Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 19 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
19
Dung lượng
691,73 KB
Nội dung
530 Chapter 13 Table 13.6 Hardness Data for the Test Specimens Material Hardness (BHN) 170-180 1020 (untreated) 1020 (treated) 4340 low hardness (untreated) 4340 low hardness (treated) 4340 high hardness (untreated) 4340 high hardness (treated) 43 50 low hardness (untreated) 4350 low hardness (treated) 4350 high hardness (untreated) 4350 high hardness (treated) 285-3 I 1 363-375 321-331 375-388 Similar tests were also performed on 1020 steep specimens for com- parison. The chemical composition of the 4340 and 4350 steel used in the test is given in Table 13.7. Sample results of the unidirectional bending fatigue test data for the different materials with and without the 40 thermal cycles are given in Figs It can be seen in Fig. 13.31 that the high-hardness 4350 steel had an endurance limit of approximately 108ksi, as would be expected from the published data on the material. The 40 thermal cycles in this case caused a reduction of approximately 45% in the value of the endurance limit. Figure 13.32 shows similar results for the low-hardness 4350 steel speci- mens where the same thermal cycles caused a 42% reduction in the endur- ance limit. Similar results for the 4340 steel are given in Figs 13.33 and 13.34 where the reduction in the endurance limit is found to be approximately 20%. It is interesting to note from the fatigue data for the 1020 steel speci- mens that the endurance limit was reduced by only 12% to a value of 55 ksi. This value is the mean value of the endurance limits under the same condi- 13.31-13.35. Table 13.7 Chemical Properties of 4340 and 4350 Steel Steel C (TO) Mn (70) P (TO) S (%) Si (%) Cr (%) Ni (Yo) MO (%) 4340 0.38 0.77 0.014 0.026 0.27 0.78 1.59 0.23 4350 0.49 0.66 0.009 0.025 0.25 0.77 1.61 0.23 Figure 13.31 cycles; = with thermal cycles. Fatigue data for 4350 steel (high hardness): 0 = without thermal 120 110 100 90- c (y1 y, 80- Qb Qb 2 70- 60 50 40 0 without Thermal Cycle. WIthTh~lCycla. - - - - - - - - I 1 1 . a I I L. Figure 13.32 cycles; W = with thermal cycles. Fatigue data for 4350 steel (low hardness): 0 = without thermal 531 140 130 120 = 00 5 110 3 ?! si 100 90 80 0 WithoutTh.nn.lCyok0 L \. . WithThenndCvcler 1 0' 1 0' 1 o8 Fatigue Life (cycles) Figure 13.33 cycles; 1 = with thermal cycles. Fatigue data for 4340 steel (high hardness): 0 = without thermal 1 30 120 110 100 * 0 %o 00 cn t 80 70 80 t 501 I L 10' 1 0' Fatigue Life (cycles) 1 o8 Figure 13.34 cycles; 1 = with thermal cycles. 532 Fatigue data for 4340 steel (low hardness): 0 = without thermal Some Experiment a1 Studies 90 80- 70 * cn Y -60- 3 f G50- 40 30 533 I 0 Without ThOmd CyCk WithfhO~d~k8 mo - 0 - I - - - I tions for the 4350 steel with high and low hardness. The results demonstrate the considerable deterioration of the endurance limit of high carbon steel due to thermal cycles. It can be seen that the steel with higher carbon content exhibited con- siderably more reduction in the bending fatigue strength. Microhardness tests of the specimens showed no appreciable change in the hardness dis- tribution due to the thermal or mechanical stress cycles. Microstructure investigations using the scanning electron microscope showed that micro- scopic thermal cracks as well as intergranular cracks occurred in the steel with higher carbon content, which may explain the reduction in the bending fatigue life. REFERENCES 1. Seireg, A., and Weiter, E. J., “Frictional Interference Behavior Under Dynamic Excitation,” Wear, 1963, Vol. 6, pp. 66-77. 534 Chapter 13 2. 3. 4. 5. 6. 7. 8. 9. 10. I I. 12. 13. 14. 15. 16. 17. 18. 19. 20. Mindlin, R. D., “Compliance of Elastic Bodies in Contact,’, J. Appl. Mech., 1949, Vol. 16, pp. 259-268. Mindlin, R. D., Mason, W., Osmer, T., and Deresiewiez, K., “Effects of an Oscillating Tangential Force on the Contact Surfaces of Elastic Spheres,’, Proc. 1st U.S. Natl. Congr. of Appl. Mechanics, 1951, pp. 203-208. Johnson, K. L., “Surface Interaction Between Two Elastically Loaded Bodies Under Tangential Forces,** Proc. Roy. Soc. (Lond.), 1955, Ser. A, Vol. 230, pp. Goodman, L., and Bowie, G., “Experiments on Damping at Contacts of a Sphere with Flat Plates,,’ Proc. Soc. Exptl. Stress Anal., 1961, Vol. 18, pp. Klint, R. V., “Oscillating Tangential Forces on Cylindrical Specimens in Contact at Displacements Within the Region of No Gross Slip,” ASLE Trans., 1960, Vol. 3, pp. 255-264. Mason, W. P., “Adhesion Between Metals and Its Effects on Fixed and Sliding Contacts,” ASLE Trans., 1959, Vol. 2, pp. 3949. Anderson, 0. L., “The Role of Surface Shear Strains in the Adhesion of Metals,” Wear, 1960, Vol. 3, pp. 253-273. Gaylord, E. W., and Shu, H., “Coefficient of Static Friction Under Statically and Dynamically Applied Loads,” Wear, 1961, Vol. 4, p. 401. Seireg, A., and Weiter, E. J., “Behavior of Frictional Hertzian Contacts Under Impulsive Loading,” Wear, 1965, Vol. 8, pp. 208-219. Love, A. E. H., A Treatise on the Mathematical Theory of Elasticity, Cambridge University Press, London, England, 4th Edn, 1929, pp. 198-200. Goldsmith, W., Impact, Edward Arnold., London, England, 1960. Jacobsen, L. S., and Ayre, R. S., Engineering Vibrations, McGraw-Hill Book Co., New York, NY, 1958, p. 173. Parker, R. C., and Hatch, D., “The Static Coefficient of Friction and the Area of Contact,,’ Proc. Phys. Soc. London., 1950, Vol. 63 (B), p. 185. Bristow, J. R., “Mechanism of Kinetic Friction,” Nature, Lond., 1942, Vol. 149, p. 169. Seireg, A., and Weiter, E. J., “Viscoelastic Behavior of Frictional Hertzian Contacts under Ramp-Type Loads,” Proc. Inst. Mech. Engrs., 1966-67, Vol. 181, Pt 30, pp. 200-206. Lubahn, J. D., and Felgar, R. P., Plasticity and Creep of Metals, Wiley, New York, NY and London, England, 1961. Crussard, B. C., “Transient Creep of Materials,” Paper 75, Ft. Int. Conf. on Creep, Inst. Mech. Engrs, London, 1963, Vol. 2, p. 123. O’Connor, J. J., and Johnson, K. L., “The Role of Surface Asperities in Transmitting Tangential Forces Between Metals,” Am. Soc. Mech. Engrs, Paper No. 62-Lub-14, 1962. Wang, N. Z., and Seireg, A., “Thermohydrodynamic Performance of Reciprocating Slider Bearings,’, ASLE, Paper No. 87-AM-3A-3, 1987. 53 1-548. 48-54. Some Experimental Studies 535 21. Seireg, A., and Hsue, E., “An Experimental Investigation of the Effect of Lubricant Properties on Temperature and Wear in Sliding Concentrated Contacts,” ASME Trans., J. Lubr. Technol., April 1981, Vol. 103, pp. 261-265. 22. Seireg, A., and Wang, C. F., “The Effect of Repeated Thermal Shock on Bending Fatigue of High Carbon Steels,” M. E. Report, University of Wisconsin-Madison, 1980. This page intentionally left blank Author Index Aaronson, S. F., 406 Abdel-Aal, H. A., 409 Ahmadi, N., 54 Akin, L., S., 160 Alblas, J. B., 54 Albrecht, A. B., 118 Aleksanddrov, V. M., 54 Ali, S. Y., 408 Allen, C. M., 405 Alliston-Greiner, A. F., 409 Almen, J. O., 337 Alsaad, M., 159 Amontons, G., 17 Anand, A., 452 Anderson, 0. L., 534 Andersson, T., 54 Anon, 487 Ansell, C. T., 118 Appeldoorn, J. K., 18 Archard, G. D., 404 Archard, J. F., 336, 410, 421 Ari, M., 119 Armarego, E. J. A., 119 Aronov, V., 452 Arpaci, V. S., 160 Arvidson, D. B., 159 Ashford, K. S., 409 Ashworth, R. J., 406 Attia, M. H., 409, 452 Avery, H. S., 337 Ayre, R. S., 534 Aziz, S. M. A., 452 Babichev, M. A., 336 Badgley, R. H., 247 Bair, S., 250, 308 Ballegooyen, H., 248 Barber, E., 18 Barber, J. R., 159, 336 Barovich, D., 54 Barwell, F. T., 19, 406 Barwell, J. T., 336 Batchelor, G. K., 250 Beale, E. M. L., 54 Bear, H. R., 405 Beavors, G. S., 250 Bell, D. C., 487 Bell, J. C., 405, 452 Bell, T., 486 Belin, M., 159 Benecke, W., 421 Benedict, G. H., 20 Bentall, R. H., 54 Berry, G. A., 159 53 7 538 Author Index Bhat, D. G., 487 Bhushan, B., 485 Bill, R. C., 410 Block, H., 18, 158, 159, 336, 405, 409 Bohn, M. S., 407 Bollier, R. D., 487 Boncompain, R., 19, 249, 250 Booker, J. F., 247 Booser, E. R., 19 Boussages, P., 247 Boussinesq, J., 22 Bowden, F. P., 17, 120, 337, 409 Bowie, G., 534 Boyd, J., 250 Braun, M. J., 249 Bristow, J. R., 534 Brockley, C. A., 452 Brown, R. H., 119 Brown, T., 19 Brunton, J. H., 337 Burdekin, M., 452 Burton, R. A., 159 Busch, J., 486 Butler, R. H., 405 Byer, J. E., 406 Calladine, C. R., 54 Cameron, A., 17, 20, 247, 248, 308 Cameron, J. R., 409 Cameron, R., 20 Campbell, W. E., 337 Carl, T. E., 248 Carper, H. J., 308 Carter, T. L., 405, 406 Casacci, S., 247 Cattaneo, C., 98 Chanceller, W., 408 Chand, R., 98 Chandiramani, K. L., 118 Chang, C. M., 404 Chang, C. T., 409 Chang, J. C., 421 Chapin, H. J., 337 Charnes, A., 247 Cheng, H. S., 17, 19, 20, 158, 159, 250, Cheung, J. B., 407 Chichinadze, A. V., 406 Chiu, Y. P., 55 Choa, S., 408 Choi, D., 99 Cole, J. A., 247 Comniou, M., 54 Conway, H. D., 98 Conry, T. F., 20, 54, 98, 159, 308, 405 Cook, N. H., 118 Cope, W., 19, 248 Cottle, R. W., 53 Coulomb, C. A., 17 Courtney-Pratt, J. S., 17 Crook, A. W., 20, 308,405 Crow, S. C., 407 Crussard, B. C., 534 Csepregi, L., 421 308,404 Dandage, S., 19, 247, 248 Dantzig, G. W., 53, 99 Davenport, C., 18 Dawson, P. H., 404 David, F. W., 160 Day, A. J., 406 de la Hire 6 Deng, K., 421 Denton, D. D., 17, 421, 422 Deresiewicz, K., 98, 534 Desaguliers, J., 2 Dike, G., 407 Dismukes, J., 486 Dooner, D., 405 Dorn, W. S., 53 Doshi, R. C., 19, 248 Dowson, D., 17, 19, 20, 21, 159, 248, 249, 250, 307,404 Drozdov, Y. N., 21, 308 D’ Silva, N. S., 409 D’ Souza, A. F., 452 Dubois, G., 19, 248 Dundurs, J., 98 du Plessis, M. P., 407 Author Index 539 Dyson, A., 20, 308 Earles, S. W. E., 452 Eisner, E., 17 Elbella, A. M., 407 Elkholy, A. H., 452 El-Sherbiny, M., 406 Eng, B., 18 Erdogan, F., 98 Evans, D. J., 406 Ezzat, H., 19, 248, 249, 250 Fazekas, G. A. G., 406 Felgar, R. P., 534 Feng, I. M., 404,409 Fensel, P. A., 406 Ferron, J., 19, 250 Fessler, H., 405 Field, J. E., 337, 486 Fielding, B., 451 Fillon, M., 19, 249, 250 Fogg, A., 18, 247 Francavilla, A., 98 Frank, M., 53 Franklin, S., 486 Fredriksson, B., 54 Freeman, P., 18 Frene, J., 19, 249, 250 Fujita, H., 17, 421 Furey, M. J., 18 Gair, F. C., 404 Galin, L. A., 53 Gao, R., 486 Garside, B. L., 487 Gartner, F., 404 Gavrikov, Y. A., 21 Gaylord, E. W., 534 Gecim, B., 409 Georges, J. M., 159 Ghodssi, R., 17, 421, 422 Gigl, K., 487 Godfrey, D., 337, 452 Goldsmith, W., 534 Goodier, J. N., 99 Goodman, L., 534 Goriacheva, I. G., 98 Gough, J. H., 337 Graham, D., 487 Greenwood, J. A., 21, 54, 98, 120,409, Grubin, A. N., 17, 307 Gunter, E. J., 247 Gupta, B. K., 485 452 Ha, J. Y., 119 Hach, D., 534 Hahn, E. J., 249 Hale, T., 487 Halling, J., 485 Hamrock, B. J., 160 Hannoosh, J. G., 159 Hansen, P. K., 19 Harding, P. R., 406 Hardy, W. B., 18 Harline, S. D., 159 Harris, T. A., 406 Hasegawa, M., 119 Hashish, M., 407 Hatschek, R. L., 487 Haug, E., 98 Haworth, R. D., 337 Hayashi, T., 421 Hays, D., 336 Hazelrigg, G. A., 421 He, J., 486 Helfet, A. J., 408 Heminover, D., 487 Hendricks, R. C., 249 Hertz, H., 97 Hewitt, W. R., 487 Higginson, G. R., 307, 404 Hill, J. R. M., 407 Hirst, W., 18, 20, 336, 404 Hohl, M., 408 Holm, R., 120, 248 Holmberg, K., 486 Hood, M., 407 Houjoh, H., 451 Howland, B., 17 Hsue, E. Y., 308, 535 [...]... Reciprocating slider bearings, 5 15 Reciprocating sliding motion, 441 Residual compound, 520 Rock cutting, 376 Rolling element bearings, 349 contact stress, 351 fatigue life, 353 hollow rollers, 354 lightly loaded, 354 minimum film thickness, 351 Rolling friction, 25 1 laws of, 25 1 Rolling/sliding, 25 1 coating thickness factor, 27 9 elastohydrodynamic, 25 3 hydrodynamic, 25 2 film thickness, 25 2, 25 4, 25 5... 30 1 mechanisms of, 6 in micromechanisms, 4 numerical results, 304 procedure for calculation, 300 regimes, 26 6 rolling, 27 1 in thermal regime, 27 2 transition coefficient, 27 1 unlayered surfaces, 30 1 Frictional noise, 423 in gears, 4 32 Frictional resistance in soil, 376 Frosting, 3 10 Galling, 3 12 Gears: allowable oil sink temperature, 343 contact stress, 347 dedendum wear, 348 instantaneous temperature... Delamination wear, 33 1 Diffusivity, 33 1 Elastic foundation, beams on, 31 Elastohydrodynamic film thickness, 150 Electron beam gun evaporation, 456 Erosive wear, 335 Flaking, 31 1 Fretting corrosion, 333 Friction: in boundary lubrication, 4, 7 coating effects, 27 6, 28 0 domains of, 26 0 in elastohydrodynamic lubrication, 14, 25 6 -25 9 empirical formulas, 27 0 experimental evaluation, 26 4 in fluid film lubrication, ... 408 Schintlmeister, W., 487 Schneider, S J., 25 0 Schultz, D P., 421 Author Index Schwartz, J., 98 Scott, D., 410 Seif, M A., 409 Seireg, A., 17, 18, 19, 54, 98, 119, I 160, 24 7, 24 8, 25 0, 308, 405, 406, 408, 410, 421 , 422 , 4 52, 486, 533, 534, 535 Senturia, S D., 421 Shalkey, A T., 336 Shareef, I., 4 52 Sharma, J P., 18 Shaw, M C., 159, 24 7 Sherbiney, M A., 485 Sheu, S., 21 , 160, 309 Shibata, H., 421 Shkurenko,... coefficient of friction, 504 Layered contacts, 135 , 153 Layered solids, 135 LIGA process, 41 1 Lubrication: boundary, 7, 8, 9 elastohydrodynamic, 14 fluid film, 9 thermohydrodynamic, 12, 13 Microelectromechanical systems (MEMS), 41 1 Microcracks, 1 17 Microcutting, 1 17, 326 Microfabrication, 41 1 Microhardness, 320 , 321 Micromechanisms, 4 1 1 static friction, 4 12 rolling friction, 4 12, 414, 417 Micromotors,... 345 [Gears] lubrication factor, 344 oil film temperature, 341 oil film thickness, 3 42 stressed zone, 348 surface failure, 339 thermal shock, 347 wear avoidance, 343 Heat partition, 135 , 1 42, 158 Heat penetration, 123 , 124 Hydrodynamic equations, 161 Hydrodynamic lubrication, rigid cylinders 25 2 Hysteresis, 61, 418 Impulsive loading, 497 Intergranular cracks, 533 Isoviscous analysis, 22 3 Kinetic coefficient... N., 421 Yu, S., 407 Yura, S., 17, 421 Zelen, N., 405 Zhang, G M., 119 Zhao, G., 119 Zichichi, C., 487 Zienkiewicz, 0 C., 98, 24 9 Zimmy, L., 409 This page intentionally left blank Subject Index Abrasive jets, 374 Abrasive wear, 3 32 Adhesion, 2, 4, 113 Adhesive wear, 3 12 Animal joints, 377 Arc evaporation, 455, 456 Asperity interaction, 141 Bearings: automated design, 196 damping coefficients, 174 design. .. 19, 24 8 Mason, W P., 534 Matsuhisa, H., 451 Matsuura, T., 17, 421 Matthews, A., 486 Matthewson, M J., 54 Maugis, D., 54 McCool, J I., 4 52 McKee, S A., 24 7 McKee, T R., 24 7 McNulty, G., 4 52 Mehregany, M., 421 Meijers, P., 54 Meille, G., 159 Meng, H C., 409 Mindlin, R D., 98, 409, 534 Miranda, A A., 24 9 Misharin, J A., 20 , 308 Mitchell, J R., 24 8 Mogami, T., 408 Monza, J C., 407 Moore, A J., 17, 20 ,... Scoring, 329 , 339 Self-excited vibrations, 437 Shear zone, 23 2 empirical formula, 23 5 Sinusoidal force excitation, 488 Sommerfeld number, 164, 165 modified, 21 4 slider bearing, 23 7 Sputter ion plating, 455 Stick slip, 443 547 Surface coating, 453 diamond coating, 466 failure mechanisms, 470 hard coatings, 460 life improvement, 485 soft coatings, 458 temperature rise, 473, 477 thermal stress, 4 82 Surface... Lebeck, A O., 24 9 Lechner, H., 405 Lee, C K., 4 52 Lemanski, A J., 21 Leslie, J., 3 Li, Y., 308 Lichtman, J Z., 338 Lieblein, J., 405 Lim, M G., 421 Limpert, R., 406 Lindberg, R A., 21 , 119 Ling, F F., 17, 159 Lingard, S., 19 Love, A E H., 53, 99, 534 Lubahn, J D., 534 Lubkin, J L., 99 Luck, J V., 408 Ludema, K C., 409 Author Index Lund, J W., 24 6, 24 7 Lundberg, G., 97 Lyon, R., 451 Macchia, D., 24 7 MacCurdy, . minimum film thickness, 351 laws of, 25 1 coating thickness factor, 27 9 elastohydrodynamic, 25 3 hydrodynamic, 25 2 film thickness, 25 2, 25 4, 25 5 Rolling friction, 25 1 Rolling/sliding,. regimes, 26 6 rolling, 27 1 in thermal regime, 27 2 transition coefficient, 27 1 unlayered surfaces, 30 1 in gears, 4 32 14, 25 6 -25 9 Frictional noise, 423 Frictional resistance in soil, 376. 150 Flaking, 31 1 Fretting corrosion, 333 Friction: in boundary lubrication, 4, 7 coating effects, 27 6, 28 0 domains of, 26 0 in elastohydrodynamic lubrication, empirical formulas, 27 0 experimental