1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Machine Design Databook Episode 3 part 11 pps

40 261 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 40
Dung lượng 374,49 KB

Nội dung

APPLIED ELASTICITY 27.2 CHAPTER TWENTY-SEVEN Nr , N0 p q Qx , Qy Nr , N r rx , ry r,  t T Mtxy u, v, w V W w x, y, z X, Y, Z Z  !  x , y , z r ,   r ,  , z  xy , yz , zx " "x , "y , "z "r , " xy , yz , zx r , z r , z , rz   normal forces per unit length in radial and tangential directions in polar co-ordinates, N (lbf) pressure, MPa (psi) load per unit length, kN/m (lbf/in) shearing forces parallel to z-axis per unit length of sections of a plate perpendicular to x and y axis, N/m (lbf/in) radial and tangential shearing forces, N (lbf ) radius, m (in) radii of curvature of the middle surface of a plate in xz and yz planes polar co-ordinates time, s temperature, 8C tension of a membrane, kN/m (lbf/in) twist of surface components or displacements, m (in) strains energy weight, N (lbf ) displacement, m (in) displacement of a plate in the normal direction, m (in) deflection, m (in) rectangular co-ordinates, m (in) body forces in x; y; z directions, N (lbf ) section modulus in bending, cm3 (in3 ) density, kN/m3 (lbf/in3 ) angular speed, rad/s stress, MPa (psi) normal components of stress parallel to x, y, and z axis, MPa (psi) radial and tangential stress, MPa (psi) normal stress components in cylindrical co-ordinates, MPa (psi) shearing stress, MPa (psi) shearing stress components in rectangular co-ordinates, MPa (psi) unit elongation, m/m (in/in) unit elongation in x, y, and z direction, m/m (in/in) radial and tangential unit elongation in polar co-ordinates shearing strain shearing strain components in rectangular co-ordinate shearing strain in polar co-ordinate shearing stress components in cylindrical co-ordinates, MPa (psi) Poisson’s ratio stress function angular deflection, deg e ¼ "x ỵ "y ỵ "z ẳ "r ỵ " ỵ "z e ẳ "x ỵ "y ỵ "z ẳ volume expansion shearing components in cylindrical co-ordinates Note:  and  with subscript s designates strength properties of material used in the design which will be used and observed throughout this Machine Design Data Handbook Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies All rights reserved Any use is subject to the Terms of Use as given at the website APPLIED ELASTICITY APPLIED ELASTICITY Particular 27.3 Formula STRESS AT A POINT (Fig 27-1) The stress at a point due to force ÁF acting normal to an area dA (Fig 27-1b) Stress ¼  ¼ lim A ! F A 27-1ị where F ẳ force acting normal to the area ÁA ÁA ¼ an infinitesimal area of the body under the action of F x ẳ lim Fx Ax 27-2aị xy ẳ lim Fy Ax 27-2bị xz ẳ lim For stresses acting on the part II of solid body cut out from main body in x, y and z directions, Fig 27-1b ÁFz ÁAx ð27-2cÞ ÁAx ! ÁAx ! ÁAx ! Similarly the stress components in xy and xz planes can be written and the nine stress components at the point O in case of solid body made of homogeneous and isotropic material x yz xy y xz yz zx zy z ð27-3Þ Fig 27-1c shows the stresses acting on the faces of a small cube element cut out from the solid body F4 F5 a F1 Part I Part II ∆Fy ∆A a N ∆F o F8 a F6 y F2 F3 F7 (a) A solid body subject to action of external forces z ∆Fz a y F2 F3 F1 Part II ∆Fx x F8 F7 (b) An infineticimal area ∆A of Part II of a solid body under the action of force ∆F at σy τyz τzy dy σ z o τzx τyx τxy τxz σx x dz dx z (c) Stresses acting on the faces of a small cube element cut out from the solid body FIGURE 27-1 Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies All rights reserved Any use is subject to the Terms of Use as given at the website APPLIED ELASTICITY 27.4 CHAPTER TWENTY-SEVEN Particular Formula Summing moments about x, y and z axes, it can be proved that the cross shears are equal xy ¼ yx ; yz ¼ zy ; All nine components of stresses can be expressed by a single equation ij ¼ lim Fj Ai Ai ! zx ẳ xz 27-4ị 27-5ị where i ẳ 1; 2; and j ẳ 1; 2; The FNx , FNy , and FNz unknown components of the resultant stress on the plane KLM of elemental tetrahedron passing through point O (Fig 27-2) FNx ẳ x cos N; x ỵ xy cos N; y þ xz cos N; z FNy ¼ yx cos N; x ỵ y cos N; y ỵ yz cos N; z FNz ẳ zx cos N; x ỵ zy cos N; y ỵ z cos N; z The unknown components of resultant stress FNx , FNy and FNz in terms of direction cosines l, m and n (Fig 27-4) y xy Fz FNx ẳ x l ỵ xy m ỵ zx n FNy ẳ yz l ỵ y m ỵ yx n FNz ẳ zx l ỵ zy m ỵ z n Surface area KLM = A TN N (normal to KLM) FNy τzx σz τxz Fx FNz ho’ τzy FNx K x o τyz Fy l ¼ cos ¼ cos N; x; m ¼ cos ¼ cos N; y, n ẳ cos ẳ cos N; z, l s ỵ m2 ỵ n2 ẳ lị 02 ỵ m0 ị2 ỵ n0 ị2 ẳ yx y y L TN = stress vector in N direction Fbx, Fby, Fbz = Body forces in x, y and z - direction z σy+ FIGURE 27-2 The state of stress at O of an elemental tetrahedron + τyz y σx M Tx’ τx’y’ σz τxz τzx L γ τxy o τyx z’ β o’ h α τzy τyz N ∂τyz ∂y dy τ zx τxz ∂τzy ∂σy dy ∂y ∂τyx + τyx dy σz ∂τ τxy+ xy dx ∂y ∂x τzy ∂τxzσx + + τzy ∂z dz + τxz ∂x dx ∂τzy τxy o dy + τzx ∂z dz ∂σz σz+ ∂z dz τ τyz dz yx σy y’ σx ð27-7Þ where the direct cosines are M σx ð27-6Þ x’ σx’ ∂σx ∂x dx x dx K x τz’x’ σ y z FIGURE 27-3 Small cube element removed from a solid body showing stresses acting on all faces of the body in x, y and z directions z FIGURE 27-4 Tx0 , resolved into x0 , x0 y0 and x0 z0 stress components Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies All rights reserved Any use is subject to the Terms of Use as given at the website APPLIED ELASTICITY 27.5 APPLIED ELASTICITY Particular Formula cos ¼ l ¼ angle between x axis and Normal N cos ¼ m ¼ angle between y axis and Normal N The resultant stress FN on the plane KLM cos ¼ n ¼ angle between z axis and Normal N qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 FN ẳ FNx ỵ FNy ỵ FNz ð27-8Þ The normal stress which acts on the plane under consideration N ẳ FNx cos ỵ FNy cos ỵ FNz cos The shear stress which acts on the plane under consideration N ¼ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi F N À 2 n ð27-8aÞ ð27-8bÞ Equations (27-1), (27-2) and (27-7) to (27-8) can be expressed in terms of resultant stress vector as follows (Fig 27-2) The resultant stress vector at a point ÁFN ð27-9aÞ ÁA where TN coincides with the line of action of the resultant force ÁFn TN ¼ lim ÁA ! 27-9bị 27-9cị TNz ẳ zx l ỵ zy m þ z n The resultant stress vector TNx ¼ x l ỵ xy m ỵ xz n TNy ẳ xy l ỵ y m ỵ zy n The resultant stress vector components in x, y and z directions ð27-9dÞ TN ẳ q 2 TNx ỵ TNy ỵ TNz 27-9eị where the direction cosines are cosTN ; xị ẳ TNx =jTN j, cosTN ; yị ẳ TNy =jTN j, cosTN ; zị ẳ TNz =jTN j The normal stress which acts on the plane under consideration N ¼ jTN j cosTN ; Nị 27-9f ị N ẳ TNx cosN; xị ỵ TNy cosN; yị ỵ TNz cosN; zị 27-9gị The shear stress which acts on the plane under consideration N ẳ jTN j sinTN ; Nị 27-10aị q T N 2 N 27-10bị N ẳ The angle between the resultant stress vector TN and the normal to the plane N cosTN ; Nị ẳ cosTN ; xị cosN; xị ỵ cosTN ; yị cosN; yị ỵ cosTN ; zÞ cosðN; zÞ Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies All rights reserved Any use is subject to the Terms of Use as given at the website ð27-10cÞ APPLIED ELASTICITY 27.6 CHAPTER TWENTY-SEVEN Particular Formula EQUATIONS OF EQUILIBRIUM @x @xy @xz ỵ ỵ ỵ Fbx ẳ @x @y @z 27-11aị @y @yz @yx ỵ ỵ ỵ Fby ẳ @y @z @x 27-11bị @z @zx @zy ỵ ỵ ỵ Fbz ẳ @z @x @y The equations of equilibrium in Cartesian coordinates which includes body forces in three dimensions (Fig 27-3) ð27-11cÞ where Fbx , Fby and Fbz are body forces in x, y and z directions @x @xy ỵ ỵ Fbx ẳ @x @y 27-11dị @y @yx ỵ ỵ Fby ẳ @y @x 27-11eị TN ẳ iTNx ỵ jTNy ỵ kTNz 27-12aị TN ẳ iTN x þ jTN y þ kTN z ð27-12bÞ N ẳ il ỵ jm ỵ kn Stress equations of equilibrium in two dimensions ð27-12cÞ TRANSFORMATION OF STRESS The vector form of equations for resultant-stress vectors TN and TN for two different planes and the outer normals N and N in two different planes 0 0 N ẳ il ỵ jm ỵ kn 27-12dị where i, j and k are unit vectors in x, y and z directions, respectively Substituting Eqs (27-9b), (27-9c), (27-9d) and (27-9e) in Eqs (27-13), equations for TN , N and TN , N TN N ẳ TNx l ỵ TNy m ỵ TNz n 27-13aị TN N ẳ TNx l ỵ TNy m0 ỵ TNz n0 The projections of the resultant-stress vector TN onto the outer normals N and N 27-13bị TN N ẳ x l ỵ y m2 ỵ z n2 ỵ 2xy lm ỵ 2yz mn ỵ 2zx nl 0 27-14aị 0 TN N ẳ x ll ỵ y mm ỵ z nn ỵ xy ẵlm ỵ ml ỵ yz ẵmn0 ỵ nm0 ỵ zx ẵnl ỵ ln0 Š The relation between TN , N and TN , N TN ÁN ¼ TN ÁN By coinciding outer normal N with x0 , N with y0 , and N with z0 individually respectively and using Eqs (27-14a) to (27-14b), x0 , y0 and z0 can be obtained (Fig 27-4) 27-14bị x0 ẳ Tx0 x0 ẳ x cos2 x0 ; xị ỵ y cos2 x0 ; yị 27-15ị ỵ z cos2 x0 ; zị ỵ 2xy cosx0 ; xị cosx0 ; yị ỵ 2yz cosx0 ; yị cosx0 ; zị ỵ 2zx cosx0 ; zị cosx0 ; xÞ Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies All rights reserved Any use is subject to the Terms of Use as given at the website ð27-15aÞ APPLIED ELASTICITY APPLIED ELASTICITY Particular 27.7 Formula y0 ¼ Ty0 Áy ¼ y cos2 ðy0 ; yị ỵ z cos2 y0 ; zị ỵ x cos2 y0 ; xị ỵ 2yz cosy0 ; yị cosy0 ; zị ỵ 2zx cosy0 ; zị cosz0 ; xị þ 2xy cosðy0 ; xÞ cosðy0 ; yÞ ð27-15bÞ z0 ẳ Tz0 z0 ẳ z cos2 z0 ; zị ỵ x cos2 z0 ; xị ỵ y cos2 z0 ; yị ỵ 2zx cosz0 ; zị cosz0 ; xị ỵ 2xy cosz0 ; xị cosz0 ; yị ỵ 2yz cosz0 ; yÞ cosðz0 ; zÞ By selecting a plane having an outer normal N coincident with the x0 and a second plane having an outer normal N coincident with the y0 and utilizing Eq (27-14b) which was developed for determining the magnitude of the projection of a resultant stress vector on to an arbitrary normal can be used to determine x0 y0 Following this procedure and by selecting N and N coincident with the y0 and z0 , and z0 and x0 axes, the expression for y0 z0 and z0 x0 can be obtained The expressions for x0 y0 , y0 z0 and z0 x0 are ð27-15cÞ x0 y0 ẳ Tx0 y0 ẳ x cosx0 ; xị cosy0 ; xị ỵ y cosx0 ; yị cosy0 ; yị ỵ z cosx0 ; zị cosy0 ; zị ỵ xy ẵcosx0 ; xị cosy0 ; yị ỵ cosx0 ; yị cosy0 ; xị ỵ yz ẵcosx0 ; yị cosy0 ; zị ỵ cosx0 ; zị cosy0 ; yị ỵ zx ẵcosx0 ; zị cosy0 ; xị ỵ cosx0 ; xị cosy0 ; zị 27-16aị y0 z0 ẳ Ty0 z0 ẳ y cosy0 ; yị cosz0 ; yị ỵ z cosy0 ; zị cosz0 ; zị ỵ x cosy0 ; xị cosz0 ; xị ỵ yz ẵcosy0 ; yị cosz0 ; zị ỵ cosy0 ; zị cosz0 ; yị ỵ zx ẵcosy0 ; zị cosz0 ; xị ỵ cosy0 ; xị cosz0 ; zị ỵ xy ẵcosy0 ; xị cosz0 ; yị ỵ cosy0 ; yị cosz0 ; xị 27-16bị z0 x0 ẳ Tz0 x0 ẳ z cosz0 ; zị cosx0 ; zị ỵ x cosz0 ; xị cosx0 ; xị ỵ y cosz0 ; yị cosx0 ; yị ỵ zx ẵcosz0 ; zị cosx0 ; xị ỵ cosz0 ; xị cosx0 ; zị ỵ xy ẵcosz0 ; xị cosx0 ; yị ỵ cosz0 ; yị cosx0 ; xị ỵ yz ẵcosz0 ; yị cosx0 ; zị ỵ cosz0 ; zÞ cosðx0 ; yފ ð27-16cÞ Equations (27-15a) to (27-15c) and Eqs (27-16a) to (27-16c) can be used to determine the six Cartesian components of stress relative to the Oxyz coordinate system to be transformed into a different set of six Cartesian components of stress relative to an Ox0 y0 z0 coordinate system Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies All rights reserved Any use is subject to the Terms of Use as given at the website APPLIED ELASTICITY 27.8 CHAPTER TWENTY-SEVEN Particular For two-dimensional stress fields, the Eqs (27-15a) to (27-15c) and (27-16a) to (27-16c) reduce to, since z ¼ zx ¼ yz ¼ z0 coincide with z and  is the angle between x and x0 , Eqs (27-15a) to (27-15c) and Eqs (27-16a) to (27-16c) y TNy K TNz M O L x0 ẳ x cos2  ỵ y sin2  ỵ 2xy sin  cos  ẳ x þ y x À y þ cos 2 þ xy sin 2 2 27-17aị y0 ẳ y cos2  þ x sin2  À 2xy sin  cos  ẳ N y ỵ x y x ỵ cos 2 À xy sin 2 2 ð27-17bÞ x0 y0 ¼ y cos  sin  À x cos  sin  TN, N TNx N Formula ỵ xy cos2  À sin2 Þ x z FIGURE 27-5 The stress vector TN ẳ y x sin 2 ỵ xy cos 2 z0 ¼ z0 x0 ¼ y0 z0 ẳ 27-17cị 27-17dị PRINCIPAL STRESSES By referring to Fig 27-5, where TN coincides with outer normal N, it can be shown that the resultant stress components of TN in x, y and z directions TNx ¼ N l Substituting Eqs (27-9b) to (27-9d) into (27-18), the following equations are obtained x l ỵ yx m ỵ zx n ¼ N l TNy ¼ N m ð27-18Þ TNz ¼ N n xy l ỵ y m ỵ xy n ẳ N m 27-19ị xz l ỵ yz m ỵ z n ¼ N n Eq (27-19) can be written as x N ịl ỵ yx m ỵ zx ẳ xy l ỵ y N ịm ỵ zy ẳ 27-20ị xz l ỵ yz m ỵ z N ịn ẳ From Eq (27-20), direction cosine (N, x) is obtained and putting this in determinant form Putting the determinator of determinant into zero, the non-trivial solution for direction cosines of the principal plane is cosðN; xị ẳ x N yx zx  y À N zy xy xz yz z À N ð27-21Þ x À  N ... zx zy z ð27 -3? ? Fig 27-1c shows the stresses acting on the faces of a small cube element cut out from the solid body F4 F5 a F1 Part I Part II ∆Fy ∆A a N ∆F o F8 a F6 y F2 F3 F7 (a) A solid... in three dimensions (Fig 27 -3) ð27-11cÞ where Fbx , Fby and Fbz are body forces in x, y and z directions @x @xy ỵ ỵ Fbx ẳ @x @y 27-11dị @y @yx ỵ ỵ Fby ẳ @y @x 27-11eị TN ẳ iTNx ỵ jTNy ỵ kTNz... ELASTICITY 27.6 CHAPTER TWENTY-SEVEN Particular Formula EQUATIONS OF EQUILIBRIUM @x @xy @xz ỵ ỵ ỵ Fbx ẳ @x @y @z 27-11aị @y @yz @yx ỵ ỵ ỵ Fby ẳ @y @z @x 27-11bị @z @zx @zy ỵ ỵ ỵ Fbz ¼ @z

Ngày đăng: 05/08/2014, 11:21

TỪ KHÓA LIÊN QUAN