1. Trang chủ
  2. » Luận Văn - Báo Cáo

Báo cáo toán học: "On some continuation problems which are closely related to the theory of operators in spaces $Pi_chi$. IV " pps

27 301 0
Tài liệu được quét OCR, nội dung có thể không chính xác

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 27
Dung lượng 1,06 MB

Nội dung

Trang 1

J OPER OR oo © Copyright by INCREST, 1985

ABTOMOP®U3MbI HHBEHRTMHBHHX ®ARTOPOB THHA III,

B.H FO7IO/HEH

BBBHEHH1

ƠNHỌï W8 LI€HTPA7IbHBIX 387A 5B reopuHn aJreÕp don Heiimana apuaerca 8/448 H3VW€HHN W OIHCAHHH BTOMODjHSMOB ajreốp HanpHMeP, KJIAaCGH- N@GOH8H 3DT0/HWGGHäH TODHH M3ÿ486T 8BTOMOPpHSMEI HpOGTpaHecrsa JleGera, MJIH BTOMOP(WHSMBI £OMMYTATMBHoH aareðpÐL don Heiimana B nocnequue TOMbI TOWYUCHI 8HAH4HT©JIbHBI© TIDOHBH?RGHHN B HSÿWEHHH H HJIACGHIỦHEBHHH ABTOMODŸMSMOB AHIDOECHMATHBHO HKOHGHHBIX (MHb€RTHBHBIX) àTeỐp (0H Heiimana [1], [2], [3] [saa daxropos runa Iu WI,, 0<A< 1, pacnagaw- muxca B ỐGGKOH€HHO€ T©H30DHOU HĐOH8B6IGHH© KOHGWHHIX (aKTODOB THIA I,,n <0co (agropos Apagn-Bynoa [4]) HalN€HO OHHGAHH© KJIACCOB BH€IIH€ COMPARCHHEIX ABTOMOPPH3MOB, XOTA /1ORA8AT©JIbGfBA NI Giydan III, He ny6umkOBaIuch ABTOMOP@U3MEL HHbCKTHBHEIX MakTopos tuna Il, msyua- IUCh MAIO, & Balata WSYFeHUA MHHBADHMAHTOB BHOUHIHGTO COHDH?ZMGHHH ABTO- MOPOH3MOB JIA TAKUX PakTOpoB He paccMaTpuBastace

Hacronnjan Crarba NOcBAIeHa U8y4YeHHO TAaKHX BOMpOCcoB, OHA ABIIA- eron epepaØorkoii namero npenpwnra [19]

Trang 2

4 8 1 PO2IO71EH

B [7] HORA38HO, WTO GYHI©OCTBYT R8HOHHWGCHHỦH TOMOMODÙHSM 8 — modf us AutW*(A,a,Z) B C(W), aAapy koroporo HDHHA/UI6?7RHT

Int W*(A, a, Z) (Int M ompeseeno s [1])

Tenepb MEI MO?ReM GÿODMY:THpOBATbB BOHIPOCBI, KOTOPBIS DACCMATPHBA- IOTCA B OTOH craTLe

1) aa neaxoro un ốc C(W(M)) cymecrayer ye AutM raKoii, aro mod y=: 6?

2) Ilyerm 6; € Aut M, i= 1,2 uw modf, = modf, == W(M), t #0 nam mod f, == mod £, = id p,(B,) = p, (Bs) = 0, rie p, (8) — acumurotugeckuil nepnog B [1] Caeyer -m orcioga, ro fp, u By BHeNTHE COIDĐH?R@HEL OTHOGITGIbHO Ấƒ, T.e Jye AutM u ue UCM), rae U(M)—vyunrapnaa rpynna M, ranue, aro

By == Adu-y-Bgry7? ?

(SameTiM, YO OTBET Hà HO7OOHBI BOIPOC HJI HHb€RTHBHOTO aKT0pa Ta TÍT,, O0 < 2 < |, /AGT THOHYH KCIACCH(ĐHEAHHI KJIAGGOB BH@IHHĐ GOIDR- JK£@HHHX 8BTOMODpH3MOB 6 p, = Ơ [2].)

3) Ilyers B;€ AutM, /-:l,2 uw JyeC(W), ragoii, ro mod, =: c= y-modf,-y7! Crenyer cm orcioga, ato ¡ H By BHOIHH€ GOHIDH?RHB oTHocHTembHO M, ecu p,(B;) == 0°

B uacroatteit crarbe /IAHBI OPBGTBI HA H€PBbI€ /1Bä BOIDPOG8 HZIH HpOHđ- HO.IbHBIX HHbOKRTHBHBHX (}aRTOPOB THUA I[I, Hm Ha Tperiii Bompoc — aA HPOM3BOJIBHBIX HHBCRTUBHELX daxtopos M tua Ill), y KoTOpHX HHBBAPHAHT T(M) = (1:6, € Int M1) #0 (cm [8])

Pemenne sonpoca 2) (cm §2), CBO/IHTCH K JoKasareibeTBy TOTO, f0 HIDOM OTOỐPp8/REHIN ƒ > modf? sapcinerca Int Ä

IÏepBEU BOHDpOC PGHIOH B H€€RO:IBRO ð0:160 OỐIHeii (bOpMe, em chopmy- JIHpOBAHO lĨy€rb [Z] — HOIHađØ TpYHHA ABTOMODŸjHSMOB Á, HODO?RKIHHaR 2 [6], a ![z] — ee Hopmadmaarop, re .#[z] = {y€ AutA : y|a]y~! = [a]} lÍonnrHo, dro 66 ye V[a], To y mwanynupyer y, € Aut W*(4,a, Z) B u.3 §1 oRaaaHo, wfo ;In ðe C(M) cymecrpyer y€.fT[e] TaROi, ro mod ? = 6 (em [19]) Bamerum, WTO /IDYTO€ ĐGIIGHI© ĐTOTO B8?RHOTO BOHpOGA vie Woctvaero B [21] (cm rTaRzge [22])

Bonpoo 3) paceMoTpeH ;ữ1 ĐaRTopOB ă ¢ T(M) #0 Ms orpeta ua oror BOlpoc cclenyeT, GTO BCHRHII ye AutAY 6© Pp,(y) =Ũ BHGIHIH€ compamen ¢ yy & Aut M, ipnseM (4) = 4 w | 6 #7[z] B [22] npusegeno nomnoe pemenne BOinpooa 3) n1 aBTOMODÙHaMOB H3 f [2] C HOMOHPbBIO peayabraros [22] MOsKHO JJaTb WOTHOe pettientre BoTIpoca 3) H ;18 @akTopow Tuna Hil, , yro noA- TOTABZHIHAGTGOWT ft IIYỐ/IHRAHHH

Kpome ppeyeHia cratba C0/16pZRHT TpH uaparpada B §I pacemarpn- BAlOTCA HOPMadAHZaTOpbi MO-THBIX TPVIIN 11 aCCONMMpPOBAHHELe NOTOKU, BI 3, § I nam onner na Bompoc I B §2 usyyarorca a € Aut M, y Koroprrx moda = W, nin fe R, B§3 pacemarpuBaiwtca asromophu3smEr daxtopos M c T(M) # 0

Trang 3

ABTOMOPĐH3MBI WHHbEHTHBHDIX ĐARTOPOB THHA ITI, 5

1 AIHPORCHMATHBHO KOHEYHDIE VPYIIibl THUA III, M WX HOPMAJIM3ATOPHI

4 llyorb Ớ — 04GTHÀ H€GHHTYZIHĐHAH TPYHHa HP€OỐPA80BAHHH TpO- erpaHcrna JleGera (X, B, uw) Uepes (G| o6osnagum nomHy10 rpynny Hpe€- oỐpasopanni (X, B,u), nopompenuyio G (cm [6]) Honnste aproquaecnue TpyEnm [ỚŒ] 1OHYGRKAIOT H/IAGCHÙHRABIIO, AH80THMHVIO TỌ, OT0DAH XOPpOIHO M8B©CTHA J1H (baRTopoB jon Heiimana B nazIbH6iiHIM MEI YHâM HpđHHO/IA- rarb, ro [Ớ] umeer rum IHI, [S] OnpenenM ypoiicrnennyio Gy rpynny IpeoØpaaosanuli nun rpynneri Ớ ([9], [10]), meitcrByroutyio Ha (Xx R, Bx B(R), dự x< du) c0TJraocHO (ĐODMYI

(1.1) #a(X, M) =: (ex, w ~E log HED ), (x, u)EeXXR

du(x)

llyerb Z — usmepumoe pasdnenne XxR [11], mopompenuoe Gy — MHB8DH8HTHBIMH H3MGDHMBIMH MHO?R©CTBAMH PaccMOTpHM Ha XXR HOTOK T(x, wy) = (x,u+s), (x,u)€ XX<R TaK KAR Tý HROMMWTHDVT © g,€ Gy, TO MO?RHO paccMoTperb (arrop-norox W,(G) na XxR/Z Torna M,G) — ne- CHHT'VJIIDHEI HaM€DHMbLđ ToToE [9], Ha3bIBA6MBIÍ IOTOROM, 8GC0I1HDOB8HHEIM c G Cornacno [6], 6074 Ở; — AIIĐOROHMATHBHO KOH©HHH© (A.K.) TDYHHHI npeoốpaaosnannk (X;,, 6) Tuna Ill,, TO Ớy HH G, cnado skBMBaNeHTHE TOTHA MW TOUKO norxa, Korna W{(G¡) u W(G,) usomopdutt

JIEMMA 1.1 Heau ae W[G], mo % onpeDeasem asmomopduasm moda npocmpancmsca Xy=XXR/F, npuren modae C(W(G)) (cw Beedenue } Omo6pascenue « > moda — zomomopGuss, nOpo Komopozo codepacum, no kpaũnecú atepe, [G]

JH HORA8ATGJIbOTBA /OCTATOHHO 8AMGTHTb, TO ©0GIH œ€.Ý[GŒ], TO a(x, u) = (ax, + logdu(x)/du(x)) npnHanezmnr V[G,] Ocranmbunie pac- OVHIĐHHf HIOHHTHEI C7IENGTBHB 1.1 Beau fe L°(XxR, wxm), 2em — mepa Te6eza na Ru du(gx) 1.2 + log -—2-~ | = fix, (1.2) ⁄ Bx, og aux) ) ƒ(x, m) mo F(x, u) = f(ax, u + log du(ax)/du(x)), 20e a € W[G], maxatce yOos.semsopacm ypasnenuio euda (1.2)

HanoMHHM, jlanee, uro corzacno [6] senRan IoHan a.R rpynna [G]

Trang 4

H©GIIDG-6 B H LOTO/EEH phipHad Mepa Ha X, v — o-KROHeuHAM Mepa Ha Y,o=pxXv~o' S.(x, ¥) = (x, S,), Q,(x, ¥) = (Qx, Uy), (13)

rye S—csodoquo /6ÏioTBVIOHIMH 9PTOHMd6OKHE aBToMOpÙHAM (Y, By, v), 00XPAHHIOIHHH v, Ứ, — H8M€pHmMO€ nozie asnroMOpQHawos (V, By, v) (cm [6], §2), npnseMw , e.Ÿ[S], gaa u.p xe X w ve U, = exp G(U,)v, a O — spro- JH4©CKHH H@CHHTVJIHPHBIÏ CBOỐOHHO AelicrByiomui apromophusm (X, By, pM)

S,,Q, mopompaiot [G], ao = uXv BEOpana TakuM OOpazoM, TO

> 0

We 2s (x,y) = OU, + log MY 5 5

1.4 =!

(1.4) p(x) = log aul)

Tenepb onmmem aGGOIHIHpOBBHHHII HOTOR W, /IH TPVHHEI (S,, Q,)- J[polierBeHHan rpynna Ớ, jelicrsyer B upocrpancrpe (QxR,oxm), a 0G0HHHPOBRHHELÍ HOTOKE B HOHHPO©TpaAHoTBS (2X, X??), HHBADHAHTHOM OTHOCHMTGJIBHO (Ởẹda, Š;d TAR RAR Š¿ GOXDAHHET M@DV, TO ,Š;4 — HHBADH- AHTHHIG (ÌYHKHHH YNOBJITBOPfHIOT YCsOBUIO

SOY, u) = f(x, S„, 10)

Ho S yeiicrsyer sproqugeckn B (Y, By, v), mostTomy G, — wHBapu- AHTHLIe PYHRUMI He 8aBUCAT OT Y WM YHOBIeTBOPAIOT YC.TOBINIO

(1.5) ƒ{Qx, u + @(3)) = ƒQ, n) Tenepbe s8 (XXR,# X7) pACCMOTPHM aBromopdu3m

(1.6) Q(x, u) = (Ox, ut y(x))

B cusuy yexosua (1.4) sto upeodpasopanue umeer run I, T.© pA8ÕI@HH€ XxXR Ha ero TpaexTopun usmepumo lÏycre Z(Œ,) — pasốueHHe XX< Ha TpaektTopun Q, , Torya PakTop-mpocrpancrso Xx R/.¥(Q,) us0mophHo woAMHO- mectBy X), co XXR Buna (x,Z)€ Xs;, ecnn 0 <u < g(Q-'x), Mepa py Ha q G€OHfữa/taer 6 OTpaHHnweHHew xi Ha Xạ lÍOHHTHO, HTO HOTOE 7,(x, £) = == (x,u +5), KOMMyTHpyiomnit c Q,, olpefenner moron W, Ha XX R/¥(Q,) (a aHagnT Wu Ha X,) CaegqoBateIbHO accolyupoBaHHblli noTOR WG) aBainerca CHEWMAABHBIM NOTOKOM G IOTOIONHOH PyHK Wel @(Q~!X) HH ỐA3HOHBIM aBTO- MopdmsMow @~1 [6]

Trang 5

ABTOMOPA1)MDI HUƯEERTHBHBIX GAIRTOPOB THA lHIạ 7

te [G] maxot, umo B = t-1x umeem suƠ

(1.7) BOX, y) = (x, VAY),

20e V, — usmepumoe nose asmomophusmoe (Y, By, v) [6], npuren Ve W[S] u

OV.) = 5 Onn noumu ecex x

Aoxazamenocmeo Ilycth moda = id, torga a onpefennet mpeodpaso- panne XX Y: (x, y) > (x(x, y), v(x, vy) Sametum, uTo @yHRuMH x, uy, WeaMe- PHI, 4@liGrBHT©ZIEHO, ©GJIM E — M8MPHMO© HOHNMHO/R©OTBO ÄÝ, TO H8M©DH- MOCT X„ BbIrekaer I8 ooorHoImeHmn {(x, y)€ XXY : x¿(x, y) 6€ E} = œ~1(EXxY) Tax Kak moda = idua ¥XR/S(Q,), TO AA Boex PyHKIMi M3 L°(XxR), YROBueTROpAION(Mx (1.5), BbUIOMHEHO paBeHcTEBO f(x,(x, y), ứ + Ủ„(x, »)) =f 4),

rne W(x, y) = log (do(a(x, y))/dø(x, y)) Ho Torna (x¿(x, y), # + Wax, y)) H (X, #)

IIPHH8716?&HT OHOïÏi rpaexropuu Q, (cm (1.6)), m.e x(x, y) = Q"%'x, n(x, y) € Z, (1.8) W(x, y) = Z(n, Y, X), n—1 Z(n, 9, x) = W 0(Q'x) npm n > 0 ¡=0

llyerp £ƒ — pasỐneHne XXÏŸ Ha MHO?R€CTBG £,,n EZ, Take, WTO JIDUH (X, y) E„, BBIHIONH€HO DpABEHOTBO x,(x,y) = Q*x ÏÏOHHTHO, WTO È„ — IIOIAĐHO Hellepecekaiommeca MHO?R€OTBA HỆ | }E, = XXY Paccmotpum

n

velepb MHomecTBa a&, u QFE B cusy (1.8) X — HocnTenm y Hux coB- IANAIOT, H3 HOGTDOSHHH G2I€HV€T, uTO mMHomecrBAa {vy : (x,y) EaE,} m {y 1 (x,y) € QZE,) HH HOWTH BCexX xX UMeIOT OHHAKROBWIO Mepy v Orcioma enenyet (cM semmy 4.2[6]), aro cymecrsyer s, € [S,] Takoli, wo 5,Q7E, = aE, Pacemotpum tTenepb mpeobpasopanue XxY BH7a

q9) f(x, y) = s,@s(x, y) mpm (x,y) € E,

Tak KHaR ÈF„ — HOHAĐHO He mepecerawrca mu | J]Z„,=XXxỲ, a TâAE?R SaOsE„ (=«E,) — nomapHo He Tepecekalorca u Js, Ore, = XxXY, To B curly 4ieMMEI J[am [12] ? e [G] Ho rorna £~1+ e [G] Ht, GOomee toro, BcIy (1.8) ? 1œ coxpaHneT Mepy o=yuxyv CJI@10BAT€IbHO, / lxe.f[S,]} a Tak Kar (t~ta)(x, y) == (x, yi(x, y)), TO tte = \ @ V,du(x), rne Vy — namMepumoe nome

x

Trang 6

§ B 4 1071071211

2 B stom uyHktTe Õ0:166 HOTADÕHO paccmorpumM nomHyio rpynuy [G] c GOpa3yiomuMy Biya (1.3) B Ip€7U10210?R€HU”H, 410 @(x) = @ (Const) (cm (1.4)) B orom exyyae Oygem ropoputb, WTO Aelicrpue Gua XXY aBaercs# ueprio- IHW€6GRMM

BO3HHR86T BOIPOC HH RARHX OIOBHHX TĐYHHA Ở MO?ZRGT UMeTb I€DHO0/I460RO© 716ÏiGTBH€., TB@T BBID3?EA6TCH B T©DMHHaAX HHBADHaAHTA 7(Œ) (HE HHaue, 7 — MHOZReerBa) 4n Œ |9]: T(G) comepamr Boe te R, y21H KOTODEIX 0VHISOTBV@T B@IHI©CTBGHHAf HSMDIHMANH (yHKHHH ¢(@) TARAH, WTO exp i(€(gw) — €(w)) = exp itlog(do(g@)/do(m)), g€G, roe (2,0) — npocrpaH- crso vledera, B KOTOpoM jeiicrsyer G IloHaATHO, WTO T(G) coBuaqaeT c mHBapnanrom HoHHa 7(M) [2], rae M — darrop suga M = W*(A, G), A == L*(Q, 0)

TEOPEMA 2.1 Hyems G — cuemnan epynna ve cuneyanpnoxe npeodpa- 80eanul npocmpaHemøa Jledeza (Q,0) Ecaw Te T(G), T #0, mo G uneem

nepuodureckoe Oeticmeue

Hoxazameavemeo Paccmorpum Mepy P na 2, nonomus dP(w) : =

=exp(—(w)/T)do(o), log (dP(gw)/dP(w))=! EN OE / a

°pC -c6@)J1)4966), *orna log(4/0)14760) s[ exp(—š(@)/7)_ dø(œ) 2nn(@) ;

=-—-—+*, mie n(a)€ Z CaeqopareabHo Mepa P ABOAeTCA ¿IARVHADHỌL H, Kak 1 B [6], MomHO onpegeanth QO, u S,, jelicrBylome Ha (Xx Y, ux v) npuywemM

XXY=Q, uxv = Pu dP(Q,@)/dP(@) = = n, neN,

dP(S,w)/dP(@) = 1

Ec:n Gy, — ,B0licrnenHaa rpynma qua G, To G, jelicrByer B Wpo- crpanctpe XXYXR c mepoti duxdvxe~"du, we R

llycTb Z — HONHHPOCTPAHCTBO, HOPO/ZRI€HHO€ H8M@ĐHMBIMH HO/UMHO- mecTBama XX YxR, HHBAPpHAHTHHMI OTHOOHT€IEHO G,(Q,, Sy) Eccm fe LZ), to

T(x, wu =f(Ox, u+(22n/Tyn(x), xe X, ue R,

rae n(x) e Z (om (1.5)), n(x) > 0 B dacTHOGTH, ecam e,(x, u) = expiTnu, néZ, To e, € L*(Z)n L?(R)

IIlycts Tenepb p(t), t¢ R, — usmepumpii norok Ha S=XxYxXR, T©ÏiCTBVIOHIHHI ©OTJIAGHO dopMysie

p(Œ)(x, Vs 1) = (x, y, u + t),

Trang 7

ABTOMOPOM3MbI WHLBEKTHBHDIX MAKTOPOB THITA Ig >

== p(2n/T) Ha atoii anredpe rpynna p(t) copnayatonjan, ovesugquo, c p(t) HBJIHĐTCH H@ĐHOJHWGCROII c mepuopom 22/7, a nockombKy p(t) — 9pTO- awueckuit noToK Ha Z, ro p(t) — aproxuyecknit noroK na Z,, mocmequee: osHayaeT, uro L(Z,) ~ L™(R/(22/7T)Z)

llyerp Ï — rpynHa aBTOMOPÙM3MOB S, nopommenHaa G, u_ p(t) PaccMorpMuM waMepHMHH rpynnown SXxPƑ [lá] Mnozseerso S¿ = XxY x {0} HIBJII©TGH, O4@BHJ[HO ©TO HOJIHBIM JIARVH8DHBIM OH€THBIM G©@W€HIHM (GM OHIPG eeHHe 2.1 [14]) Tax KaH Ha Š; I1©ÏOTBV€T AHIPOROHMATHBHO KROH€WHAHẳ rpynna G(S,,Q,), To SXIF TAR?R© HIPORCHMATHBHO KOH€HHHII TDYHHOHJL (cm ompey 6.1 w reop 5.3 [14]) nonoốen rpynnonTy SạxŒ

C HDYTỌ GTOĐOHBI, HOHTH RA?£1Ọ TOWR© Z € Z¡ OTB@WA@T H8M€@DHMAH Ò0/i0dEA S, opouret rpynmpr ©, nopompennolt G, u p(2n/T) B cuny paccym7eHuil, HHB€JICHHBIX BBII©, S, Take ABSIAeTCA T0JIHBIM JIAEY- HADPHBIM OH4ƠGTHBIM O@W€HHM JIA rpyntouga Sx, nosromy Sxl TâHRe 1010ðeH Š.X<Ƒ; Ho rDynna Ï;¡ Ha S, wMeer mepwoggeckoe jeiicrsue, Tar Kak G, coxpanaer M€DY, Ø(2m/T7) /I@loTBV6T 3DTOTHUGGRM Hà 8JT@ỐPp€ H3MG- DHMBIX HO/MHO?/KROCTB, HHBADHAHTHBIK OTHOCHTeAbHO G, H YMHOMAeT Mepy H, Ha S, Ha e~*7/T, npuyem p(2x/T) € W[G,)

ƠGTaA7I0Gb 38M@THTE, W†O IOCKOJIERY TDVNHOIHJI SạXỚ H S,X TT) H0TOỐHM,

TO HX 8000HHHĐOBAHHBI6 IHOTORI H30MOĐÙHH 2

IHIPE7UIO?RKEHHE 2.2 Hyeme W, — cnetuasonoii nomorn © Ốđ8HCHbiat asmomoppu3zmMom Q-! u nomosounok Gynnyuett p(x) = @ Ecau % — Gopenes-

ckul, acmomoppusm npocmpancmea (Xy, Mo), 20 Xo = {(x, u) | x€X, 0<u<ø0},

a duty = duxdu, rommymupynoumuii cW, mo % umeem eud %g(x, w) = (ax, u + p),

2de a € Aut(X, nw), eO = Ox, p = Const

(IHoxoốnoe yTrBep;£eHne ZoKazaHo B [21], cm raxme [19].) Hoxazsamessemeo Hanomuum, ato

W(x, vw) = (O-"x, u + t — Zn, @))

IIM Z1, @) — w S † < Z{n + Ì, 0) — u, rđ1e Z(n, ø) = @(Q~1x) + + 0(Q~"xỳ (quan 2 0) Noaromy ecau

(2.1) a(x, u) = (x',u,), O< U<@, TO TOCKONBKY W% = aW,

Trang 8

10 5B Ø, TO¿ZIOƑTEITI

Oreclo/a € HOMOHIBIO AHA7IOPHMHBIX paccyz:xeHnili MO?RHO IIOKA8ATb, HTO

(2.2) %(Q~"x, 0) = (Q—"x',u), ne Z

djatee, Tak Kak 2, — ỐOD@/I€RGERHI @BTOMOpẰH3M (Xạ, Hạ), TO MHO- 7R©GTBO (X/,x) (=4%(x,u)), roe x eX, ecrb Gopexepckoe HO/TMHO?R€CTBO Ð Xọ Boxee roro, cayuaii %(x,,0) = (x', ứụ), %g(Xs, Ư) — (X”, ve), THE ty F Ue uw O<4,< 9, UWcKMOUeH, HOGRKOIbRV (x’, v2) = Wu, —u(', u,), @& 3HAYUT (x;, 0) = %ạ "W4, —u đo (x,,0) = (41,4 — 4) HỆ Xị =Agz, =y, Ho Torxa X” — 1z ĐCTb ÕOD@zIEBGRAR (JVHRIHIIT, a BBHTAY (2.2), yHHTBIBAR 9ÐTOTNHNWHOCTb

Ĩ, MO?RHO C716/IATb BBIBOI 0 TOẠI, WTO „ =: p (Const), Ư < p < ø

Pacemorpiim Tenepb asromopdusm ƒ = W „xạ Jlerko BH/I6Tb, WTO B(x, u) = (x0), re x” onpeneneren Tak se, Kak H B (2.1) Ho rorya x—>x' == a(x) ecth aBromop®@usm (X,), KOTOpHH BBHNY (2.2) HOMMY-

THpV€T 6 Ở A

TEOPEMA 2.3 Iyems G yOosrembopsem ycnosuas 1emuot 1.2 u, Goce mozo, G umeem nepuoduueckoe Oeticmeue Ecau xe N[G], mo cywyecmeyem té[G] maxott, ymo B = t-1a w.ueem eud

(2.3) B(x, ¥) = (&x, Wy),

2de % — acmomoppuan (X, 2), 2O =Q2, a M„ — UIMCPUMOE NOI G6H10- u0p(uamoe (Y, By,v), npuuen Wye.W[S] 019 noumu ecer x u O(W,) =

= p — log(du(&x)/du(x)), 20e p — Const

SAMEYAHUE 2.4 Ilverh S — aprognaeckiii apromoppusm (Y, By, v), CcOxXpaHAlMii o-RoWeINyIO Mepy v (rpynua Tuma II ) Torga W[S] e046PZRHT O;IHOIADAMGTDPHHGCHRYIO HellpepbIBHy!O Tpynumy aBromopdusmos p(t), te R, TaRKy© ro p(t,)p(t.) = p(t, + t2) m v-p(t) = e'v I[pumep TpYHHBL © TARHATI CHỌOTBAMH MO/RHO HOGTDOHTb C/I6AYIOUHIIMI OỐpA80M lÏycTme G rpynua Tunø lHÏị, a Ớa — 7BolicrBeHHan Tpynna (cm (1.1)), torga G, 0Ố:18/1A6T H?RHHIMH CBOIIOTBAMH ÏÏOHRTHO, WTO Ớ, I€ÏÏCTBY€T ĐDTOTHMĐGEIH, GOXPAHRET Mepy dw(œ, +) = e”“du(œ)du ma Y =(@x<R lĨoTroK OHD€NGIHM COTZIAGHO gopmyue p(s\(@, u) = (w,u — s), torga p(s), se R, u Gy, KommMytTupynr

Horasameascmeo meope.we 2.3 Hapagy c rpynnoli G = (S,, Q,) pacemo- tpum rpynuy G’ = (S;, Q,), Koropad welicrayer B upocrpancrse (Xx Y’, nx v’),

Tae (Y’, v’) — Takoe we, Kak I B 8aM@waHum 2.4, a (X, ), KAK H ÿ TPYHNMI Ớ

Sex, y) = (x, Sy),

Trang 9

ABTOMOPG@HOMbI HHBbERTHBHBIX (ĐARTOPOB THHA HH 11

rne Ủy = ø(®(U,)), p(s) — aproMopjwaM n3 f[SŠ], pAaOGMOTp€HHHH B 3aMme- waHHH 2.4, a &(U,) = @ — log(du(Qx)/du(x)) [lonnrHo, aro y G’ acconuupo- BAHHEBLH notroK W(G’) HM@ĐT B KAWECTB© HOTO/IOHHỌ (YHEKHHHM @(X) = @, a B taqeGrBe ỐasancHorO aBToMop(HaMa Œ, T.e W(GŒ') = W(G) Ho rorna B cuny peayabTarop [6] rDYHHBI G u G’ cua6o skBuBaneHTHE Tlosromy 6e3 orpa- HUYeHHA BE OỐHIHOOTH MO?RHO HD€HHO2IO#Tb, uro U, = p(®(U,))

Ilyerh tenepp œ„€.f[Œ], Torna moda, — asromopdusm (Ấp; Hạ), KOoMMyTupylommi c WG) B cuny upeqnonomenun 2.2 (moda,)(x, u) = = (ax, u-+ p), re x — apromopd@usm (X, 4), KomMyTupyromuit c QO Tlonomuu

(2.4) B(x, y) = (ax, p(p — log (du(ex)/du(x))y)

B cusy cxBolicrs p(s) (cm sameyanue) Ø,€.#T[S] lloKazreM, aro

0,8, == P,Q„ Jleiicrsurenbuo, Tak Kak

du(Qax) du(ax)

fy) cs 1X, — log —=— — log ——— ?

(Ø;8,⁄x ») (ox o(o — oe u(x) Jp (? _ |

du(aQx) du(Qx)

x,y) = [aOx, pl p — log HE? — tog SHE),

(BQ, \X; y) (so: "|? og đo Mị» og uo )>}

TO B CHIY CBOHCTB HĐOH3BOHHBIX PAHOHA paste HAGTH aTux paBeHCTB ©oBna/taor, T.e O,8, = 8,Q, Ho torga „€.#f[S] m y„ = „6z°c ÝTG), upu4em mod y, = 1d C2I61OBAT@JIbHO, a, = ÿ„„ DB cwzry zIeMMBI 1.2 CyHIeCT- Byer /€[Ớ], raRoli, ro (~'y,)(x, y) = (x, Ứ¿ÿ), rne OV.) =0, Ho ToTHA t-ta, == (t~1y,)-B, BBMJAV (2.4) đ6JIA6M BBIBOIT O GIĐAB€7IHBOGTH (2.3) ZY

3 I[pu qonasaresperse 2.3 ỐEIIO HOKA88HO, B HACTHOCTH, ITO BCHKOMY aBTOMOpwaMYV « us C(W), rue M⁄, — GH@IIHAJIbHEUÍ HOTOR c mocToAHHOit

TIOT07104H0lf ÿHRIINGII, OTBeqaeT aBTOMOD(HäM a, € W[G] taxol, aro moda, =a, rye G — rpynma, WA KoTopoli W apuaerca CGOHHHDOBS8HHEIM HOTOROM dloxaskem sToTr pesyubtaT B oOmjeM Cary4ae

TEOPEMA 3.1 Hycmb (Xq, tig) — npocmpancmeo, ¢ Komopom Oeticmeyem cheyuatonei nomor WG), accouuuposanneiii c epynnoli G, asmomoppuanoe npocmpancmea Jlebeza, a « — acmomoppuas (Xp, to) us CCW), v.€

3.1) aoW,= Wa, teR

To20a cywecmeyem ở e [G] mawoă, wmo mod & => a

Trang 10

12 B A POCTIOEIE

cRpeMmeHHes npouscedenues A = L°(XxY,uxv) na epynny G = (S,, Qg} (cst (1.3)) Toeda cywecmeyem % € Aut M maxot, umo mod % = &

(20 Hp/LI07R€HH© 7OKazaHO copmectHo c C WM BeayT:IHM.)

Aoxazameavemeo HanomHun, 470 X, ects {(x, ä) |x € X, 0 < ứ < ø(Q~1x)}, djto(x, u) =: du(x)du Paccmorpum nwa X, mepy &:

(3.1) dk(x, u) == e~*du(x) du, a B WpocrpanctBe (X)xY,kxXv) paccmoTpumM rpyniry

Sex, u 9) = (eu SY),

roe S — oproqnuecniii asromop@usm (Y, ¥), COXDAHHHIHHH o-KOHeUHYyIO Mepy v (Kak 1B (1.3)), npuuem Oynem npep~Noaarats, uro (Y, v) H S onpexe- JIĐHEI TAK ?©, RAR II B 3AM©SaHRHH 2.4

llyorb U, = ø(®(Ú,)), rne ø onpeneeno s8 3aMewuanmn 2.4, Ú, w„ ®(Ữ,) — rakiie ae, kak u B (1.3) Torga U, ROMMVTHDVIOT M€ZRHV GOƠỌ 71H H.B x € X Jlossromum Z0, U-, x) = J, Z,U-',x)= ][U `, Z(1LU-'x)= Ivu, i>i>o Ø9 x i>iza Ox Torga yaa / > 0 1 _ (3.2) %(Z(, U~1, x)) = Zl, UY), == %(0.~¡ ), inl *

aH82I0THWHO onpesennetca O(Z(/, U-}, x)) gaa 1] < 0

Trang 11

.ABTOMOPЮII3MbI HHbERTHBHDBIX PAKTOPOB THITA Hy 13

B cuny Takoro onpefesenua V, moroK Wit) € W[S] ana te R, Gonee TOrO, Wt)S = SW(t), te R Haureli yesbw ỐVR€T pACHIIDGHH€ ở WO ABTO- Moppusma a, wpocrpancrBa (X)xY,kxXv) raKoro, WTO a, W(t) = W(t)a, " a, € V[S] Iponenaem BGHOMOTATGIIbHBI BBIHHGJICHHRH

W(t)—1d(k Xv) dk x v)(W (x, u), Vix + Oy)

d(k xv) 4

Trang 12

14 8 H TO:I0:1EHN 1102IVHHM 07I81Vÿ1OII@6 OOOTHOIIIEHH€ O(V(x', uw +1) — V(x, u + 0) = dW, tk t — log (a(x, u)) + 1+ tog 24 & wy =—t— »u)) + t + log —~—— (x, u) = dk dư~1W 1xk qdW1k = log (x, wu) — log —~— (a(x, u)) = dW tk dak = log dk (WG, u)) + log — 2 — (ate, u)) + dx~1* dW 1k -++ log —-— 8 (x, (x, u) ~ lo 1) se (a(x, a(x, u)) = u)) lk 1ÿ =log- 5 ` @) — log —* (wx wp dk Takum odpasom, ecan O0Õ08HAWHTb ~Ik ⁄œ, 1) = log- da (x, uv), T0 (3.5) %(V(', uw + ?)) — OV G,u + 2) = fy, 8) — ƒ(W,(x, 0)) ]ÏQ110zWHM renepb B COOTBETCTBHM € 3amMeqanitem 2.4 (3.6) Pox —= p(—ƒ(x, 8)) Torna (x„ € ˆ [S] i (3.7) Pw cx V(x, u + OPE == VỆ, t),

rye (x’,u’) «= a(x, u) JleiicrsurerpbHo, nockoapRy V(x, u): > ZU(x, u), U-4, x),

a U, =» p(®(U,)), to V(x, u) = p(ZU, u), (Uz), x)) = p(P(V(x, u))) Oveiona,

yuureran (3.5) u (3.6), Baroy (3.7) Ho roraza

(3.8) x(x, H, y) = (a(x, 1), Pœ?)

Trang 13

AHTOAOIPG®113A1BI 1IHUbBEHTHBHBIX MAKTOPOB THIEA IL, 15

(bartopa M ’ KoTopsili ABJIACTCH CKPeUICHHEIM WpousBesenHuem L*(X)x Y, kx v) na S, a satem Ha W(t), te R

Ilyctb — œKpemeHHoe npowsBexeHne L™(Xy)xY, kX v) Ha S, TOr1na N — Il,,-aure6pa, ee cueyq 0Ø0gHaqunM wepe3 r lĨoTOR W(t), tŒR, HHHy- 1npyer rpynny 0), £e R, àroMopjaMoB W, npHweM 8 ©HJ1Y (3.4) r - Ø(f) = e7't, 0JI910BAT©7IbHO, 718 M=Ww *(N, 0, R) MBI HMeeM H€IP€PEIBHOG pa3smomenne \looromy raaqKuii noroK Becos yaa M copnagaer c W(t) (cm ra IL memma 1.4 [7])

Ma nocrpoeHHH Đ cienyer, aro N — aHHPĐOKCHMATHBHO KOH€HHAR

ˆ

(uum unpbenTuBHad [13]) anreOpa Tuna IT Ho rorga M Traxme HHb€RTHBHHH MakvTop, WOCKONbRY OH ABUIACTCA CKPeleHHLIM mpousBegeHuem N Ha amena-

^

ỐØenemnyo rpynmy ero asnroMopwawos R [13] Ho rorna M ~ M, tax KâR VY HUX HOTORH B©OOB I80MOPÿHBL ( (cm [5], [6]), TaRHM o6pasom, BCAKOMYy

a € C(W) orpeyaer & € Aut M Z

Horxazameavcméeo meopeme 3.1 ipemye Bcero 3ametum, uro B cusy (3.4)

a

pas6uenue mpocrpancrna (X,XY,kxv) wa opbuTe W(t), te R, usmepumo Jleitcrsureabno, paccmorpum W(1) Torna pBBHxy (3.4) cormacHo aemme /lan (cm xemmy 8.8 [15]) pas6uenue (X)x Y,4x v) Ha Tpaextopun Wl) 18M6GDMMO QỐốoaHawIM 83P0 pA3ÕỐHeHwe 4©p©3 Z¡ H pA©€GMOTPHM Hã (AKT0D-HĐOGTDAHGTB© X)xXY/F, woTok Wit), te R Tak Kak Wil) Ha XạXY /Z¡ HBJIHGTCH TO?RH@GT-

A

BGHHEIM IpeoOpasoBaHnem, TO W(t) Ha XoXY | HBIIHĐTGH H€PHOJTHH6GRHM IIOTOROM 6 IepHoTOM paBHBIM 1 Ho rorna Ha XạXY/Z¡ GVII@CTBV6T MHHBA-

^ aA

puauTHaAd Mepa orHocuTenpHO W(t),0 <t < lu W onpenenaer ofHonapame- ĐPHW€CKVIO CHJIEHO HelpepbipHylo TlepnHogquyeckylo TĐYHHV VHHTAPHBIX OI©€PATOPOB 0G AMCKpeTHHIM cneKTpoM TCIOJIA MO?RKHO 8AKJHOHHTb, WTO

A

pas6ueHue mpocrpancrsa X,xY/%, na opouTn W(t), O< 4 <1, usmepumo llonatHO, ITO pasBueHne % = %,v.¥%, IPOCTPAHCTBA XạX Ý TAE?R© H3M€DHMO H 2TO DA8ỐH©HH© 00BHA/TA6T ©€ DA8ÕII€HH©M Ha TDA6ETODHH FIOTORA Wit), te R Ilycrn Q= X)X¥/¥ M ơ — Mepa Ha 2, HH/VHIHDOBAHHaAR &X v, TOPHA (XaxY, kx v) = (2x, dơxe~*du) (cm [16]) 11 W(t) đ©elcTByeT Ha (œ, ) @ < R cormacHo (ÙOPMVZI€

Wo, u) = (@,u + 0)

Trang 14

16 B f1, TOZI107Ið

‘yorga ss — ABTOMODÙHäM (2, R), TOZ:1€CTBEHHO JelicrByiomyii Ha @ m ROMMYTHPY ION © Wit) Ho torga Sos = Tow) , THE T,(@, u) == (@,u + g(o)), -8 @ —- H3M6@JIMAH (byHtItH Hà ©, T.G So, wu) = (S0, tr @(G)) Ản8z10ptrqHOG, #, 0IP@/IG:THHEIÌT GOrzIaCHO (3.8) umeer Bi 8(@, uv) = (0,0, u -+- W(@)), rae a, —: aBToMoppusm @, upnuem 2, € A[S,], nockoabKy ae ATS] i & Wit) Wt ye, teR,

TÍDHBGH@HHbIS DAGGV?E/16HHH TIOK88BIBAIOT, 470 5, ne Z, ABUIAETCH jIBoli- ‘CTREHHOH rpyunoli (om nm 1) aa S?,n e€ Z, a notoK W(t) accoymuposan c SY, 'õo.1ee 'roro, quia « € C(W) cyulectByer apTomopdusM a, , Upocrpancrpa Q, rye Aelicrnyer S,, upnuem a, e M[S,] 1 moda, = «a ZB 2 HECROLIBRO TEOPEM O CHUEILLASIBHOTO BHA ABTOMOP®H3BMAX

HHEEERTHBHBIX ®AXHRTOPOB THIIA ITI,

llycTbÕ Äƒ — HHbeRTHBHMI (arroD trina lil, W, — ruayeuii moroK

Becos ana M Bia 1, 2 paccMaTpHBAIOT€R #, 8 € Aut M, y ROTOPEBIX mods =: ==modf = W,, te R, w /IORA3BIBA©TGH, WTO TâRH© 8BTOMOD(H3MBI BHeIIHe ‘CONPAAREHBL (ecu ƒ = Ơ, TO npennoziaraeren, 4To p,(@) = p,(B) =: 9) Bu.s nsyyaiorca «@ e€ Aut M taxne, uvo a(M,)-= ÂM, 7GIH H@ROTOPOTO clakyHapHoro Beca @ Ha M,

{ lÍaqHe@M © HOR88aT€¿Ibcrna

TEOPEMA 1.1 HỤecmb ME — unoexniucneii parmop muna IIl,,% € Aut M a moda: -id, mozda a € Int M °

(Kak OTMGTHGIE DEH€HSEHT, 0T0T P€3V¿IbTrar aHOHCHpOBAH B [20], qoRa- ‘BATEIBCTBO IIỸ/HIRY€TCØ BIIĐDBBI©.)

jJfơkbdaiaimebcmeo B cnry 1V.1.10 [7] na M cyutectryer tT Hopm erporo 11071ÿROHGHNBI JIARVHADHDHÏI BĐO My TAKOH, ITO Py % = Oy Ẩm := 1đ, TJI@ Zo, — WenTp Mo,» aag-= Adir-ứ JỤNH HeRoroporo € U(Mf) /Íazree, connacHo neopeMe 1.5 [17] @YH(eCTBV€T I0O8HTPHBHBBH & € Z, , WA KOTOPOLO @(+) == Po(k-) ABILAeTCH Q -~ IOYTH-IlepHOANGeCKUM TOUHLIM HODMAIbHBM CTPOTO M0-1Y- konequpm Becom ua M Tan kak My © M,, 10 Z, = Mạn MẶc Mỹ nM ~ Z4 (cm Teopemy 1.5 [17]), a UIOCEOIbBRV Á€ Z4 H a(k) =k, To

n

ˆ '

(LT) @-ä =: @(kĐ(-)) = ø, iz, = id

HGCHOZIb8OBB8BHIHCB T€HGB TOẠIH ?R{Ơ 000ÕĐ9/7R0HHHMI, GTO H IPH HNOR888TCHb- no TeODGMEL [Í.,Í [5] MO?RHO HOCTDOITTBE BOSDAGTAIOILVIO TIO071610B8T€7IĐHOCTE ieliwanoBCcEnX nonanreốp J⁄, c M tuna J co cBoiiernamn: (J M,)” = M;

Trang 15

AB TOMOTPGIE3MBE THƯPENTHDBHNHDIX DPATTOPOB TITILA Hip 17

0Vm©einHe @ Ha AM, TO/IYROH€HHO; Â, — Ø”°,/€ R, HHBADHAHTHA, k€N; ec1n N= (Mi),, 1O T@HTP Ấy, COBHAjqAST © 24, (U Ny" = My; WIA BCHKOTO adberescro mpoerropa e € N, ¢ WeHTpadbHbmm woenteiem papubim Ï, @(e) < co; CVINCCTBYeT YeuOBNOe OMManHe E, wa Mua M,

llonanem, wro juris Besworo k € N cynecteyer VHHTAĐHEHI u,us M,, qa RoToporo &(x) = Adu,(x) mpu xe M, Ilyers Z, —nenrp M, , rorga Z, € Z2 lloisrno, aro B OM, GVH(G0TBV€T HOT AKETOP R, Tuma /, Takoli, ato R, u Z, moporjjaior M, HanomawmM, wro cornacHo wocrpoeHuio (em I] [5]) M, OŒTDb CHRDGII(CHHOO IIDOH3B6/(GHHI© N, Ha KOHETHYIO KOMMYTATMBHYIO rpynny r, asromopdusmor N, , elicreyroutylo cBobonHo Ha Z,, upnuem ecun u € U(M,) uAduwel,, vo of(u) = zifu, rye ze Z} (cm HoRagareabperso teop I] 1 [5]) lovromy 2, MOIHHO RBIOpaTh Tak, HTOỐBI ©TO MaTPIGNBIe €NHHUNB @;,, ijrol,2, , oOsayacim cBotictBamu: e;,€ N,,i==1,2, ,u ele;;)= P(e) <0; of(e,,;) = 27501; Tne z,,€ Zp ,i,/= 1,2, Ho rorya B cnay (1.1) 1€HTpA7ISHBI© HOCHTEIH @, HW &7"(e,,) BM, CoBmajaior Hu CYINeCTByeT YACTHUHAA WZOMeTPHA 1 n M, rakast, aro ww = ae) nw*w = e,, Een nomomnta u, = Sa-e wey;

j

ro uw, € U(M,) mu Adu,(x) = «"(x) ju xe R, Kpome toro, a74(z) = 2 = =Adu,(z) qn ze Z, Uvan, a(x) = Adu,(x) nan xe M, uw o-Adu, = @ Jloxarkem, wTro lim Aduj! = % OTHOGHT€IbHO Ø — TOHOZIOTHHI B Aut M

k

(cm [18]) llycrb 9ì = {x :x € ẤM, @(X*x) < CO}, TOFJA JHIH@ÏHBI© ROMỐHHAT (PYARTMOHATOB BUA W(x) = @(hxđ¿), rae h,c 9ì,/—=l,2,ax € ă HHIOTHEIB ÂÍ,, Kent £, yes1oproe omupanne BM ua M,,ahe, ro s-lim£,A = h Kpome

k›co

moro, naR kaK (E,h)*Eph < h*h, ro Eh e 9ìn My, woaromy saunetinsie ROMỐM-

HAIIHT (ÿHRIIOHAiIOB BHqNA /(x) = @(Nxổ;), re đ,ce9tn(J AM), a xe M K

1UI0THĐH B Aƒ, HO 7UIH KAHUIOTO TAROFO (YHEHIHOHA/IA4, BBH/[Y TOTO, WTO @-# =z @ 1L 0-Adw, cc @, KT, HỤIT NOCTATOHNHO O2BÐHHIX k uMeer mecTo TIABEHCTBO yar) = pla“ Ay )va he) =: (Ad u,(4,)vAd 1, (tg) =: = WiAdug(x), xe M Orciona crenyer, aro lim Adu? = « Bp — TOHO/I0PTHH B Aut M Z k

C.TENGTBHE 41.2 Zyeme M — maxoti sice, ra ue meopene, 0; € Aut M, j- 1,2, mod0,; = id wu p,(9;) = 0, mozda cymecmeyem a € Int M, 022 Komopoeo @, Adu-o+0,-071, 20€ we UM) Eeaw owe p0;))>0 u p,(0,) = p.@,),

062 id, mo 0 u 0, conpsarcerse

C2I0/I0TBIG BEiTekaer H3 TeopemnI 1.1 n reopeMEIl 2 [1]

Trang 16

18 B ữ TOzIO/EH 2 llepeiiyem k paccmoTpenmw x € Aut M, y Koropsix moda = W,, rt # 0, roe W, — raaaqKuii noToK sBecos xqan M [7]

tIEMMA 2.1 ITyems M — maxoii oe, ran u npeocde, ecru x € Aut M, moda =: W,, t #0, mo p,(x) = 0

Aorazamenecmeo Ilycth p,(2) =m > 0, rorga a” € Ct M [1], Ho coraacHo [2], ctp 467, CtM = Rangedy Ilosromy mod a” = id, t.e W,,, = id 470 HCRJIOWGHO, TAK Kak HOTOR III,-akropa He ABIAeTCH H€PHOTIHG-

ckum [15] 2

TEOPEMA 2.2 ITyems M — unsexmuensiii giaxmop muna III, , 6;¢ Aut VW, ¡ = 1,2, mod; =: M,, ¡t # 0, moaÐa 0, w 05 enewHe conpsotcenr

Horazamercmeo Tak Kak M — daxrop Hpurepa, ro M@N ~ M, roe — HHb€KTHBHBHI (akgfop tuna I Ilyerh p(t) AutN ranoii, aro t-p(f)=e't, Te t — T.HOpM NoayKoHe4HEni cnoeq Ha N [lonatHo, aro id @ p(t) € Aut(M@N), p,(id@p(t)) = 0, mod (id@p(t)) = W,

PaccmorpumM asBromopdusmet », = 0; @ ø(—?) @ 0() € Aut(M @ W @ X) (= AutM) Torna @;@p(—t) € Aut(M@N) (=AutM) u mod(@;@p(—d) = id, B city Teopemst 1.1 0;@p(—‘)e€ IntM Jlanee vax, Kaw p,(o(—?)) == 0 To p,(0,®@p(—t)) =0, Ho Torga no Teopeme 2.3.1 [1] y; BHelniHe coupAKeH id@id@p(t) C XpyTOH C€TOPOHEHI, AHAJIOPHHHEIS DAGOY?RIEHHH IIORA8BIBRKRT, MTO ?; BH€IHIH€ COHĐHN?ReH Ø,@id@Id (a 3HaWnr H Ø,) C:I1€10BATGIbHO, Ø,,

j=: 1,2, puemHe conpamenst %

Trang 17

6OIDHZRGH-ABTOMOP®H8SMBI HHDERTHBHBIX (®ĐARTOPOB THHA Til 19

HBIX ABTOMOD(ĐM8MOB 7718 ă GOBH8/86T G 3 llookozregy M*(R;, >)@ W*(R;, Ð) ~ ~M*(Đ¿, Y), TO MOX:HO /UIH EJIACGOB BH€HIH© GOHDH?Z4GHHBIX 8BTOMOPÙH8MOB OIID©H©JIHITĐ VMHO?R€HH© B COOTBETCTBUM CO ©JI6XVIOHIHM VMHO?R€HH©M GơMHX aBTromopusmos: ecau a, Be AutM, tro z@ec AutAƒ@M (SAut22) Ecan moda = id, p,(@#@) = 0, ro «@f BHeHmmHe conmpaxken f (B cumy teopemp 1.1 u TeopeMEI 2.3.1 [1]) C2I@1OBAT©JIbHO, KJIAGG TARHX aBTOMOPH8MOB 2, OOpasyer €QMHULY OTHOCHTeIBHO BBeeHHOrO yMHomenUA Jlamne, ecm ở, 8€ Aut M u mod # == mod 8~', ro mod(#@f) = id u a@P € Int M@M (v.c c@P upunanze- ?HMT GJIIHHWNHOMY K¿IaOOV) Arak, orHocuTebHO BREeHHOTO YMHOMKCHMA MHO- *KECTBO KJLACCOB BHGHIH€ COMP AKCHHBLX ABTOMOppu3sM0B M=W*(R,, 2) c p,(@)=0 TIDEBDAHIA©TGH 5 TpYHNHY, 30MODÙHY1O 3, 1 # = mod 00ÿHIĐCTBJIHGT 8TOT W30- MOpjQH3M OỐIHMÌ CJIydWAÌ MOZi@T ỐBITb DACCMOTP€H AHA/I0PHMHO

3 Ilycrs M — mwbeRrwbHbrii Đagrop rana IIlạ Corxacno [5]jaRrop M wsoMopen jagrony W(A, s, Z7), rxe 4 = L®(0,ø), a (@, ø) — TIp00TpAHGTBO d[eOera, œ — GBOỐOHHO ;I©OTBVIOIHHH 2pP0/MW©CKHH apromoppusm (Q, 0) Cuenys [6] npocrpaHorBo (,ø) MO?RHO HDG@JIGTABHTb B BHne (XXY,iX V), T]H€ /¿X V ~ Ø, a B HOJIHOïi rpynue [«] BEOpaTh odpasyiomme (S,,Q,), Helicr- Bylomme cormacuo (1.3) § 1 O6parHo, ecam 3ananE(S,, O,), TO MOAHO NOCTPOUTS asreOpy N= W*(A, S,,Z), tuna IT, rge A = LO(X XY, eX v), aBaTreM NOCKOIbKY Q,€ V[S,], ro QO, O0Ip6/GIđ6T 8BTOMODÙHSM N, a O7IHOBATGJIbHO MO?KHO

IOCTDOHTE (baRTOD M = W*(N, QO, , Z) [loHnrno, wro M ~ M, vak Kak TIOTORN Becos (cm [5], [6]) gua Mu M cosnanaior

Bec p ua M, KOTODBIf MWHyIMpyerca Mepolt wxXv Ha XXY aABuAeTCA WakyHapHpim, ak KaK B cusmy (1.4) §1 Sp(log4,)n[—5, 6] = 0, rge 4, — Mo- HÿJHPHHHH 0116parop 71H M , 0TB6WAIOIHHH Beoy p OOparHo, B cuy pesyib- ratos 5.2 [8] u padorst [6] qua BCHKOrTO MakyHapHoro Beca p Ha M MO?RHO CHHTATb, aro M umeer GTDVRTYDY M, Torma N= M, ˆ

J[H yjanbHelitero momesHo samerurn, wro ecumn Z(N) ~ L°(X, H), Ay = L°(Y,v), a N= W(A,, S, Z), To =Z()đN, \T.â ĐJICM©HTAMH n © N CILyKAaT USMEPUMELe OlleparopHute Mota x > n(x), CO 8Haq6HHRMH B aKrope N JIEMMA 3.1 Hycmp « € Aut M, moda =- W,(M), p € R, u a(N) =N, moz0a cywmecmeyem t € Int N maxoti, umo cyscenue B = t-te na Z(N), yeump N, mpusu- đUbH0, T.© ỞÌ xu = 1d, 4w PỈạ = \e V.du(x), 20e x > V, — uamepumoe none

x '

asmomoppiussoe na X co snauenunmu ¢ Aut N, 2de N= W*(Ay, S,Z), npures ecan moda = W,, mo OV.) =p daa ng XEX

Hokasameascmeo Vlonomum ama upocrorn, wo mode = id Tak Kak,

^ bì Aw A

Trang 18

20 LB AL PO/TO.IEH ce Ha N, a£s — ye1opHoe 02RH/AHH© M na N flostoeary p(xÚn)):= pm), rae m € ẤT, A đ —- TO3ITHBHBIHI ÕDATHAMEHÍ OHEDATOP, HPHCO€/HH€HHBHI Kk Z(Đ) C;1e1oBaTe.TbHO, (Dp-# : Dp), = đ

lÏЩ7102107RHM, WTO M Nelictpyer »& upocrpanctse Hf 3 rưibỗđep- ToBOM lpocrpancrze L°(R, H), snekTop-ynHIuii € == (€(7)) Ha R co 3nage- HHữMU B ÏŸ paẴ€CMOTDHIAM asedpy M, Tutia I, , TYacIbHVIO k M, KOTOPAH HODOz-

ena onepatopamu (em [415]): ; (XMM) = of (EN x EM, (22) := éŒ — s) t,5ER Torga 2 € Aut paciinpAeTcH FO 44 ¢€ Aut My: aa(m(x)) = a(x(x)) WA ve M ag(4,) = HZ 8 ER

\lyern K ROMMYTATILBHAA Woyadredpa M, „II0D07RTOHHäH 01I6)aToDaMH ZÊY), re xe ZN) I/,.s€R Anrẽpa K MozxeT 0BITb pea:zIH30bBana RaR /®(XxR, 421), Ip)H46M eC21L @(X, 0) 6 (XS R, 1 X00) 1 VJIOBRZIETBODR©T VeloBnnM (1.2) To n(pye Z(M,) la OID€/I6GHHW %y, €/I6/W€T, WTO ag(K) = K Teuepb §1, mockOcIbRY +4(n(Z(Đ)))= : r(s(Œt N))) = - (Z(N)), TO, TIPUMeHHH Te aie CO- OOpakeHuA, Kak MW Upli POKABATeIBCTBE ;IâATMDL 1.2 Đẽ, HOZIYHHM, MTO

ˆ

cymectrByer / € Int ă, ;IH ROTODOTO t7lz za id fq

IPEZVIO/RBHIIE 3.2 /emb epWnna G = (S,, Q_)u meen no rung 9éemeone Ha (XXY,Hx<v) llpeƠno.to2icuM, mo x€ Aut M, a(N) = Uu (mod a)(x u) - - (ax, p) 20e 4,0 == Ox, u p=: Const (ca nped 2.2 SH, To2da cyruecmeyem 6€ Tnt M makott, umo cyoicenne t~'x Ha Z(N) ~ 1 x 8 onpedeasem (01041000032 % na (X, 10) Rpome moeo, cyupecmeyent nasepiimoe node X —> VỆ UEMOMOPPUI.MO6 us Aut NV, npiuuew @(V2) == p —log (data, x) duty), umo een n= {r(x) € N, 20e n(x) € N O29 wa x EX, mo a(n): {VA Ny}

(cp.e meop 2.3 §1)

SAMEGAHIE 3.3 1) V2 — Í-ROHIR¿I ;I€HCTBHH 2, Ha (X u) co Bnade- HHINHMI B Aut N

2) ŒaKT, HA/IOTHHHBI II€/IORGHHRB 3.2, CHPĐAB@/LINIB Oe3 wpe io- NOMCHNA O HI@PUIOTHWHOCTI nNGHCTBHN G = (S, Ĩ,) OH OCHOBAH Ha pesyebta- Tax [22] 1 goRasblBaeTCA TOUHO Take, Kak Il Wpequomenne 3.2

ˆ

Z[0N03@110.1bC100 Cor JIACHO Teopeme 2.3 §Ì cvmteerpver /@6€.fT{Ớ] ¢ mod B —= mod # =: (⁄;X, ứ 2) BH/1A

Trang 19

ABTOAIOPG®II3MBI HHbERTIBHBIX PAKTOPOB THOA TI, 21

re x > W, — ri mote BTOMOPÙIH3MOB (Y, v), TIPHWeM từ, Ee V[S] TUIH II.B X H $(2) = — log(d(s,x)/du(x)) Apromopiam B pacmupđeron no agrowopdusawa Đarropa M rakoro, WTO BN) =: Nun= {n(x)} —> B(n) = = (W(œï}'(x))}, rue n= {n(x)} € Â, a x W,— uamMepumoe HO2I6 ABTO- moppusmos W, npndew (W,) = p —log(duœ;x)/du(x))

HomowemM y = #øÿƑ~1, rorya mody = modz-modfØ~!—=id, m" y() == = a-B-(N) = N Cormacno tmemme 3.1 cyijecrpyer te Int M TAKOH, WTO Yam = id, wot rtyls =\ ® V.du(x), rae x > V, — memepimoe nose

x

aBToMopaMop N, wpuyem O(V,) = J aaa o.B x € X Ho rorya t-te =: t-1y-B

oOsanaer UCKOMBIMH CBOLICTBAMIT ⁄

3 .XBPFOMODP@M3MBbI HIUBBRPHBHBHX DARTOPOB M THILA TO, CG T(M) = (t:o,¢IntM) 40

3 §3 õyneT n0Ea8aHo, wTo ©G7IH y aRTopa Ä nuBapuanr 7(M) 40 u (p — iIAWyHAapHHH sec Ha #ƒ (T.© Ì HBZIHGTGH H8071HpOBA8HHOII TO4ROR ŠSp 4), TO BOHRHH # 3 Aut Mƒ MO?RHO IIDHBECTH BHGHIHHM CONpAKeHMeM K HEKOTOPOMy K“aHonneo£oMV BHNY (6M (2.3 § 1) cam mea, B € Aut M, p,(a) = p,(8) = 0u moda == y-modf-y7!, rye y € C(W) (t.e yW, == Wy, t € R), ro x w B BHemHe coupsuKeHbt B Aut M

1 \launem c onpeemenuit

OUPEDENEHME 1.1 Tycrs M ~ daxrop tuna Ill) c T(M) 4 0 Bec @ nua M dyneM HasErBaTh nepuoduueckum c nepuodom T #0, ecam of = id, HO or, # id, ne N,v > 2, 0ymGHHe @ Hà Ä, (H€HTPAJIH3ATOD @) GGTb T.HODM 11071yROHBHHBUI ©7161 r Hà Äf„, @(1) = co

EMMA 1.2 Ecau M — Giaxmop muna Ill), ROmopoeo @ — nepuo-

Ouueckuli cec ¢ nepuodom T, mo cywmecmeyem yuumapnorii onepamop U6 M, o6.1adaywit ceolticmeamu AdU € AutM,, npuvem U u M, nopostdaiom M; 6ouee mozeo, to ACU < dt, 20e t ~ m.HopM cacd na M, , NOMODbLỦ 86/89- CINCH CYACEHUCM (0 Hasee, U = » u,, 20e u, — %*GCHLHUHG8 uszomempus uz M

n>0 ,

+ —Ìnt

Makan, UMNO OF (Uy) = 2 Mạ, 1/ ROHLODOB Q, = HH HD, t= HIỀH, € Zo, uenmpy M, , NPUACM OG =? PnPm =O, M#n, US p= 3 q,,, logd = 2n/T

Tak Kak nepMoRMuecKHi Bec ~ ABNAeTCH JIAHRVHADHHM, TO nemma 1.2

Trang 20

22 B XH, POZIONEBIT

OIIPETRESIBHHE 1.3 llepnonwecKnii Beo @ Hà ă © IepHOJOM 7 Ha30BeM O0WJHHblMựM â8600  nepuodom T, ecum BM cyulecrByer VHHTApHHH OHe- parop U, raRol, aro of(U,) = HU, , AdU,€ AutM,, a M nopompen M, u U, (cp ¢ oupeyed 4.3.1 [1] ma HHÍ,-ageopos),

CÿHICTBOB8HH© ÕO0ỐH@HHOTO G7167A @ c nepuojom T cueqyet, Hanpa- Mẹp, Ha reopeMEI 2.1 § 1 (em nakze [15])

1IPEZ12107KEHHE 1.4 lĨycmo M — 0awmop, ưố.4a9ai0uli 861/469 0Ố0ỐM{@H- Homan G8601 p,, i= 1,2, ¢ nepuodom T Toeda cyryecmeyem uucao a > 0 u yuumapuoli onepamop ue M maxue, umo ¢(x) = ap,(Adu(x)) On xe M,

¬ 9 ọ *

ayge › > 1 > 2 1 Qe :— r a

Aorasamessemeo.» Tar Rak 6,2 -= Oph = id, To (Do, : DQy)y =: ai, rye ạ€ TT lĨyoTrp >Ơ TaROBO, T0 27 =a Tloxamem, WTO (x) = ss ap,(Adu(x)) qa xe M, Ổ3aMeTHM, wfto ecm @¿(x) = fo,(Adu(x)), To

#ạ = (Độ; : DQ, )r == Dee : DP) (D1, : Der)e =* iT, » ? iv

== BT (u*op(u)) = BY,

ufi-+ a, rye Pp > 0, o,,,(:) =: @(Adu-) lycra P = M@F,, rae Fy L-haxrop NMonomm YC YY x,j,@e;;) = 29%) + G(x.) aun x= YO x,,@e,; rae

ij-s1,2 i,j=1,2

¢jj -~ MATpHIMHEIG GNHHII(EI yin #;, TOT/tA (em 1.2.2 [8]) Y — T.HopM mosty- KonequErii Bec Ha P Mockoapnry o¥(1 @ ey») = (Dee : DO) 7-(De, : Dagy)p@eny =

; ? : +

== Op" Bey, == 1@eq,, a Øz/ =: 1d, j r= Ì, 2, OOTJIACHO ID€NHO¿ZIO?R@HHO, TO co}: id, Ho Torga WY — uepitoquyecKHit Bec c uepHogom T (cm ompeje- ceniue 1.1) I1 GOT¿IACHO semme 1.2 cymjectByer yHuTapHtit oneparop U co CBOLCTBAMIL, ©DG4I10218HHBIMI B (ÌODXIY-THDOBRG WemMbL Tak kak Ad Ve Aut P,,

a Un P, wopoayaor P, to Ad U apronHweoRm ;teliorByer Ha Z„:› H€HTp© Đụ

lÏo:roznHm /¡ := Xe, ¡ =: L, 2, noraa ƒ/¡ € Pạ„ depes Z(ƒ,) 0ố03HaWHAM Z,, — HocH- TozIb /; TaR RaE Ad apro/tt4eoku neiicrpyer Ha Z„, to ƯZ(ƒq)U~'(1—Z(f)) %0 C71610BATG/IBHO, GVII@CTBV€T HO/MHĐO€RTOPĐ ? < ƒ¡ H8 Ä„ @€¿¡ H WAGTHWHAH 1I8OM€TpHH „€ P (GCM (ĐODAMV/IHpOBKV zI6MMHI Í.2) TAKH©, ato 30H,

< I~ Z(f,) Tak kak Bec (0¡ HBIHGT0H OỐOỐIH@HHBIM GJI610M Ha Ä/, TO B M cyulecTBye? VHHTRDHBII OGI6pATOD ;; CO CBOHÏOTBAMH, IHDĐWHCZIOHHBIMH B oupegenenun 1.3 Ho rorga e(zIM 0; -= U;,,@e;;, TO WA UpoeRtopa đ =: 0Ề"pUỶ S < fy (us My @e) BEUIOMHeHO ©OOTHOIIGHH© 01g07”, € Ï — Z( fi), upruem unvy € Py Orcioya cuexyer, uto Z(f,) = 7 AHA/IOTHSHO /ORA3BIBA©TOH, WTO Z( fo) == I Cneqosatenpno, ƒ¡ H ƒ¿ ORBHBAJICHTHBI OTHOCHT©ZIbHO ý ; IO2TOMV Đ „ CYIICTBYT WAGTHHHaAR H3OMGTDHH 0, TâKAH, %TO ĐỶ0 = f,, vv* == f, Tax Kak (1 @®@e,)v = 2(1 @éo9), TO cymectByer we M TARO©, YO v= Aes

Trang 21

ABTOMOP@IU?MDIE HHbĐBRTHBHBIX Œ®ARKTOPOB THHA Il, 23

u™u == uu* = Ï MO#{HO HOKA88Tb, WTO OH€DATOP 0 ABIIAeTCH MCKOMBIM (CM

4.3.2 [8)) Z2

2 IÏepeHH€M K HMAVHGHIIQO BHGIHHH€ GOOHDH?RGHHBIX BTOMODÙHSMOB TEOPEMA 2.1 llyeme M — wHsekmueHuli agmop mwna TỰ c T(M)+#0 Licau x, B € Aut M, p,(%)—=p,()=0 mo u 6H€MUI€ COND4200€HbI Tn02Ư6 lì 90/1bR0 rmo¿Ða, ko¿Ða moda u mod conpsocens 6 C(W(M)), m.e cywecmeyem y € C(W) makoti, umo

(2.1) moda = y-mod 8-y~1,

200 C(W) — yenmpaauzamop nomoxa W(M) (cm Beedenue )

3AMEYAHUE 2.2 Caryuaii mod « = mod f = W,(M) yme pacemorpen B § 2, IOOTOMY TOCTATOYHO PAGOMOTPGTbE BAPHAHTH, Rorda moda, mod ¢ W(M) Ilyets @ —- o6o00nenHerii cnex Ha Mc nepuopom T € T(M) (em oupenenenue 1.3) Cor.tacHo npenaonmenuio 2.2 §1 mpocrpanctsBo (X,, uy) B KOTOpOM jeit- crpyet moTok W(M) umeer Buy Xy = {(x, u) | xeX,Q%< u<@(x)}, re o(x) == 2n/T, a fly == XM, TOrAA

(mod ar) (x, u) = (a,x, H + Pa): (mod 8G, u) = (Bix, u + Đạ)

rye %,, 8, € Aut(X, 2), 8 Ø„, 0, — ROHOTAHTBI, H© HID€BOCXO/RHie @ Tenepb yeuosue (2.1) o3Hawaer, To cyinectByert y, € Aut (X, p) raxott, aro a, =7,-8,-yr4,

a Pz = Pg =" Pp, Mpuyem y,O = Qy,

Ormerum Take, ITO B cusy TeopemEL 3.1 §1, (reopempt 2.3 B paccma- TPHBA6MOM ©1yae) Amt y, © C(W) cymecrByer ÿ € Aut Mƒ, npHdeM mod ÿ == ?ị, IIODTOMWV /ORA38T€IbGTBO T€OD€MBI 2.Í GBOHHTCH K ĐAGOMOTP©HHIO 8BTOMOD- usmos « u B, y KoTOpEIX moda = mod ổ

[PET JIOMEHME 2.3 Tycme M, a, B — maxue aec, Kar uo meopeme 2.1, amoda = mod B anepuoduxen no modys0 (W(M),t € R),7.e mod a" ¢(W,, 7 R) Osan VnE Zn #0 To2da a u B eneune conpasicends Kak asmomopgiuasno M Hoxazameavcmeo Momuo upennonarata, avo M umeer Buy M, xan Bu.3 § 2, rae (S,, @,) saxanbl 1o @opmysam (1.3) $4, IpHweM g(x) = y = Const {om (1.4) $4) Torga makyHapHnit Bec p, Korophit uu_yuupyerca Mepoit uxv Ha XXY, apuserca oOo6ujeHHEIM ceqom Ha M B cmbicae onpefenenua 1.3 HooroMy BBHNY npetnomenun 1.4 VMHO7RAH, ©071H Heobxonumo, & u B Hi BHYTĐCHHH€ ABTOMODÙHSMBI, MO?RHO €wnrarb, ato a(N) = B(N) = N, rye Nes M, (om a 3 §2)

Trang 22

24 LB AL ĐO7IO7I1E11

.ÀHa/IOTHWHO, HHIYHHpVy€T Hà (X,£) apToMopnsM B,, B,Q == Of, u onpexeiset 1-komma x > V8 , npidem O(V8) =~ py — log (du(B,x)/du(y))

Tak Kak moda = mod, ro (GM 3awewaHne 2.2)

% = B, >

o(V2) = (V4), waa mB x

;la:z1ee, oốpaTumeom K (opMyale (1.3) §1 Ouesuguo, U,, xe X, ecTh {-Kouka xXelicTenn Q Ha (X,) co sHayeHnamn B #{S]}] llonsrHo, aro CL xe X, onpeyeaser l-RonnHdl UỦ, xe€ XY, n6HCTBHH (| co 8HA4GHHHMI B Aut N, npiuem (U2) = » — log (du(Qx)/du(x)), rae o(x) -: g == Const 1H 1B xe Xx,

Paccmotpum jeiicrsua a, u QO Ha (X, u) Wockoapbry 4,Q ==: Ở2;, TƠ TOẠI CaMBIM MbL 3a7aeM Bprojurgseckoe 1elorBne rpynnm Z° Ha (X,1) B cray [3] OTO /IĐÏGTBHG HB:IHGTCH âHHDOKCHMATHBHO ROHOSHBM TAEIM OỐP830A1, HO đ6liorBHO PDVHHB Z* wa (X, #) MOMHO OTIpeecIUT 8THDORGHMATHBHO ROHĐW- Hbưti rpynnownx ¥ = X¥xZ? (14] Ho rorxa nonunap (U2, V2) 1 (UP un VỆ) OIID@/I6:THOT Õ0OD6:I€RCRH TOMOMOD(ĐHSMBI 0; H 0; COOTBGTCTBÊHHO PPYHHOH;1A GpAutN

eIEMMA 2.4 (A Roun, B Rpurep, u ap.) Mycme G — annporcu.sa- HHHGHO ROH€MHĐLĂ UsMepusl epynnoud, G — nowweRad epynnd, Py N Py — bope.weenue comomoppusns G 6 G makue, umo

0 = 0z(mod H)

20e H — HOD.MWd.tbHŒq Ốop€.leoeka% nodepynna G, a A ee samoranue ¢ G Toeda cymcemeyem Oopereccnue wsmepu.swie omobpancenua h:G—oH u P:X:=#° + H manue, no

ply) == Aly) Prop) Psy) "1 op EY,

2de rus — 16006 1L npacoe omodpaacenue G na X coomsememeoenno (TOR888AT€7IbGTBO HPHBG/I€HO, HanpuMep, B [23].)

B wamem ecayyae G=:AutN, H=-IntN u A=:IntN Tax Kar (V2) == OVE), ®(UỆ) = ®(U#) n¿tä n.B x, a N — anIDORCBMATHBHO ROH€HHHÍI H,„-a£Top, TO n3 [Í, c:16A©TBH€ Ố] BBIT€RAGT, WTO Ø„=z Øg (modIntN) B CM:IY JI€MMBI 2.4 CVHI@CTBVET HS3M©@PpHMO€ H0¿I8 x > P,, re P, € Int N, raxoe, T0

(2.2) UỆ == PgyUfs‡yPy! ANA 11B x€ X,

Trang 23

ABTOMOPORSMDE DITLERTHBHEIX DAKRTOPOB THILA IT, 2%

rye x —> ấy, Í = Ì, 2, — M8M@PHMO6 HO¿I6 8BTOMOPpH3MOB us Int N Teneps 13

a ˆ

(2.2) cnenyer, aro P = (P,) onpeneaaet astomoppusm M, a (2.3) nor/a 03Ha-

4A@T BHGHIHIOIO GOHDØZ“6HHOGTb ở 1ï Ổ Z

3 LepelineM « paccmorpenmio x € Aut M, y Koropbix mod 2” = WM) JWI HEKOTOPHX f€ RuneN, p,(«) = 0 Haumenpiee rakoe m Ha80BeM epHoONoM moda w o603HauuM epea p(moda) = q Tak Kak moda(x, u) = (a,x, u + p,) (cM mnpe;uI 2.2 § 1), To mod a? = W, o3Hauaet, To and0 of = id u p,q = 4, au6o0 ef == 0", gEN, mE Zu gp, — om =t

Haiteli I(6@JtblO Ốy/1€T 1ORA8AT€JIbOTBO G716YIOHISTO HĐ€/JI07R6HHN:

HPBH7IO/REHHE 3.1 Hựemo M, xu — mANkH€ 2€, KkúW 6 me0p€MUe

2.1, modx = modf u p(modx) = p(modf)=q #0 Tozda x u GH€UN€ conpsacenn

3AMEUAHME 3.2 Yconosne mod af = mod ff = W,, te R, MousHo 3aMeHHTh yeuosHem moda? = mod? = id JleiicrsureabHo, mycth modat=W,, a N — runepOuunruait I, daxrop, t — r.Hopm cueq Ha N, p(t) — onHo- napaMerpHueckad rpynma aBTomopdusmosp N TaEKaW, aro t-p(t) = e't Pac- CMOTDHM aBToMOpÙH3M 2@p(—t/¢) daxropa M@N, usomopduoro M Torxa mod(z@ ø(—//4))” = mod «?.W_, = id Teneps ecan y = «@p(—t/q)@ plt/q) €

c AutM@N@N, T0 # H ÿ BH€HI€ COIDØ/RGHBI, HTO G219/W@T M3 T@OD€MDI Í H eenerepua 6 [†], nooRozbxy id@p(—t/q)@ p(t/q) € Int M BBY Teopembt 1.1 § 2 Ifooromy Bompoc o BHemmHeH COHDW?40HHOCTH 2 H j6 Aută GBONHTCH R BOIPOOV O BHGIIHeÏH GOIpfØ?⁄“€HHOCTH Z@j(—//4) @p(—(jg), upwaem

mod(a@ p(—t/q))* : = id Z

Aloxazameascmeo npednomcenus 3.1 Virax, wycra mod «? == mod f% == = id Bes Orpanusenua B 0ỐIIHOcrw MO#HO HPOJHOJIAFATb, yro M umeer Buy M (om 1.3 § 2) w a(N) = BIN) = N, rie N= M, (cM Hađ48110 /ORA8AT€JIbCTBA TID€TI 2.3) Kpome oro, mockombKy ¢,Q0 = Qo, na (X, py), ro 20, = O,%s, rae s€IntN Ho rmorna a? u B? raxme obsaqaior HGRÕNIIMI CBOllGTBAMM Bostee toro, mI Hekotoporo née Z ABTOMOĐHBSMIL 0, =: «70% HH Oy =~ BF OCTABIAIOT H€HONBIUKHBIMH OIĐDATOPEL H3 Z(Đ), COXPaHAIOT T.HODM C71671 na N, a p,(0,) = p,(0,) = 0 Taxum o6pazom, A O,(N) = N, Ol ah) = id, (3.1) HO, == 448, , 0,Ợ, = Qg0,s;,, s,€ Int NW i= I, 2,

MW oaHaJIOTHIHble COOTHOMIeCHUA BepHBl MILA Oy

JIEMMA 3.3 Cywecmeyem o € Int M manoti, umo o(N) = N, o Laity =idu

Trang 24

26 1 1, PO7I071E1

Moxasameasemeo Tak na modØ„ = mod 0, = ¡d, p„(0, )= = P,(,) -: 0 mo IPðHO20?R€HITO, T0 1o Teopeme 1.1 § 2e CVHIECTBVET o, € Int M , ALA ROTOPOTO (3.3) 6, = Øi-Ơg-Ø1 ÌS;, - s€ Int A

B cuny npequormenua 1.4 u wemmnr 3.1 Đ 2 cymecrsyer  € Int M TAROI, ‘aTO Ø = /-Ø¡, OỐ:1A1A6T CBOlOTBA3MIH

o(N) = N, 1 -= id,

Fiz)

<6 yieroM KOTOpBIX (3.3) Nepentmerca B BUTE

A

0, = 6 -O,-0-1+54, THe sy € Int M

‘Teneps nockompry 0,, 0, 1 o oTodpamator Nua ceOa HE 00TAB/LHIOT 9/16MGHTEI Z(Đ) H©HO/BH/RHEIMM, TO 5; TAR/R© OỐ/IAXA@T HONOỐHBIMH CBỌ[CTBAMH, a

nosromy s,€IntN, ro noRaabrsaer (3.2) B

Virak, B CHily HeMMbI 3.3 MORHO OHHTATb, HTO

A

-(3.4) 6, = 0,5, seIntN

CueqopateibHo, 3afaya O BHGIH€Ï GOHIDHZR©HHOCTH & II PB CBOANTCH K

^

-Bonpocy O CVII€CTBOBAHHH P € Int N Takoro, WTO

(3.5) O,:P= P-Q,'n, 0:P=P-B ty, 0,:P = P-04+ty (,eTntĐ, ¡ = 1,2,3

+ A A

CneJiaeM eImte ONHO 3awewaHne o 0, Hanomanm, ro N -= N@Z(N), rae N= W*(A,, S,Z) — ll,,-dartop 0 T.HOpM G2I6TOM 7 (GM HàwaiIO TH 3 § 2) đAMEHAHIB 3.4 Pea OPpAHHWEHHW OỐHIHOCTH MO/RHO GHHTATb, ITO

an

‹0V?K6HH© 0, Ha N umeer Big

(3.6) 0, = Oxid,

rye 0 € Int N, Pa() =: 0, 1-0 = 1

Trang 25

.ABTOMOP@®II2MDI HHBERUfHBHBIX ®ARTOPOB THHA 1H 27

©yitecrpyeT ÿ€ Aut#, (F¿) = Fạ, Yea = 1d TARKOH, WTO G=y-0,-y*+s, seIntF,, ‘f.€ MOMKHO IIDG/ITOZIAPATE, YTO BLIMOUHEHO (3.6)

llepelneM K NOKA8AT€JIbCTBY cymecrBoBanua P € Int N, yaosuersopa- youjero (3.5), T.e KR 3AB@DHIHHIO /0E838T€ebcrna IIpenozgeHnn 3.1 Boc- TI0JIb3V@MGR M€TOJOM, Ip€NIO?R€HHEfM B § 2.5 [23]

B cmy sawegaHun 3.Á MOZIHO GHHTATb, iro uMeet MecTo (3.6) Uepes AuON oGosHayum mMHomecTBo map (6,u), rme 6 € AutN, we U(N), a U(N) — TPVHHA BGEX YHHTAPHBIX OI€DATODOB B Đ, TAKHX, WTO

6:0-6-1 = Adu-0 Oupeyenum Ha AutW wy:IETHI/TIRAIMO:

(ơi, Uy) (5g, Ua) = (61-62, ỦGn)n;)

Orvocurenbuo Takoit MZTbTHIIMRAHMH AUtNW mupespamaerca B rpynmny Oxastipaetca, Aut@N — 3amMKuyTad NOArpynia nomEcKoi rpynust AutN- U(N) r1e Aut@- U(NZ ©CTb HOJIVHĐØ8“MOG UupousBejjenue Aut N uw U(NY’, a U(N” — rpynna B©ex (YHRHMH Ha Z ©0 3HaqeHWnMH B (N), 0HaÕ?K€HHAH TOHO2IOTHeii upamoro mpousBezenua Ilo orHomeHuio K Tako TOHOIOPWMW Aut?N — 1I0JIbGRAđ TDYHHA H ©0T©€OTB€HHAH HPOGRIIMH (Ổ, ⁄) + 6 H€eIpepbIBHa [pynna Aut?NoconeptT B RadecTBE HODMa/IbH0đ nonFpynnrrpynrny InV:(Adu, u6(/5)), to ức U(N)

JIBMMA 3.5 Jfyeme InÚN — 2damwanue TnÚN 6 Aut!N 24eMenm (6, u) € Int?N mozda u moaoko moeƠa, woeƯ@ t coxpannem cned t Ha N

llo nopo7y noRasarezscrpa (cm Hemmy 2.5.6 [23])

Tenepb, KEaAK H HDM /OREA3AT€JIbCTB€ HĐGJHJ07R€HHH 2.3, DACCMOTDHM IHIDOKROHMATIBHO KOH©HHEIHI TDYHHOHN 'f, HOPO?RH€HHHIH pelicrBMem aBTO- Mopjwawos Q@ nø, na (X, ø) Torxa 1-gonmimr {Uƒ, V?} n {Uÿ, VỆ} sanaror SopezeBckne TOMOMODHWB8MBIL Ø„ H Ø0; ©OOTBĐTOTBEHHO TpyHHOMnaA Y B AutN B cmay (3.1) 218 FOMOMOP(MSMBI HpHHA/167£AT rpyHnne Aut?W, paocMorpeHHofl spre OJIA6 TOPO, HOGEOJbRV Œ®(WZ) = đ(VỆ) HH I.B x, TO BBHAY JIMMH 3.5

Pa = Pg (mod Int°N)

Trang 26

5g

B oH POCIOUIEIL

4TO {LTA IB Vv € X

P.UP — UPP,s}, P,.VE== VPPs},

HIPHMGM HOCROEIbRV P,€ In, ro PV0,P;107'c IntN 71H TB x TaRHM 0- õpaso, ; 1n Ð =: (P,) nbnnozIneno (3.5), a aHawnr # n ổ pHeInHe conpwzReHm GB CHITEPATYPA 1 Connes, A., Outer conjugacy classes of automorphisms of factors, Ann Sci Ecole Norm Sup., 8(1975), 383—420 2 Connes, A.,On the classifications of von Neumann algebras and their automorphisms, Sypo- sia Mathematica, XX(1976), 435—478

3 Connes, A.; KRIEGER, W., Measure space automorphisms, the normalizers of their full groups

and approximate finiteness, J Functional Analysis, 241977), 336—352

4 Araki, H.; Woops, E.J., A classifications of factors, Publ Res Inst Math Sci., 3(1968), $1~—130

Connes, A., On hyperfinite factors of type III, and Krieger’s factors, J Functional Analysis,

18(1975), 318 327

6 KRIEGER, W A., On ergodic flows and isomorphism of factors, Math Ani., 223(1975), 19 70

7 Connes, A.; TAKESAKI, M., The flow of weights on factors of type IIIf, Téhoku Math J.,

29(1977), 473 575

8 Connes, A., Une classification des facteurs de type HI, Aan Sci Ecole Norm Sup., 2(1973),

133-252

9 Hamacui, T.; Oka, Y.; Osikawa, M., Flows associated with ergodic non-singular transfor- mations groups, Publ Res Inst Math Sci., 1101975), 31 —50

10 POZIO/LEIL B H., O crpyErype aareốp on HelmaHa, I1BỌCTBCHHIBX K aciredpam, NOCTPOCHHbIM HO /IHHAMHHOCRHM CHCTEMAM, (1//0E1(60110/1Đ001Š 41011183 t6 ©°0

ta

npu.to2reentas, 9: 3(1975), 87-88

11 POXZLHH, B Á., H23ØPpAaHHb BOIPOCBI MGTDHHGCHỌÏ T€ODHH /UHHAMHHOCRHX CH€TOM,

Veneru dam nauz#, 4: 3 (1949), 57—128.,

12 Dye, H.A., On groups of measure preserving transformations I, Amer J Math., 81(1959), 119-153,

13 Connes, A A classification of injective factors, Ann of Math., 104(1976), 73 115

14 FELDMAN, J.; HAHN, P.; Moore, C.C., Orbit structure and countable sections for actions of continuous group, Adv in Math , 28(1978), 186 -230

15 TAKEFSAKI, M., Duality for crossed product and structure of von Neumann algebras of type IH, Acta Math., 131(1973), 249—310

Trang 27

-AKHTOMODT1U3MDL LÍỮDBSXTHBHBHIX OARTOPOB THA TM, 29

19 PO/IO/USH, B H., O aBTOMOpÙH2MAX HAbeRTIBHEIX dakropon tutta III), Upe- pH? 4-80, @GPHHT AH VYGCP, Xapbkon, 1980, 1—32

20 Connes, A.; TaKesaki, M., Flot des poids sur les facteurs de type If], C.R Acad Sci Paris,

Sér, A, 3781974), 937-940

21 Hamacut, H., The normalizer group of an ergodic automorphism of type III and the commu- tant of an ergodic flow, J Funcrional Analysis, 40(1981), 387 —403

22 BezuGLyt, S.I.; Gotopets, V Ya., Groups of measure space transformations and invariants of outer conjugation for automorphisms from normalizers of type LIL full groups, J Functional Analysis, 60(1 985), 341-369

23 Jones, V F R.; TAKesaki, M., Actions of compact abelian groups on semifinite injective factor, preprint

V YA GOLODETS

Institute for Low Temperature Phivsics and Engineering,

Ukr SSR Academy of Sciences,

47, Lenin Avenue, Kharkov, 310164,

U.S.S.R

Received August 12, 1982; revised July 9 1984

Ngày đăng: 05/08/2014, 15:21

TỪ KHÓA LIÊN QUAN