Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 40 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
40
Dung lượng
506,16 KB
Nội dung
This solution demonstrates the domain of dependence of the solution. The first term is an integral over the triangle domain {(ξ, τ) : 0 < τ < t, x − cτ < ξ < x + cτ}. The second term involves only the points (x ± ct, 0). The third term is an integral on the line segment {(ξ, 0) : x −ct < ξ < x + ct}. In totallity, this is just the triangle domain. This is shown graphically in Figure 45.4. x-ct x+ct Domain of Dependence x,t Figure 45.4: Domain of dependence for the wave equation. Solution 45.18 Single Sum Representation. First we find the eigenfunctions of the homogeneous problem ∆u − k 2 u = 0. We substitute the separation of variables, u(x, y) = X(x)Y (y) into the partial differential equation. X Y + XY − k 2 XY = 0 X X = k 2 − Y Y = −λ 2 We have the regular Sturm-Liouville eigenvalue problem, X = −λ 2 X, X(0) = X(a) = 0, 2014 which has the solutions, λ n = nπ a , X n = sin nπx a , n ∈ N. We expand the solution u in a series of these eigenfunctions. G(x, y; ξ, ψ) = ∞ n=1 c n (y) sin nπx a We substitute this series into the partial differential equation to find equations for the c n (y). ∞ n=1 − nπ a 2 c n (y) + c n (y) − k 2 c n (y) sin nπx a = δ(x − ξ)δ(y −ψ) The series expansion of the right side is, δ(x − ξ)δ(y −ψ) = ∞ n=1 d n (y) sin nπx a d n (y) = 2 a a 0 δ(x − ξ)δ(y −ψ) sin nπx a dx d n (y) = 2 a sin nπξ a δ(y −ψ). The the equations for the c n (y) are c n (y) − k 2 + nπ a 2 c n (y) = 2 a sin nπξ a δ(y −ψ), c n (0) = c n (b) = 0. The homogeneous solutions are {cosh(σ n y), sinh(σ n y)}, where σ n = k 2 (nπ/a) 2 . The solutions that satisfy the boundary conditions at y = 0 and y = b are, sinh(σ n y) and sinh(σ n (y − b)), respectively. The Wronskian of these 2015 solutions is, W (y) = sinh(σ n y) sinh(σ n (y −b)) σ n cosh(σ n y) σ n cosh(σ n (y −b)) = σ n (sinh(σ n y) cosh(σ n (y −b)) − sinh(σ n (y −b)) cosh(σ n y)) = σ n sinh(σ n b). The solution for c n (y) is c n (y) = 2 a sin nπξ a sinh(σ n y < ) sinh(σ n (y > − b)) σ n sinh(σ n b) . The Green function for the partial differential equation is G(x, y; ξ, ψ) = 2 a ∞ n=1 sinh(σ n y < ) sinh(σ n (y > − b)) σ n sinh(σ n b) sin nπx a sin nπξ a . Solution 45.19 We take the Fourier cosine transform in x of the partial differential equation and the boundary condition along y = 0. G xx + G yy − k 2 G = δ(x − ξ)δ(y −ψ) −α 2 ˆ G(α, y) − 1 π ˆ G x (0, y) + ˆ G yy (α, y) − k 2 ˆ G(α, y) = 1 π cos(αξ)δ(y −ψ) ˆ G yy (α, y) − (k 2 + α 2 ) ˆ G(α, y) == 1 π cos(αξ)δ(y −ψ), ˆ G(α, 0) = 0 Then we take the Fourier sine transform in y. −β 2 ˆ ˆ G(α, β) + β π ˆ ˆ G(α, 0) − (k 2 + α 2 ) ˆ ˆ G(α, β) = 1 π 2 cos(αξ) sin(βψ) ˆ ˆ G = − cos(αξ) sin(βψ) π 2 (k 2 + α 2 + β 2 ) 2016 We take two inverse transforms to find the solution. For one integral representation of the Green function we take the inverse sine transform followed by the inverse cosine transform. ˆ ˆ G = −cos(αξ) sin(βψ) π 1 π(k 2 + α 2 + β 2 ) ˆ ˆ G = −cos(αξ)F s [δ(y −ψ)]F c 1 √ k 2 + α 2 e − √ k 2 +α 2 y ˆ G(α, y) = −cos(αξ) 1 2π ∞ 0 δ(z −ψ) 1 √ k 2 + α 2 exp − √ k 2 + α 2 |y −z| − exp − √ k 2 + α 2 (y + z) dz ˆ G(α, y) = − cos(αξ) 2π √ k 2 + α 2 exp − √ k 2 + α 2 |y −ψ| − exp − √ k 2 + α 2 (y + ψ) G(x, y; ξ, ψ) = − 1 π ∞ 0 cos(αξ) √ k 2 + α 2 exp − √ k 2 + α 2 |y −ψ| − exp − √ k 2 + α 2 (y + ψ) dα For another integral representation of the Green function, we take the inverse cosine transform followed by the inverse sine transform. ˆ ˆ G(α, β) = −sin(βψ) cos(αξ) π 1 π(k 2 + α 2 + β 2 ) ˆ ˆ G(α, β) = −sin(βψ)F c [δ(x − ξ)]F c 1 k 2 + β 2 e − √ k 2 +β 2 x ˆ G(x, β) = −sin(βψ) 1 2π ∞ 0 δ(z −ξ) 1 k 2 + β 2 e − √ k 2 +β 2 |x−z| + e − √ k 2 +β 2 (x+z) dz ˆ G(x, β) = −sin(βψ) 1 2π 1 k 2 + β 2 e − √ k 2 +β 2 |x−ξ| + e − √ k 2 +β 2 (x+ξ) G(x, y; ξ, ψ) = − 1 π ∞ 0 sin(βy) sin(βψ) k 2 + β 2 e − √ k 2 +β 2 |x−ξ| + e − √ k 2 +β 2 (x+ξ) dβ 2017 Solution 45.20 The problem is: G rr + 1 r G r + 1 r 2 G θθ = δ(r −ρ)δ(θ −ϑ) r , 0 < r < ∞, 0 < θ < α, G(r, 0, ρ, ϑ) = G(r, α, ρ, ϑ) = 0, G(0, θ, ρ, ϑ) = 0 G(r, θ, ρ, ϑ) → 0 as r → ∞. Let w = r e iθ and z = x + iy. We use the conformal mapping, z = w π/α to map the sector to the uppe r half z plane. The problem is (x, y) space is G xx + G yy = δ(x − ξ)δ(y −ψ), −∞ < x < ∞, 0 < y < ∞, G(x, 0, ξ, ψ) = 0, G(x, y, ξ, ψ) → 0 as x, y → ∞. We will solve this problem with the method of images. Note that the solution of, G xx + G yy = δ(x − ξ)δ(y −ψ) − δ(x − ξ)δ(y + ψ), −∞ < x < ∞, −∞ < y < ∞, G(x, y, ξ, ψ) → 0 as x, y → ∞, satisfies the condition, G(x, 0, ξ, ψ) = 0. Since the infinite space Green fun ction for the Laplacian in two di mens ions is 1 4π ln (x − ξ) 2 + (y −ψ) 2 , the solution of this problem is, G(x, y, ξ, ψ) = 1 4π ln (x − ξ) 2 + (y −ψ) 2 − 1 4π ln (x − ξ) 2 + (y + ψ) 2 = 1 4π ln (x − ξ) 2 + (y −ψ) 2 (x − ξ) 2 + (y + ψ) 2 . 2018 Now we solve for x and y in the conformal mapping. z = w π/α = (r e iθ ) π/α x + iy = r π/α (cos(θπ/α) + i sin(θπ/α)) x = r π/α cos(θπ/α), y = r π/α sin(θπ/α) We substitute these expressions into G(x, y, ξ, ψ) to obtain G(r, θ, ρ, ϑ). G(r, θ, ρ, ϑ) = 1 4π ln (r π/α cos(θπ/α) − ρ π/α cos(ϑπ/α)) 2 + (r π/α sin(θπ/α) − ρ π/α sin(ϑπ/α)) 2 (r π/α cos(θπ/α) − ρ π/α cos(ϑπ/α)) 2 + (r π/α sin(θπ/α) + ρ π/α sin(ϑπ/α)) 2 = 1 4π ln r 2π/α + ρ 2π/α − 2r π/α ρ π/α cos(π(θ −ϑ)/α) r 2π/α + ρ 2π/α − 2r π/α ρ π/α cos(π(θ + ϑ)/α) = 1 4π ln (r/ρ) π/α /2 + (ρ/r) π/α /2 − cos(π(θ −ϑ)/α) (r/ρ) π/α /2 + (ρ/r) π/α /2 − cos(π(θ + ϑ)/α) = 1 4π ln e π ln(r/ρ)/α /2 + e π ln(ρ/r)/α /2 − cos(π(θ −ϑ)/α) e π ln(r/ρ)/α /2 + e π ln(ρ/r)/α /2 − cos(π(θ + ϑ)/α) G(r, θ, ρ, ϑ) = 1 4π ln cosh π/α ln r ρ − cos(π(θ −ϑ)/α) cosh π/α ln r ρ − cos(π(θ + ϑ)/α) Now recall that the solution of ∆u = f(x), subject to the boundary condition, u(x) = g(x), is u(x) = f(xi)G(x; xi) dA ξ + g(xi)∇ ξ G(x; xi) · ˆ n ds ξ . 2019 The normal directions along the l ower and upper edges of the sector are − ˆ θ and ˆ θ, respectively. The gradient in polar coordinates is ∇ ξ = ˆρ ∂ ∂ρ + ˆ ϑ ρ ∂ ∂ϑ . We only need to compute the ˆ ϑ component of the gradient of G. This is 1 ρ ∂ ∂ρ G = sin(π(θ −ϑ)/α) 4αρ cosh π α ln r ρ − cos(π(θ −ϑ)/α) + sin(π(θ −ϑ)/α) 4αρ cosh π α ln r ρ − cos(π(θ + ϑ)/α) Along ϑ = 0, this is 1 ρ G ϑ (r, θ, ρ, 0) = sin(πθ/α) 2αρ cosh π α ln r ρ − cos(πθ/α) . Along ϑ = α, this is 1 ρ G ϑ (r, θ, ρ, α) = − sin(πθ/α) 2αρ cosh π α ln r ρ + cos(πθ/α) . 2020 The solution of our problem is u(r, θ) = c ∞ − sin(πθ/α) 2αρ cosh π α ln r ρ + cos(πθ/α) dρ + ∞ c − sin(πθ/α) 2αρ cosh π α ln r ρ − cos(πθ/α) dρ u(r, θ) = ∞ c −sin(πθ/α) 2αρ cosh π α ln r ρ − cos(πθ/α) + sin(πθ/α) 2αρ cosh π α ln r ρ + cos(πθ/α) dρ u(r, θ) = − 1 α sin πθ α cos πθ α ∞ c 1 ρ cosh 2 π α ln r ρ − cos 2 πθ α dρ u(r, θ) = − 1 α sin πθ α cos πθ α ∞ ln(c/r) 1 cosh 2 πx α − cos 2 πθ α dx u(r, θ) = − 2 α sin πθ α cos πθ α ∞ ln(c/r) 1 cosh 2πx α − cos 2πθ α dx Solution 45.21 First consider the Green function for u t − κu xx = 0, u(x, 0) = f(x). The differential equation and initial condition is G t = κG xx , G(x, 0; ξ) = δ(x − ξ). The Green function is a solution of the homogeneous heat equation for the initial condition of a unit amount of heat concentrated at the point x = ξ. You can verify that the Green function is a solution of the heat equation for t > 0 and that it has the property: ∞ −∞ G(x, t; ξ) dx = 1, for t > 0. This property demonstrates that the total amount of heat is the constant 1. At time t = 0 the heat is concentrated at the point x = ξ. As time increases, the heat diffuses out from this point. 2021 The solution for u(x, t) is the linear combination of the Green functions that satisfies the initial condition u(x, 0) = f(x). This linear combination is u(x, t) = ∞ −∞ G(x, t; ξ)f(ξ) dξ. G(x, t; 1) and G(x, t; −1) are plotted in Figure 45.5 for the domain t ∈ [1/100 1/4], x ∈ [−2 2] and κ = 1. 0.1 0.2 -2 -1 0 1 2 0 1 2 0.1 0.2 Figure 45.5: G(x, t; 1) and G(x, t; −1) Now we consider the problem u t = κu xx , u(x, 0) = f(x) for x > 0, u(0, t) = 0. 2022 [...]... there, and then transform back to the first quadrant uxx + uyy = δ(x − ξ)δ(y − η) dc (uaa + ubb ) dz 2 = 4 x2 + y 2 δ(a − α)δ(b − β) (uaa + ubb ) |2z |2 = 4 x2 + y 2 δ(a − α)δ(b − β) uaa + ubb = δ(a − α)δ(b − β) 1 ((a − α )2 + (b − β )2 ) u= ln 4π ((a − α )2 + (b + β )2 ) 1 ((x2 − y 2 − ξ 2 + η 2 )2 + (2xy − 2 η )2 ) ln u= 4π ((x2 − y 2 − ξ 2 + η 2 )2 + (2xy + 2 η )2 ) u= 1 ln 4π ((x − ξ )2 + (y − η )2 ) ((x + ξ )2. .. η )2 + ln (x + ξ )2 + (y + η )2 u= ((x − ξ )2 + (y − η )2 ) ((x + ξ )2 + (y + η )2 ) ((x + ξ )2 + (y − η )2 ) ((x − ξ )2 + (y + η )2 ) 1 ln 4π 2 The Green function for the upper half plane is G= 1 ln 4π ((x − ξ )2 + (y − η )2 ) ((x − ξ )2 + (y + η )2 ) We use the conformal map, c = z 2 , c = a + ıb a = x2 − y 2 , b = 2xy We compute the Jacobian of the mapping J= ax ay 2x −2y = = 4 x2 + y 2 bx by 2y 2x We transform... ξ) = √ 1 1 2 2 e−(x−ξ) /(4κt) + √ e−(x+ξ) /(4κt) 4πκt 4πκt G(x, t; ξ) = √ 1 2 2 e−(x +ξ )/(4κt) cosh 4πκt xξ 2 t The Green functions for the two boundary conditions are shown in Figure 45 .6 20 23 2 1 1 0.8 0 0 .6 0.4 0.05 0.1 0 .2 0.15 0 .2 0 0 .25 2 1 1 0.8 0 0 .6 0.4 0.05 0.1 0 .2 0.15 0 .2 0 0 .25 Figure 45 .6: Green functions for the boundary conditions u(0, t) = 0 and ux (0, t) = 0 Solution 45 .22 a) The Green... +t−3 cos(2nπx) cos(2nπct) 4π4 30 n n=1 20 32 For c = 1, the solution at x = 3/4, t = 7 /2 is, ∞ 1 1 7 u(3/4, 7 /2) = + −3 cos(3nπ /2) cos(7nπ) 4π4 30 2 n n=1 Note that the summand is nonzero only for even terms 53 3 u(3/4, 7 /2) = − 15 16 4 = 53 3 − 15 16 4 ∞ n=1 ∞ n=1 1 cos(3nπ) cos(14nπ) n4 (−1)n n4 53 3 −7π 4 = − 15 16 4 720 u(3/4, 7 /2) = 20 33 127 27 3840 Chapter 46 Conformal Mapping 20 34 46. 1 Exercises... Solution 46. 3 2 2 dζ + 2 = 2 ∂ξ ∂η dz 2 2041 ∂2u ∂2u + ∂x2 ∂y 2 Figure 46. 1: Odd reflections to enforce the boundary conditions 1 uxx + uyy = 0 dζ dz 2 (υξξ + υηη ) = 0 υξξ + υηη = 0 20 42 2 uxx + uyy = λu dζ dz 2 (υξξ + υηη ) = λυ υξξ + υηη dz =λ dζ 2 υ 3 uxx + uyy = f (x, y) dζ dz 2 (υξξ + υηη ) = φ(ξ, η) υξξ + υηη = dz dζ 2 φ(ξ, η) 4 The Jacobian of the mapping is xξ yξ 2 = xξ yη − xη yξ = x2 + yξ... sin (2n − 1)πc(t − τ ) 2L H(t − τ ) Substituting this into the sum yields, ∞ 4 1 G(x, t; ξ, τ ) = H(t − τ ) sin πc 2n − 1 n=1 (2n − 1)πξ 2L sin (2n − 1)πc(t − τ ) 2L We use trigonometric identities to write this in terms of traveling waves 20 26 sin (2n − 1)πx 2L ∞ sin (2n − 1)π((x − ξ) − c(t − τ )) 2L − sin (2n − 1)π((x + ξ) − c(t − τ )) 2L 1 1 G(x, t; ξ, τ ) = H(t − τ ) πc 2n − 1 n=1 + sin (2n −... the mapping in terms of r and θ ξ + ıη = 1 + r eıθ 1 − r2 + ı2r sin θ = 1 − r eıθ 1 + r2 − 2r cos θ 1 − r2 1 + r2 − 2r cos θ 2r sin θ η= 1 + r2 − 2r cos θ ξ= 2r Consider a semi-circle of radius r The image of this under the conformal mapping is a semi-circle of radius 1−r2 and 1+r 2 center 1−r2 in the first quadrant of the w plane This semi-circle intersects the ξ axis at 1−r and 1+r As r ranges 1+r... the Green function differential equation Gtt − c2 Gxx = δ(x − ξ)δ(t − τ ) ∞ gn (t) + n=1 (2n − 1)πc 2L 2 gn (t) sin (2n − 1)πx 2L = δ(x − ξ)δ(t − τ ) We need to expand the right side of the equation in the sine series ∞ dn (t) sin (2n − 1)πx 2L δ(x − ξ)δ(t − τ ) sin (2n − 1)πx 2L δ(x − ξ)δ(t − τ ) = n=1 dn (t) = 2 L L 0 dn (t) = 2 sin L (2n − 1)πξ 2L 20 25 δ(t − τ ) dx By equating coefficients in the sine... 1)πct 2L , sin (2n − 1)πct 2L Since the continuity and jump conditions are given at the point t = τ , a handy set of solutions to use for this problem is the fundamental set of solutions at that point: cos (2n − 1)πc(t − τ ) 2L , 2L sin (2n − 1)πc (2n − 1)πc(t − τ ) 2L The solution that satisfies the causality condition and the continuity and jump conditions is, gn (t; τ ) = 4 sin (2n − 1)πc (2n − 1)πξ 2L... problems for the gn ’s 2 (2n − 1)πc 2L gn (t; τ ) + gn (t; τ ) = 2 sin L (2n − 1)πξ 2L δ(t − τ ) From the causality condition for G, we have the causality conditions for the gn ’s, gn (t; τ ) = gn (t; τ ) = 0 for t < τ The continuity and jump conditions for the gn are gn (τ + ; τ ) = 0, gn (τ + ; τ ) = 2 sin L (2n − 1)πξ 2L A set of homogeneous solutions of the ordinary differential equation are cos (2n . 45 .6. 20 23 0.05 0.1 0.15 0 .2 0 .25 0 0 .2 0.4 0 .6 0.8 1 0 1 2 0.05 0.1 0.15 0 .2 0 .25 0.05 0.1 0.15 0 .2 0 .25 0 0 .2 0.4 0 .6 0.8 1 0 1 2 0.05 0.1 0.15 0 .2 0 .25 Figure 45 .6: Green functions for the boundary. β 2 e − √ k 2 +β 2 |x−z| + e − √ k 2 +β 2 (x+z) dz ˆ G(x, β) = −sin(βψ) 1 2 1 k 2 + β 2 e − √ k 2 +β 2 |x−ξ| + e − √ k 2 +β 2 (x+ξ) G(x, y; ξ, ψ) = − 1 π ∞ 0 sin(βy) sin(βψ) k 2 + β 2 e − √ k 2 +β 2 |x−ξ| + e − √ k 2 +β 2 (x+ξ) dβ 20 17 Solution. transform. ˆ ˆ G(α, β) = −sin(βψ) cos(αξ) π 1 π(k 2 + α 2 + β 2 ) ˆ ˆ G(α, β) = −sin(βψ)F c [δ(x − ξ)]F c 1 k 2 + β 2 e − √ k 2 +β 2 x ˆ G(x, β) = −sin(βψ) 1 2 ∞ 0 δ(z −ξ) 1 k 2 + β 2 e − √ k 2 +β 2 |x−z| + e − √ k 2 +β 2 (x+z) dz ˆ G(x,