ∧ w σ t−1 J t−1 ∧ w σ t J t j 2 ∧ w σ t+1 J t+1 ∧ ∧ w σ k−n−1 J k−n−1 + k−n−1  t=1 f J 1 J k−n−1 j 1 j 2 σ 1 σ k−n w σ 1 J 1 ∧ ∧ w σ t−1 J t−1 ∧ w σ t J t j 1 j 2 ∧ w σ t+1 J t+1 ∧ ∧ w σ k−n−1 J k−n−1  ∧w σ k−n ∧ w 0 , where each function is well defined on V 5 ⊂ J 5 Y . 278 Nong Quoc Chinh Proof. a) In the formula (16) we consider the factors containing w σ i . They aref i σ w σ i ∧w 0 . We get f i σ w σ i ∧ w 0 = −f i σ d(w σ ∧ w i )=−d(f i σ w σ ∧ w i )+df i σ ∧ w σ ∧ w i . (22) Since f i σ w σ ∧ w i ∈ Ω n 3 =Θ n 3 and π ∗ 4,3 (df i σ ∧ w σ ∧ w i )=h(df i σ ) ∧ w σ ∧ w i + p(df i σ ) ∧ w σ ∧ w i , it implies that τ n+1 4 .p n+1 3,1 (f i σ w σ i ∧ w 0 )=−d i f i σ ∧ w σ ∧ w 0 . (23) Now we consider all the factors containing w σ ij in the formula (16). Then we have f ij σ w σ ij ∧ w 0 = −d(f ij σ w σ i ∧ w j )+df ij σ ∧ w σ i ∧ w j . (24) This implies that τ n+1 4 .p n+1 3,1 (f ij σ w σ ij ∧ w 0 )=−d j f ij σ w σ i ∧ w 0 = d(d j f ij σ .w σ ∧ w i ) − d(d j f ij σ ) ∧ w σ ∧ w i . (25) Therefore we have τ n+1 5 .p n+1 4,1 .π ∗ 4,3 (f ij σ w σ ij ∧ w 0 )=d i d j f ij σ w σ ∧ w 0 . (26) Since (16), (23) and (26) we get []=τ n+1 5 .p n+1 4,1 .π ∗ 4,2 ()=(f σ − d i f i σ + d i d j f ij σ )w σ ∧ w 0 , where each function is defined on V 5 ⊂ J 5 Y . b) In the formula (18) we consider all the factors containing w ν i . Then we get f Ji σν w σ J ∧ w ν i ∧ w 0 = −f Ji σν w σ J ∧ d(w ν ∧ w i ) = f Ji σν d(w σ J ∧ w ν ∧ w i ) − f Ji σν dw σ J ∧ w ν ∧ w i = d(f Ji σν w σ J ∧ w ν ∧ w i ) − df Ji σν ∧ w σ J ∧ w ν ∧ w i + n  l=1 df Ji σν dy σ Jl ∧ dx l ∧ w ν ∧ w i . Therefore τ n+2 4 .p n+2 3,2 (f Ji σν w σ J ∧ w ν i ∧ w 0 )=− d i f Ji σν w σ J ∧ w ν ∧ w 0 − f Ji σν w σ Ji ∧ w ν ∧ w 0 . (27) Now we consider all the factors containing w ν ij in the formula (16). Then we have A Presentation of the Elements of the Quotient Sheaves Ω k r /Θ k r 279 f Jij σν w σ J ∧ w ν ij ∧ w 0 = −f Jij σν w σ J ∧ d(w ν i ∧ w j ) = d(f Jij σν w σ J ∧ w ν i ∧ w j ) − df Jij σν ∧ w σ J ∧ w ν i ∧ w j + n  l=1 f Jij σν dy σ Jl dx l ∧ w ν i ∧ w j τ n+2 4 .p n+2 3,2 −→ − d j f Jij σν w σ J ∧ w ν i ∧ w 0 − f Jij σν w σ Jj ∧ w ν i ∧ w 0 τ n+2 5 .p n+2 4,2 −→ d i d j f Jij σν w σ J ∧ w ν ∧ w 0 + d j f Jij σν w σ Ji ∧ w ν ∧ w 0 + d i f Jij σν w σ Jj ∧ w ν ∧ w 0 + f Jij σν w σ Jij ∧ w ν ∧ w 0 , (28) where τ n+2 4 .p n+2 3,2 (resp.τ n+2 5 .p n+2 4,2 ) are morphisms of sheaves. Since the formu- las (18), (27), (28) and the symmetry of indexes i, j we have []=τ n+2 5 .p n+2 4,2 .π ∗ 4,2 ()=((f J σν − d i f Ji σν + d i d j f Jij σν )w σ J +(−f Ji σν +2d j f Jij σν )w σ Ji + f Jij σν w σ Jij ) ∧ w ν ∧ w 0 , where each function is defined on V 5 ⊂ J 5 Y . c) We consider the factors containing w σ k−n J 1 in the formula (20). We have f J 1 J k−n−1 j 1 σ 1 σ k−n w σ 1 J 1 ∧ ∧ w σ k−n−1 J k−n−1 ∧ w σ k−n j 1 ∧ w 0 = − f J 1 J k−n−1 j 1 σ 1 σ k−n w σ 1 J 1 ∧ ∧ w σ k−n−1 J k−n−1 ∧ d(w σ k−n ∧ w j 1 ) =(−1) k−n f J 1 J k−n−1 j 1 σ 1 σ k−n d(w σ 1 J 1 ∧ ∧ w σ k−n−1 J k−n−1 ∧ w σ k−n ∧ w j 1 ) + k−n−1  t=1 (−1) k−n+t f J 1 J k−n−1 j 1 σ 1 σ k−n w σ 1 J 1 ∧ ∧ w σ t−1 J t−1 ∧ ∧ dw σ t J t ∧ w σ t+1 J t+1 ∧ ∧ w σ k−n−1 J k−n−1 ∧ w σ k−n ∧ w j 1 =(−1) k−n d(f J 1 J k−n−1 j 1 σ 1 σ k−n w σ 1 J 1 ∧ ∧ w σ k−n−1 J k−n−1 ∧ w σ k−n ∧ w j 1 ) − (−1) k−n df J 1 J k−n−1 j 1 σ 1 σ k−n ∧ w σ 1 J 1 ∧ ∧ w σ k−n−1 J k−n−1 ∧ w σ k−n ∧ w j 1 − k−n−1  t=1 n  l=1 (−1) k−n+t f J 1 J k−n−1 j 1 σ 1 σ k−n w σ 1 J 1 ∧ ∧ w σ t−1 J t−1 ∧ ∧ dy σ t J t l ∧ dx l ∧ w σ t+1 J t+1 ∧ ∧ w σ k−n−1 J k−n−1 ∧ w σ k−n ∧ w j 1 τ k 4 .p k 3,k−n −→ − d j 1 f J 1 J k−n−1 σ 1 σ k−n w σ 1 J 1 ∧ ∧ w σ k−n−1 J k−n−1 ∧ w σ k−n ∧ w 0 − k−n−1  t=1 f J 1 J k−n−1 σ 1 σ k−n w σ 1 J 1 ∧ ∧ w σ t−1 J t−1 ∧ w σ t J t j 1 ∧ ∧ w σ t+1 J t+1 ∧ ∧ w σ k−n−1 J k−n−1 ∧ w σ k−n ∧ w 0 . (29) We consider all the factors containing w σ k−n j 1 j 2 in the formula (20). We have 280 Nong Quoc Chinh f J 1 J k−n−1 j 1 j 2 σ 1 σ k−n w σ 1 J 1 ∧ ∧ w σ k−n−1 J k−n−1 ∧ w σ k−n j 1 j 2 ∧ w 0 τ k 4 .p k 3,k−n −→ − d j 2 f J 1 J k−n−1 j 1 j 2 σ 1 σ k−n w σ 1 J 1 ∧ ∧ w σ k−n−1 J k−n−1 ∧ w σ k−n j 1 ∧ w 0 − k−n−1  t=1 f J 1 J k−n−1 j 1 j 2 σ 1 σ k−n w σ 1 J 1 ∧ ∧ w σ t−1 J t−1 ∧ w σ t J t j 2 ∧ w σ t+1 J t+1 ∧ ∧ w σ k−n−1 J k−n−1 ∧ w σ k−n j 1 ∧ w 0 τ k 5 .p k 4,k−n d j 1 −→ d j 2 f J 1 J k−n−1 j 1 j 2 σ 1 σ k−n w σ 1 J 1 ∧ ∧ w σ k−n−1 J k−n−1 ∧ w σ k−n ∧ w 0 + k−n−1  h=1 d j 2 f J 1 J k−n−1 j 1 j 2 σ 1 σ k−n w σ 1 J 1 ∧ ∧ w σ h−1 J h−1 ∧ w σ h J h j 1 ∧ w σ h+1 J h+1 ∧ ∧ w σ k−n−1 J k−n−1 ∧ w σ k−n ∧ w 0 + k−n−1  t=1 d j 1 f J 1 J k−n−1 j 1 j 2 σ 1 σ k−n w σ 1 J 1 ∧ ∧ w σ t−1 J t−1 ∧ w σ t J t j 2 ∧ w σ t+1 J t+1 ∧ ∧ w σ k−n−1 J k−n−1 ∧ w σ k−n ∧ w 0 + k−n−1  h=1 h=t k−n−1  t=1 f J 1 J k−n−1 j 1 j 2 σ 1 σ k−n w σ 1 J 1 ∧ ∧ w σ h−1 J h−1 ∧ w σ h J h j 1 ∧ w σ h+1 J h+1 ∧ ∧ w σ t−1 J t−1 ∧ w σ t J t j 2 ∧ w σ t+1 J t+1 ∧ ∧ w σ k−n−1 J k−n−1 ∧ w σ k−n ∧ w 0 + k−n−1  t=1 f J 1 J k−n−1 j 1 j 2 σ 1 σ k−n w σ 1 J 1 ∧ ∧ w σ t−1 J t−1 ∧ w σ t J t j 1 j 2 ∧ w σ t+1 J t+1 ∧ ∧ w σ k−n−1 J k−n−1 ∧ w σ k−n ∧ w 0 . (30) Since the formulas (20), (29), (30) and the symmetry of indexes j 1 ,j 2 we have []=τ k 5 .p k 4,k−n .π ∗ 4,2 () =  (f J 1 J k−n−1 σ 1 σ k−n − d j 1 f J 1 J k−n−1 j 1 σ 1 σ k−n + d j 1 d j 2 f J 1 J k−n−1 j 1 j 2 σ 1 σ k−n )w σ 1 J 1 ∧ ∧ w σ k−n−1 J k−n−1 + k−n−1  t=1 (−f J 1 J k−n−1 j 1 σ 1 σ k−n +2d j 2 f J 1 J k−n−1 j 1 j 2 σ 1 σ k−n )w σ 1 J 1 ∧ ∧ w σ t−1 J t−1 ∧ w σ t J t j 1 ∧ w σ t+1 J t+1 ∧ ∧ w σ k−n−1 J k−n−1 + k−n−1  h=1 h=t k−n−1  t=1 f J 1 J k−n−1 j 1 j 2 σ 1 σ k−n w σ 1 J 1 ∧ ∧ w σ h−1 J h−1 ∧ w σ h J h j 1 ∧ w σ h+1 J h+1 ∧ ∧ w σ t−1 J t−1 ∧ w σ t J t j 2 ∧ w σ t+1 J t+1 ∧ ∧ w σ k−n−1 J k−n−1 [...]... Presentation of the Elements of the Quotient Sheaves Ωk /Θk r r k−n−1 σ 281 σ σ1 σt t−1 t+1 J1 Jk−n−1 fσ1 σk−n j1 j2 wJ1 ∧ ∧ wJt−1 ∧ wJt j1 j2 ∧ wJt+1 ∧ + t=1 σ k−n−1 ∧ wJk−n−1 ∧wσk−n ∧ w0 , where each function is defined on V5 ⊂ J 5 Y References 1 I M Anderson, Aspect of the inverse problem to the calculus of variation, Arch Math 24 (1988) 181–202 2 I M Anderson and T Duchamp, On the existence of. .. existence of global variational principles, Amer Math J 102 (1980) 781–868 3 N Q Chinh, Sheaf of contact forms , East-West J Math 4 (2002) 41–55 4 P Dedecker and W M Tulczyjew, Spectral Sequences and the Inverse Problem of the Calculus of Variations, Internat Coll on Diff Geom Methods in Math Physics, Sept., 1979 5 D Krupka, Variational Sequences on Finite Order Jet Spaces, World Scientific, Singapore, (1990)... Variational Sequences on Finite Order Jet Spaces, World Scientific, Singapore, (1990) 236–254 6 F Takens, A global version of the inverse problem of the calculus of variations, J Diff Geom 14 (1979) 543–562 7 W M Tulczyjew, The Euler-Lagrange Resolution, Internat Coll on Diff Geom Methods in Math Physics, Sept., 1979 . Ω N r → 0. 1. Introduction The notion of variational bicomplexes was introduced in studying the problem of characterizing the kernel and image of Euler-Lagrange mapping in the calcu- lus of variations dΩ k−1 r(c) +Ω k r(c) . In [3] and [5] the authours proved the softness of the sheaves Θ k r , considered the quotient sheaves Ω k r /Θ k r , and they obtained the following short exact sequence 0. Helmiholtz-Sonin class of (n +2)-forms. Below we give a concrete presentation of the elements in Ω k r /Θ k r for all pos- itive integer k satisfying n +1≤ k ≤ P in the case of r =1andr =2. 3. TheCaseofr =1 Theorem

Ngày đăng: 06/08/2014, 05:20

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN