1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Advanced Mathematical Methods for Scientists and Engineers Episode 6 Part 7 ppt

40 295 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 40
Dung lượng 257,42 KB

Nội dung

We set α 2 = U − 1 U . β is then β = α 1 − α 2 =  (U − 1)/U 1 − (U − 1)/U) =  (U − 1)U U − (U − 1) =  (U − 1)U. The solution for η becomes αβ 2 sech 2  αx − βt 2  where β = α 1 − α 2 . 2. u tt − u xx −  3 2 u 2  xx − u xxxx = 0 We make the substitution u(x, t) = z(X), X = x −Ut. 2214 (U 2 − 1)z  −  3 2 z 2   − z  = 0 (U 2 − 1)z  −  3 2 z 2   − z  = 0 (U 2 − 1)z − 3 2 z 2 − z  = 0 We multiply by z  and integrate. 1 2 (U 2 − 1)z 2 − 1 2 z 3 − 1 2 (z  ) 2 = 0 (z  ) 2 = (U 2 − 1)z 2 − z 3 z = (U 2 − 1) sech 2  1 2 √ U 2 − 1X  u(x, t) = (U 2 − 1) sech 2  1 2  √ U 2 − 1x − U √ U 2 − 1t   The linearized equation is u tt − u xx − u xxxx = 0. Substituting u = e −αx+βt into this equation yields β 2 − α 2 − α 4 = 0 β 2 = α 2 (α 2 + 1). We set α = √ U 2 − 1. 2215 β is then β 2 = α 2 (α 2 + 1) = (U 2 − 1)U 2 β = U √ U 2 − 1. The solution for u becomes u(x, t) = α 2 sech 2  αx − βt 2  where β 2 = α 2 (α 2 + 1). 3. φ tt − φ xx + 2φ x φ xt + φ xx φ t − φ xxxx We make the substitution φ(x, t) = z(X), X = x −Ut. (U 2 − 1)z  − 2Uz  z  − Uz  z  − z  = 0 (U 2 − 1)z  − 3Uz  z  − z  = 0 (U 2 − 1)z  − 3 2 (z  ) 2 − z  = 0 Multiply by z  and integrate. 1 2 (U 2 − 1)(z  ) 2 − 1 2 (z  ) 3 − 1 2 (z  ) 2 = 0 (z  ) 2 = (U 2 − 1)(z  ) 2 − (z  ) 3 z  = (U 2 − 1) sech 2  1 2 √ U 2 − 1X  φ x (x, t) = (U 2 − 1) sech 2  1 2  √ U 2 − 1x − U √ U 2 − 1t   . 2216 The linearized equation is φ tt − φ xx − φ xxxx Substituting φ = e −αx+βt into this equation yields β 2 = α 2 (α 2 + 1). The solution for φ x becomes φ x = α 2 sech 2  αx − βt 2  where β 2 = α 2 (α 2 + 1). 4. u t + 30u 2 u 1 + 20u 1 u 2 + 10uu 3 + u 5 = 0 We make the substitution u(x, t) = z(X), X = x −Ut. −Uz  + 30z 2 z  + 20z  z  + 10zz  + z (5) = 0 Note that (zz  )  = z  z  + zz  . −Uz  + 30z 2 z  + 10z  z  + 10(zz  )  + z (5) = 0 −Uz + 10z 3 + 5(z  ) 2 + 10zz  + z (4) = 0 Multiply by z  and integrate. − 1 2 Uz 2 + 5 2 z 4 + 5z(z  ) 2 − 1 2 (z  ) 2 + z  z  = 0 2217 Assume that (z  ) 2 = P (z). Differentiating this relation, 2z  z  = P  (z)z  z  = 1 2 P  (z) z  = 1 2 P  (z)z  z  z  = 1 2 P  (z)P (z). Substituting this expressions into the differential equation for z, − 1 2 Uz 2 + 5 2 z 4 + 5zP (z) − 1 2 1 4 (P  (z)) 2 + 1 2 P  (z)P (z) = 0 4Uz 2 + 20z 4 + 40zP (z) −(P  (z)) 2 + 4P  (z)P (z) = 0 Substituting P (z) = az 3 + bz 2 yields (20 + 40a + 15a 2 )z 4 + (40b + 20ab)z 3 + (4b 2 + 4U)z 2 = 0 This equation is satisfied by b 2 = U, a = −2. Thus we have (z  ) 2 = √ Uz 2 − 2z 3 z = √ U 2 sech 2  1 2 U 1/4 X  u(x, t) = √ U 2 sech 2  1 2 (U 1/4 x − U 5/4 t)  2218 The linearized equation is u t + u 5 = 0. Substituting u = e −αx+βt into this equation yields β − α 5 = 0. We set α = U 1/4 . The solution for u(x, t) becomes α 2 2 sech 2  αx − βt 2  where β = α 5 . 2219 Part VIII Appendices 2220 Appendix A Greek Letters The following table shows the greek letters, (some of them have two typeset variants), and thei r corresponding Roman letters. Name Roman Lower Upper alpha a α beta b β chi c χ delta d δ ∆ epsilon e  epsilon (variant) e ε phi f φ Φ phi (variant) f ϕ gamma g γ Γ eta h η iota i ι kappa k κ lambda l λ Λ mu m µ 2221 nu n ν omicron o o pi p π Π pi (variant) p  theta q θ Θ theta (variant) q ϑ rho r ρ rho (variant) r  sigma s σ Σ sigma (variant) s ς tau t τ upsilon u υ Υ omega w ω Ω xi x ξ Ξ psi y ψ Ψ zeta z ζ 2222 [...]... Dirac delta function Fourier transform Fourier cosine transform Fourier sine transform ∞ Euler’s constant, γ = 0 e−x Log x dx Gamma function Heaviside function Hankel function of the first kind and order ν Hankel function of the second kind and order ν √ ı ≡ −1 Bessel function of the first kind and order ν Modified Bessel function of the first kind and order ν Laplace transform 2223 N Nν (x) R R+ R− o(z)... n 16 1 6 = n6 945 31π 6 (−1)n+1 = n6 30240 2240 Appendix H Table of Taylor Series ∞ (1 − z)−1 = zn |z| < 1 (n + 1)z n |z| < 1 n=0 ∞ −2 (1 − z) = n=0 ∞ α (1 + z) = n=0 ∞ z e = n=0 α n z n |z| < 1 zn n! |z| < ∞ ∞ log(1 − z) = − n=1 zn n |z| < 1 2241 log ∞ 1+z 1−z =2 n=1 ∞ |z| < ∞ (−1)n z 2n+1 (2n + 1)! |z| < ∞ n=0 ∞ sin z = n=0 tan z = z + z 3 2z 5 17z 7 + + + ··· 3 15 315 π z3 1 · 3z 5 1 · 3 · 5z 7. .. half plane 22 37 Appendix G Table of Sums ∞ rn = r , 1−r rn = r − rN +1 1−r n=1 N n=1 b for |r| < 1 n= (a + b)(b + 1 − a) 2 n= N (N + 1) 2 n=a N n=1 b n2 = n=a b(b + 1)(2b + 1) − a(a − 1)(2a − 1) 6 2238 N n2 = n=1 ∞ n=1 ∞ n=1 ∞ n=1 ∞ n=1 ∞ n=1 ∞ n=1 ∞ n=1 N (N + 1)(2N + 1) 6 (−1)n+1 = log(2) n 1 π2 = n2 6 π2 (−1)n+1 = n2 12 1 = ζ(3) n3 (−1)n+1 3ζ(3) = 3 n 4 1 π4 = n4 90 (−1)n+1 7 4 = n4 72 0 2239 ∞ n=1... 7 − z+ + + + ··· 2 2·3 2·4·5 2·4 6 7 sin−1 z = z + ∞ tan −1 |z| < 1 (−1)n z 2n (2n)! cos z = cos−1 z = z 2n−1 2n − 1 z= n=1 ∞ cosh z = n=0 ∞ sinh z = n=0 |z| < π 2 |z| < 1 z3 1 · 3z 5 1 · 3 · 5z 7 + + + ··· 2·3 2·4·5 2·4 6 7 |z| < 1 (−1)n+1 z 2n−1 2n − 1 |z| < 1 z 2n (2n)! |z| < ∞ z 2n+1 (2n + 1)! |z| < ∞ 2242 tanh z = z − ∞ Jν (z) = n=0 ∞ Iν (z) = n=0 z 3 2z 5 17z 7 + − + ··· 3 15 315 (−1)n z n!Γ(ν... x0 + ıy0 and the partial derivatives of u and v are continuous and satisfy the Cauchy-Riemann equations ux = v y , uy = −vx , then f (z0 ) exists Residues If f (z) has the Laurent expansion ∞ an z n , f (z) = n=−∞ then the residue of f (z) at z = z0 is Res(f (z), z0 ) = a−1 2225 Residue Theorem Let C be a positively oriented, simple, closed contour If f (z) is analytic in and on C except for isolated... lim R→∞ then R max |f (z)| z∈CR n ∞ f (x) dx = −ı2π −∞ =0 Res (f (z), bj ) j=1 22 36 Integrals from 0 to ∞ Let f (z) be analytic except for isolated singularities, none of which lie on the positive real axis, [0, ∞) Let z1 , , zn be the singularities of f (z) If f (z) z α as z → 0 for some α > −1 and f (z) z β as z → ∞ for some β < −1 then n ∞ f (x) dx = − 0 ∞ 0 1 f (x) log dx = − 2 n n 2 Res f (z)... function that is analytic and single valued in the disk |z − z0 | < R ∞ f (z) = n=0 f (n) (z0 ) (z − z0 )n n! The series converges for |z − z0 | < R 22 26 Laurent Series Let f (z) be a function that is analytic and single valued in the annulus r < |z − z0 | < R In this annulus f (z) has the convergent series, ∞ cn (z − z0 )n , f (z) = n=−∞ where cn = 1 ı2π f (z) dz (z − z0 )n+1 and the path of integration... ··· 3 15 315 (−1)n z n!Γ(ν + n + 1) 2 π 2 ν+2n 1 z n!Γ(ν + n + 1) 2 |z| < ν+2n |z| < ∞ |z| < ∞ 2243 Appendix I Continuous Transforms I.1 Properties of Laplace Transforms Let f (t) be piecewise continuous and of exponential order α Unless otherwise noted, the transform is defined for s > 0 To reduce clutter, it is understood that the Heaviside function H(t) multiplies the original function in the following... Integrals u dv dx = uv − dx v du dx dx f (x) dx = log f (x) f (x) f (x) 2 f (x) xα dx = dx = xα+1 α+1 f (x) for α == −1 1 dx = log x x eax dx = eax a 2232 abx a dx = b log a bx for a > 0 log x dx = x log x − x x2 1 1 x dx = arctan 2 +a a a 1 dx = 2 − a2 x √ √ x a2 1 2a 1 2a log a−x a+x log x−a x+a for x2 < a2 for x2 > a2 1 x x dx = arcsin = − arccos 2 |a| |a| −x √ 1 dx = log(x + x2 ± a2 ) x 2 ± a2 √ 1 x2 −... −1 then ∞ Res (f (z) log z, zk ) k=1 z α as z → 0 for some α > −1 and z a f (z) ∞ ı2π x f (x) log x dx = 1 − eı2πa a 0 z β as z → ∞ for some n ı2π x f (x) dx = 1 − eı2πa a 0 Res (f (z) log z, zk ) k=1 Res (z a f (z), zk ) k=1 n π2a Res (z f (z) log z, zk ) , + 2 sin (πa) k=1 n a Res (z a f (z), zk ) k=1 Fourier Integrals Let f (z) be analytic except for isolated singularities, none of which lie on . kind and order ν H (2) ν (x) Hankel function of the second kind and order ν ı ı ≡ √ −1 J ν (x) Bessel function of the first kind and order ν K ν (x) Modified Bessel function of the first kind and. u(x, y) + ıv(x, y) is defined in some neighborhood of z 0 = x 0 + ıy 0 and the partial d erivatives of u and v are continuous and satisfy the Cauchy-Riemann equations u x = v y , u y = −v x , then. of complex numbers δ(x) Dirac delta function F[·] Fourier transform F c [·] Fourier cosine transform F s [·] Fourier sine transform γ Euler’s constant, γ =  ∞ 0 e −x Log x dx Γ(ν) Gamma function H(x)

Ngày đăng: 06/08/2014, 01:21