1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Cutting Fluids Part 4 pdf

10 190 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 10
Dung lượng 490,41 KB

Nội dung

Most  uid  mixers  operate  based  upon  the  ‘venturi principle’ 21 and because of this, there will usually be a  degree of uctuation of the dilution, if the water pres - sure should change during its operation – particularly  if  other  equipment  within  the  factory  draws  water  when required. In view of any potential water pressure  variation,  it  is  normal  practice  to  use  a water  supply  that  is  not  subject  to  such  uctuations.  Many  local  water authorities may well require that a header tank  with  an  air  gap  is  used,  to  prevent  any  possibility  of  contamination of the water mains. When mains water  is  used,  many  local  authorities  will  provide  the  nec - essary water quality information, but if another water  source is used, it will need to be analysed by the user.  In Fig. 207, the graph illustrates the results of concen - tration measurements, taken from zero → 6%, obtained  by dierent techniques, such as: •   Refractometer assessment – more on this apparatus  shortly, •   Measurement  of  the  total  alkalinity  of  a  product  containing nitrate, •   Boron determination  by Atomic Absorption  (AA)  method, •   Measurement  of  the  total  alkalinity  of  a  product  not containing nitrate, •   Hypothetical ‘real’ concentration ‘R’ , set arbitrarily  at 3%, •   Determination of anionic emulsier content (b) @  water hardness of 10° GH, •   Determination of anionic emulsier content (a) @  water hardness of 10° GH, •   Determination of nitride content, •   Determination of anionic emulsier content (a) @  water hardness of 30° GH. NB  Water hardness can be easily determined with suf- cient accuracy using indicators in tablet form, while  the pH value and  bacteria  count  can be estimated  as  21  ‘Venturi principle’ ,  is:  ‘A convergent-divergent duct in which pressure energy is converted to kinetic energy at the throat.’ When utilised with its associated ‘Venturi meter’ , this being  a ow meter in which the pressure drop in a Venturi is used  to give an indication of ow. [Source: Carvill, 1997]Where in  the case of emulsion dilution ratios, this uid mixer arrange- ment – with the apparatus situated in the top of the drum and  connected  to  the  water  supply  – can  be  employed  and  then  subsequently adjusted in-situ, to give the desired coolant mix- ture.  described in the following section. For more detailed  analysis,  then  laboratory  facilities  are  necessary,  this  assistance is oen provided by the cutting uid manu - facturer’s laboratory service department. .. Monitoring, Maintenance and Testing of Cutting Fluid – in Use While in use the cutting uid is subject to various in- uences  that  may  aect  its  properties.  Such  inuen - tial  factors  include:  leakages  from  the  machine  tool’s  lubrication  and  hydraulic  systems  (i.e.  ‘tramp-oil’);  surface contamination on the work piece: prior to ma - chining;  or  by  people:  spilled  drinks;  food  particles;  environmental  inuences.  It  is  paramount  that  the  health  monitoring  of  a  cutting  uid  is  on-going  and  undertaken  at  periodic  intervals,  whilst  spot-checks  may  also  be  necessary  in  order  to detect  undesirable  changes  in  the  uid’s  properties,  enabling  corrective  action  to  be  taken,  as  appropriate.  Hence,  the  moni - toring  of  the  cutting  uids  are  fundamental  to  their  life,  but  a  relevant  question  could  be  raised:  ‘What  characteristics  do  we  have to monitor?’ Probably  the  most common cutting uid tests, include the following  measurements: •   Concentration, •   pH (Alkalinity), •   Corrosion protection, •   Fluid stability, •   Bacteria count. e above tests will shortly be considered in more de - tail, in the appropriate section. Prior to this, it is im - portant to ensure that the machine tool is thoroughly  cleaned, before a new ‘charge’ of cutting uid is poured  into either the machine’s reservoir, or to a central cool - ant distribution tank – supplying the needs of several  machine tools. Machine Cleaning It is important to any cutting uid system that it is cor- rectly  cleaned  before  fresh  uid  is  introduced,  if  the  optimum performance from it is to be obtained. Such  machine tool cleaning procedures, should include the  following stages: Cutting Fluids  Figure 207. The graph illustrates the results of the concentration measurements using dier- ent methods. [Courtesy of Cimcool] .  Chapter  Figure 208. ‘Wetability’ related to a droplet’s spherical cap, plus an automatic (aqueous) coolant mixing device. Cutting Fluids  1.  Physical removal of all deposits: swarf; debris; oil and  food contamination in the uid-system – using say,  coolant extraction equipment (Fig. 209a and b), 2.  Treatment  of the uid-system with an appropriate  system-cleaner – normally added to either the old  cutting uid – prior to draining, or more eectively,  to clean water and pumped-around the system for  the specied time-period, as recommended by the  uid’s manufacturer, 3.  Removal  of: all guarding;  swarf conveyors; etc.; as  necessary to allow eective cleaning of inaccessible  areas – if ‘maintenance  window’  time-frames  per - mit, 4.  Flush  the  uid-system  –  pumping  around  it  with  clean water, 5.  Rell  the  uid-system  with  fresh  emulsion  at  the  correct dilution. NB  Once the fresh cutting uid is in-situ, it should  be  inspected  and  checked  on  a  regular  basis,  as  this proactive activity will considerably prolong its  working-life. Maintenance of the Fluid During Use e  following  on-going  maintenance  procedures  to  the cutting uid during use,  will assist in prolonging  its overall eectiveness and life: •   Checking  of  the  dilution  regularly  using  a  refrac- tometer  (Fig.  206),  to  ensure  that  the  dilution  remains  relatively  constant  –  within  the  recom - mended range 22 , •   Never wait until the uid level falls below the pump  before topping-up, while regular top-ups to the re - quired  level  with  fresh  uid  assists  in  controlling  bacterial growth, •   Restrict the amount of swarf build-up, as large vol- umes  of  swarf  can  encourage  both  corrosion  and  bacterial growth, •   Do not allow the cutting-uid’s sump to be used as  a ‘dustbin’ for example: cigarette ends; uneaten food  remnants; paper cups; general rubbish; etc., 22  ‘Dilution control’ – if the emulsion is:  under-diluted, never add water, but rather pour in a weaker emulsion; Over-diluted,  do not add  concentrate,  but  rather  pour  in  a  strong emulsion. – – •   Avoid  excessive  leakage  of  oil  from  the  machine  (i.e.  tramp-oil’),  especially  during  maintenance  overhauls/procedures. More sophisticated condition monitoring is of course  possible and may be tting where the consequences of  uid failure are serious, such as in a large centralised  system. Some cutting uid manufacturers oer this as  a  service.  While  at  another  extreme,  one  UK  cutting  uid  manufacturer,  actually  achieves  ‘on-line condi- tion monitoring’ of emulsion by  continuous  control of an  automotive  company’s  engine  production  line  from a distance of over 100 km away. e monitoring  and  operational  procedure  is  typically  as  follows:  on  the  production  line,  as  the  cutting  uid’s  character - istics  change  –  when  being  continuously  monitored,  the  uid  manufacturer  (i.e.  from  the  ‘HQ’),  can  au - tomatically  ‘dope’  the  system  by  discharging  from  a  centralised  and  strategically  positioned  stillage,  ap - propriate chemicals, or uids – as necessary. While at  this remote monitoring station (HQ), they watch and  monitor  on-line  for  say,  the  dilution  ratio  to  change  – and as the newly-discharged ‘doping’ takes eect in  real-time,  thereby  keeping  the  emulsion  at  its  opti - mum performance.  Cutting Fluid Testing ese testing procedures are important to undertake,  as  they  dene  the  current  status  of  the  cutting  uid.  Many  aqueous-based  cutting  uid  tests  can  be  un - dertaken, with the following ones normally being the  most oen employed: • Testing for concentration levels (e.g.  using  a  re- fractometer 23  – Fig. 206) – this being an important  23  ‘Refractometer operation’ (Fig. 206): Place a few drops of cutting uid on the instrument’s prism, Close the lid over these droplets, Hold the instrument up to the light  and view through  the  eyepiece. NB   In the eyepiece, the light and dark interface is visually- apparent and a measurement is obtained against the engraved  optical  graticule  –  which  is  calibrated  in  %  readings.  Some  types of refractometer’s can be simply read-o from the eye- piece numerical value – as shown in Fig. 206, while other ver- sions  obtain  the  actual  % reading  when  the  ‘interface  value’  reading  is  compared  against a  specic  calibration  chart –  to  obtain the dilution level. Such refractometers can be utilised to  obtain dilutions for a range of aqueous-based cutting uids. – – –  Chapter  Figure 209. Typical coolant extraction/reclamation units. Cutting Fluids  preventative measurement for water-mixed cutting  uids.  ere  are  a  variety  of  techniques  currently  available,  but  in  all  cases,  the  results  should  be  treated with a certain amount of caution. As previ - ously mentioned, Fig. 207 graphically depicts how a  range of methods of assessment can give quite ap - preciably diering results. For semi-synthetic prod - ucts, the  concentration measurement  by means  of  a refractometer is very popular, although they tend  to  be  more  accurate  and  precise  only  when  fresh  mixtures are assessed. e more the contamination  from the machine tool’s lubricating system, the less  accurate  and  precise  will  be  the  results.  A  refrac - tometer being a portable hand-held instrument can  be transported and used anywhere within the pro - duction plant – as necessary. It is also important to  ensure that only adjustable refractometers are used,  as  prior  to  taking  a  reading,  they  must  be  set  to  zero, • Testing for pH level – this is a simple, yet important  test,  which should be  undertaken  on water mixed  with  cutting  uids  –  this  being  a  measure  of  the  pH value. e pH value, or to be more specic, the:  hydrogen  ion  concentration,  is  a  measure  of  the  acidity,  or  alkalinity  of a solution.  Aqueous-based  cutting uids tend to be alkaline, with a typical pH  range of between 8 to 9.5 (i.e see Fig. 202b, for these  values on the pH scale). us, a change in the pH  value  indicates  a  disturbance  of  the  hydrogen  ion  equilibrium.  is  ‘disturbance’  in  turn,  suggests  a  deterioration in the uid’s properties, due to either  biological,  or  chemical  action,  or  both,  but  more  specically,  indicating  that  heavy  contamination  has  occurred.  e  simplest  manner  of  obtaining  a  measure  of  pH,  is  by  using  ‘pH indicator strips’ which  once  dipped  in  the  cutting  uid,  the  strips  will  now  change  colour.  is  colour  change  in  the  ‘strip’  is  then  visually  compared  and  matched  against a coloured and graduated scale, to obtain a  pH reading. More exact measurements can be ob - tained  by means  of  an  electronic  equipment  for  a  pH measurement reading 24 . Yet another technique  used to determine the pH value, is by means of  ‘ti- 24  ‘pH readings’ ,  are  in  accordance  with  many  countries  na- tional  Standards,  such  as  that  found  in  Germany,  namely:  DIN51369. tration’ 25 ,  which  is  a  quantitative  analysis  method  to determine alkalinity. In contrast to the pH value,  which can only can only give the degree of alkalin - ity, the  ‘titration method’ also establishes  the  alka- linity level, but it also determines the rate of change  of this alkalinity – helping to estimate the cause of  the alteration. So when a  rapid rise in alkalinity is  detected, this points towards the  presence of a con- taminant, conversely, a fall in the alkalinity level in- dicates probable bacteria growth 26 – decreasing the  eectiveness of the additive,  • Corrosion protection – its  measurement is an im- portant  preventative  operation  when  using  water- mixed cutting uids, in order to avoid unexpected  corrosion of  ferrous  workpieces  – owing  to insuf - cient,  or  ineective  corrosion  inhibitors  in  the  uid. With some products, even small variations in  concentration  can  adversely  aect  corrosion  pro - tection 27 , • Product stability – any deviation in emulsion sta- bility  in  use  can  be  quickly  determined  using  the  ‘centrifuge testing method’.  In  this  technique,  the  centrifuged sample of emulsion is compared: under  specied  conditions;  with  the  current  working  Standard, giving an indication of the cutting uid’s  anticipated stability, 25  ‘Titration’ , is a volumetric analytical determination in which  a reagent solution with a known content (i.e. a ‘standard solu- tion’),  is bled into  the metalworking uid to  be  determined.  e rate of change in alkalinity allows inferences to be drawn  on the probable causes of this increased alkalinity. 26  ‘Bacteriological eects’ , if too high a degree of alkalinity pres- ent  in  the  aqueous-based  cutting  uid:  which  for  example,  can be caused by adding excessive amounts of highly alkaline  bactericides, this being just one of the main causes of skin ir- ritation, indicating the importance of regular checking of the  cutting uid’s alkalinity. NB  More will be said on this topic later in the chapter, in the  relevant section concerning setter/operator ‘health-issues’. 27  ‘Corrosion protection’ , the degree of corrosion protection can  be  simply  measured  to  many  national  Standards,  typical  of  these are the German: DIN51360 and DIN51759 – known as  the ‘Steel strip method’.  NB  ese  corrosion  development  tests  are  most  reliable,  if  the local water and authentic chips taken are from the actual  machine tool used.  Chapter  • Bacteria count – the most accurate, but an expen- sive  test  method  of  determining  the  ‘bacteria lev- els’ 28 present  in  a  cutting  uid  is by  actual  count- ing  –  for example,  according  to  the German  unit.  A much more simple technique of achieving good  estimates of bacteria levels is by utilising  ‘dip-slides’.  Here,  the  slides  are  dipped  into  the  cutting  uid,  then  the  potential  bacteria are incubated for a  set  time period and, nally compared with sample pic - tures – oering a good and reliable attribute quality  control test method.  8.9 Multi-Functional Fluids Tramp-oils:  hydraulic  uid  and  slideway  lubricants;  will  inevitably  become  mixed  into  the  cutting  uids  during  machining  operations.  Today,  one  technique  to minimise the deleterious eects of their unwanted  inclusion in the coolants, is via usage of the so-called:  ‘multi-functional uids’.  ese  products  will  extend  coolant life, because they maintain their performance  even in the presence of tramp-oils.  e  multi-functional  uid  concept  means  that  to  prevent a reduction in overall coolant performance –  if  tramp-oils  leak  into  the  machine’s  sump,  all  uids  utilised  in  support  of  the  machining  operation:  hy - 28  ‘Bacteria levels’ ,  in  a cutting  uid  like  all  living  organisms,  need  trace  amounts  of  minerals  in  the  ‘diet’  for  optimal  growth. While sulphates promote  the growth of sulphate-re- ducing bacteria  (i.e.  more specically:  desulphovibrio desul- phurican).  Such  bacteria  ‘split’  the  oxygen  o  sulphate  ions  and utilise it chemically, as their oxygen source. is process  ‘liberates’  hydrogen  sulphide,  producing  the  smell  which  is  very similar to that of rotten eggs! Specically, in soluble-oil  coolants, the mineral content of hard water reduces the eec- tive concentration of emulsiers in a working solution. us,  reduced emulsier concentration produces a coarse emulsion  having large oil droplets, in a similar fashion to simply mixing  oil with pure water. Bacteria are very much ‘size-specic’ , as a  result, they attack large oil droplets more readily  in a coarse  emulsion, the opposite is true for smaller oil droplets in a tight  emulsion. So, the easier the attack, the more readily the bacte- ria can extract nutrition and as a result, they grow. Moreover,  bacteria  grow  best  at  the  interface  of  the  water  droplet  and  the tramp-oil. Certain oils have elements that promote bacte- rial  attack,  being  exacerbated  by  organic  materials,  such  as:  tobacco; fruit  peelings; etc.; that  nd their  way  into the  ma- chine’s sump. draulic  oils;  slideway  lubricants;  greases;  should  con- tain identical additives  to  that of the  coolant. By way  of a practical  illustration of this concept, in an auto - motive engine machining plant, all operations are per - formed by a multi-functional oil, having a viscosity of:  10 mm 2 s –1   at  40°C.  While  all  the  hydraulic  functions  of the transfer-line, use a higher viscosity multi-func - tional oil, having the same additives. is identical ad - ditive  usage,  ensures  that  tramp-oils  as  the  leak  into  the metalworking uid, do not degenerate, nor desta - bilise the product, thus ensuring a longer working life  at optimum performance.  8.10 Disposal of Cutting Fluids Cutting uid disposal costs have been reported to be  as  high  as 22%  of the  total  cutting  uid-related cost.  With  environmental  laws  in  Europe  and  in  particu - lar Germany, these laws have driven up uid-disposal  costs to >$1 per litre. With any coolant today, once it  has  reached  the  end of its  productive and useful life,  whether it is a: soluble oil; preformed emulsion; solu - tion; pure oil; etc.; it cannot be simply and indiscrim - inately  poured  down  a  drain,  or  disposed  of  at  will.  Waste cutting uid normally contains toxic substances,  which  were  either  present  when  it  was  new,  or  exist  via  contamination  during  its  use.  Possible  contami - nants  include  tramp-oils:  lubrication  and  hydraulic  oils and greases from the machine tool and, occasion - ally from nitrite adhering to the heat-treated hardened  workpieces that have been subjected to  ‘hard-part ma- chining’ – more will be said  on this machining  strat- egy in the following chapter. ese contaminants now  being  present  in the  ‘old’ cutting uid, markedly-dif - fer from the original product. To emphasise the point  still further, if initially pure water – not a good choice  today!  – was  used as a cutting uid,  it would absorb  so much  contaminant that  aer  a signicant  amount  of machining operations,  it could not now simply  be  poured away.  So, any used cutting uid should be thought of as  toxic  waste  and  must  be  disposed  of  in  accordance  with the appropriate authority’s regulations. Normally  the  local  water  authority  governs  such  cutting  uid  waste disposal by: reprocessing; incineration; or other  means; with its removal depending upon the cost and  the  amount  of  toxic  waste  material  present.  Typical  toxic substances that should  not be present in cutting  Cutting Fluids  uid  waste  are:  nitrate;  chlorine  compounds;  poly- chlorinated biphenyl (PCB); as reputable cutting uid  manufacturers  try  to avoid their use,  although traces  have been found in certain formulations. In the past,  sodium nitrate was once popular as a corrosion inhibi - tor, but nowadays, should not be utilised. While PCB  should not be present in  any of today’s cutting uids,  but previously it was sometimes illegally-added to re- rened used oils. While, chlorine compounds – used  as EP additives – are  no longer acceptable for cutting  uids, as are many previous used emulsion additives 29 .  In order to keep uid disposal costs as low as possi - ble, it is advisable to collect and separately store dier - ent types of ‘spent’ cutting uid, for future appropriate  disposal, or reprocessing. ere are various processes  for  reprocessing,  or  disposal  of  used  cutting  uids  available,  such  as:  chemical  and  thermal  processes,  while  ultra-ltration is  oen  used  today  (i.e.  see  Fig.  210 for cutting uid ltration details). Whichever in - dividual disposal, or reprocessing route that is chosen,  29  Water-based uid additives: ‘Sodium nitrate’*, was previously employed as a corrosion  inhibitor  –  due  to  its  eectiveness  and  cheapness,  but  it  should not be used today, owing to the potential problems  with nitrosamine formation.  Nitrosamine  formation  being  strongly  carcinogenic  (i.e.  acting  irrespective  of  the  mode  of intake into the body) causing tumours, attacking primar- ily the: liver; kidneys; or respiratory organs. Modern cutting  uids tend  to use  additives  such as:  amine  borates;  amine  carboxylates;  carboxylic  acids;  amine  phosphates;  as  well  as sulphonates, while other corrosion inhibitors have been  specically designed for non-ferrous metals, such as alloys  of; aluminiums, or brasses;    *  Previously,  sodium  nitride  can  react  with  diethanolamine,  forming very weak carcinogen nitrosodiethanolamine. ‘Chloroparans’ , moving  from ‘short-chain’ chlorparans  (i.e. C10-C13) – suspected in an advanced study in USA of  being  a  carcinogen,  to  that  of  ‘longer-chain’ chlorparans  (i.e. C14-C17), mainly used as an extreme pressure (EP) ad- ditive; ‘Triazine biocides’*,  reduction,  or  elimination  of  triazine  biocides, due to the possibility of skin sensitisation;   *New and safer biocides are now available to replace ‘Triazine- types’ of biocides. ‘Endocrine hormone’ ,  elimination  of  the  endocrine  hor- mone-disrupting chemicals.  NB  Cutting uid manufacturers are attempting to replace oil- based products with ‘greener- equivalents‘, such as: Vegetable  oil-based MWF’s., such as oils extracted from either: soybean;  rapeseed; canola; etc.  – – – – will depend on a variety of factors, including retrieval  costs and local regulations 30 .  8.11 Health and Safety Factors – Concerning Cutting Fluid Operation and Usage Introduction e  ‘traditional’  petroleum-based  metal-working   uids (MWF’s), are complex formulated products that  include  sophisticated  mixtures  of:  oils;  detergents;  lubricants;  and  other  additives,  that  have  the  poten - tial to be toxic. Most uid manufacturers today, have  complex  additive  packages  coupled  to  newly-revised  formulation strategies that are based upon renewable  resources  to  ensure  that  MWF’s  have:  longer  sump- life;  are safer  to  both the  setter/operator  and  the  en - vironment;  with  the  added  benet  of  being  less  la - bour-intensive to use – than was previously the case.  Moreover, these more recent MWF products must re - sist: tramp-oil contamination; biological and chemical  stresses: these latter factors could change their ‘chem - istries’ to produce otherwise unhealthy environments  for the users and detract from their overall stability.  In the last few years in particular in many industri - alised countries, there has been increased pressure by  interested  parties:  unions;  companies;  legislation;  to  look into the toxic eects cutting uids have on that of  worker’s health issues and more recently, their disposal  and its aect on the environment. Until relatively late,  30  An example of cutting uid disposal:In the UK: which  is in  the top 5 users of water-based MWF’s in  Western Europe;  it  produces approximately 20,000 tonnes of product concentrate  per  annum.  erefore,  at  the  most  common  working-con- centration  of  5%  (i.e.  5  parts  MWF  to  95  parts  water),  this  would simply equate to 400,000 tonnes of waste cutting uid  per year – which must be adequately disposed of in an envi- ronmentally-friendly manner! Although in reality, this actual  gure does not take account of uid:  evaporation;  nor drag- out; during the overall machining processes. [Source: Kuwait  Petroleum International Lubricants]  Chapter  Figure 210. Air-borne contamination from cutting uids and a variety of sources, can normally be l- tered-out – producing a safer user working environment. [Courtesy of Kitagawa Europe] . Cutting Fluids  the cause of worker’s decline in health was only indi- rectly-related to the exposure to MWF’s. Now, with the  higher-than-expected reported incidence of: skin dis - orders (i.e. see Fig. 211); respiratory illnesses; asthma;  bronchitis; stomach cancer; liver and kidney tumours  and  disorders;  etc.;  together  with  any  associated  liti - gation, this has meant that such issues are taken very   seriously by all interested-parties. In fact, there is some  concern with the increasing usage of synthetic cutting  uids, in combination with the far higher cutting feeds  and speeds used today, which jointly increase the par - ticulate  count  in  the  workshop  atmosphere.  Bacteria  tend to be more pronounced in newly-developed u - ids, where it is exceedingly dicult to control growth  of both the microbes and bacteria, although it is pos - sible to manage and control the coolant mist emanat - ing from the machine tool 31 .  .. Cutting Fluid-Based Health Issues Skin Conditions It  is  generally  acknowledged  that  prolonged,  or  re- peated contact with MWF’s can cause a variety of skin  complaints:  dermatitis  (not  shown),  folliculitis,  skin  irritation; etc.; as illustrated in Fig. 211. us occupa - tional  dermatoses  is  a  general  term  used  to  describe  any  skin  abnormality,  or  aggravation  induced  by  the  working environment. While dermatitis is a more spe - cic skin condition, causing at the early stages: skin in - ammation/irritation; leading to eventual breakdown  and appearance of a skin cracking condition – when at  31  ‘Permissible exposure levels’ (PEL’s), in the USA and in par- ticular  the  Occupational  Safety  and  Health  Administration  (OSHA) Standard, previously (i.e. prior to 1999) said that mist control in the working environment had a maximum value of  0.5 mg m –3 , however aer 1999, OSHA brought this PEL down  to a tenth of the previous gure, specically to: 0.05 mg m–3  over an 8-hour period – and it can be achieved at relatively  small additional plant cost. In November 2001 OSHA, released  a document that recommended in its ‘Best Practices Manual’ the ‘way-forward’ in achieving this PEL. NB  Today, many automotive companies in particular, operate  at PEL’s well below this value – but being much closer to the  lower threshold value, typically having a PEL of: ≤ 0.05 mg m –3   over an 8-hour period. an acute stage. More specically, occupational derma- titis can be characterised still further, into: • Primary irritation – resulting from an immediate  skin contact with MWF’s, or shortly aerward, • Sensitisation  –  results  from  an  allergic  reaction  (i.e.  an  immune-system  response)  to  a  particular  uid/additive  substance.  Initial  uid  contact  may  not  in  the  rst  instance  cause  skin  irritation,  but  could initiate an exposure sensitivity build-up over  time.  us, once the  skin has become sensitised 32 ,  then  even  the  slightest  exposure  to  this  substance  results in a severe reaction, being not restricted to  the contact site on the body, • Photosensitisation – is virtually identical to that of  ‘sensitisation’ ,  except  that  the  presence  of  light  is  necessary to activate the sensitiser. Folliculitis (Fig. 211a) is a supercial irritation of the  hair follicles by oil, or foreign matter suspended in it,  plus secondary microbial sceptic infection. It normally  occurs on the backs of arms and forearms,  when the  basic  requirements  of  correct  washing  and  skin  hy - giene  are  neglected.  Remedial  medical  treatment  is  relatively  straightforward,  usually  clearing  up  aer  a  few days. Eczematous-type  rashes,  are  skin  inammation  arising from continued contact with soluble oil emul - sions, specically on the hands and forearms. e con - tinual and daily combination of wetting and alkalinity,  allied to mineral oil contact exposure. Makes the skin  macerated  and  can  develop  small,  eczematous  erup - tions, or dry, red patches, which may itch, but tend to  be  more  unsightly,  than  serious,  which  with  correct  medication, should clear up reasonably quickly. If, the  allergic reaction recurs, then this indicates continuing  sensitivity,  meaning  this  particular  worker  may  need  to be transferred to other duties – not involving con - tact with aqueous-based cutting uids. 32  ‘Allergic reactions’ ,  most  people  can  be  allergic  to  virtually  anything, but only 1% of the population get allergic reactions  to  MWF’s.  Although  many  other  factors  can  inuence  the  acuteness of the allergic reaction, such as: racial characteristics  – light complexion (e.g. redheads and blondes – due to  skin  pigmentation  have  higher  sensitivity  levels);  age  –  younger  people tend to get dermatitis more readily than older workers;  workers general good health/diet – this can build-up a toler- ance to allergic sensitivity; perspiration – can contribute to an  allergic reaction; plus many other contributory factors.  Chapter  . Disposal of Cutting Fluids Cutting uid disposal costs have been reported to be  as  high  as 22%  of the  total  cutting uid-related cost.  With  environmental  laws  in  Europe  and  in  particu - lar Germany, these laws have driven up uid-disposal  costs to >$1 per litre. With any coolant today, once it  has . to  obtain the dilution level. Such refractometers can be utilised to  obtain dilutions for a range of aqueous-based cutting uids. – – –  Chapter  Figure 209. Typical coolant extraction/reclamation units. Cutting Fluids  preventative measurement for water-mixed cutting uids.  ere . this  assistance is oen provided by the cutting uid manu - facturer’s laboratory service department. .. Monitoring, Maintenance and Testing of Cutting Fluid – in Use While in use the cutting uid is subject to various in- uences 

Ngày đăng: 05/08/2014, 21:20