Đề thi thử đại học Toán 2010
Trn S Tựng Trung tõm BDVH & LTH QUANG MINH s 7 THI TH I HC V CAO NG NM 2010 Mụn thi: TON Thi gian: 180 phỳt (khụng k thi gian phỏt ) I. PHN CHUNG (7 im) Cõu I (2 im): Cho hm s x y x 24 1 - = + . 1) Kho sỏt s bin thiờn v v th (C) ca hm s. 2) Tỡm trờn th (C), hai im i xng nhau qua ng thng MN, bit M(3; 0), N(1; 1). Cõu II (2 im): 1) Gii phng trỡnh: x xxx 4 137 4coscos2cos4cos 242 --+= 2) Gii h phng trỡnh: xx xx3.2321=++ Cõu III (1 im): Tớnh tớch phõn: I = x x edx x 2 0 1sin 1cos p ổử + ỗữ + ốứ ũ Cõu IV (1 im): Tớnh th tớch khi chúp S.ABC, bit SA = a, SB = b, SC = c, ã ã ã ASBBSCCSA 000 60,90,120===. Cõu V (1 im): Cho cỏc s dng x, y, z tho món: xyz = 8. Tỡm giỏ tr nh nht ca biu thc: P = xyz 222 222 log1log1log1+++++ II. PHN T CHN (3 im) 1. Theo chng trỡnh chun Cõu VI.a (2 im): 1) Trong mt phng vi h to Oxy, cho 2 ng thng d 1 : xy10++= v d 2 : xy210--= . Lp phng trỡnh ng thng d i qua M(1; 1) v ct d 1 , d 2 tng ng ti A, B sao cho MAMB20+= uuuruuur r . 2) Trong khụng gian vi h to Oxyz, cho mt phng (P): xyz2210+-+= v hai im A(1; 7; 1), B(4; 2; 0). Lp phng trỡnh ng thng d l hỡnh chiu vuụng gúc ca ng thng AB lờn mt phng (P). Cõu VII.a (1 im): Kớ hiu x 1 , x 2 l cỏc nghim phc ca phng trỡnh xx 2 2210-+= . Tớnh giỏ tr cỏc biu thc x 2 1 1 v x 2 2 1 . 2. Theo chng trỡnh nõng cao Cõu VI.b (2 im): 1) Trong mt phng vi h to Oxy, cho ng trũn (C): xyxy 22 2230+---= v im M(0; 2). Vit phng trỡnh ng thng d qua M v ct (C) ti hai im A, B sao cho AB cú di ngn nht. 2) Trong khụng gian vi h to Oxyz, cho 3 im A(1; 0; 0), B(0; 2; 0), C(0; 0; 3). Tỡm to trc tõm ca tam giỏc ABC. Cõu VII.b (1 im): Tỡm cỏc giỏ tr x, bit trong khai trin Newton ( ) x n x 5 lg(103)(2)lg3 22 -- + s hng th 6 bng 21 v nnn CCC 132 2+= . ============================ Trn S Tựng Hng dn: I. PHN CHUNG Cõu I: 2) Phng trỡnh ng thng MN: xy230++=. Gi I(a; b) ẻ MN ị ab230++= (1) Phng trỡnh ng thng d qua I v vuụng gúc vi MN l: yxab2()=-+. Honh cỏc giao im A, B ca (C) v d l nghim ca phng trỡnh: x xab x 24 2() 1 - =-+ + (x ạ 1) xabxab 2 2(2)240---++= (x ạ 1) A, B i xng nhau qua MN I l trung im ca AB. Khi ú: AB I xx x 2 + = ab a 2 4 - = (2) T (1) v (2) ta c: ab ab a 230 2 4 ỡ ++= ù - ớ = ù ợ a b 1 2 ỡ = ớ =- ợ Suy ra phng trỡnh ng thng d: yx24=- ị A(2; 0), B(0; 4). Cõu II: 1) PT x x 3 cos2cos2 4 += (*). Ta cú: x x cos21 3 cos1 4 ỡ Ê ù ớ Ê ù ợ . Do ú (*) x x cos21 3 cos1 4 ỡ = ù ớ = ù ợ xk l x 8 3 p p ỡ = ù ớ = ù ợ xm8 p = . 2) PT x xx3(21)21-=+ (1). Ta thy x 1 2 = khụng phi l nghim ca (1). Vi x 1 2 ạ , ta cú: (1) x x x 21 3 21 + = - x x x 21 30 21 + -= - t xx x fx xx 213 ()332 2121 + =-=-- -- . Ta cú: x fxx x 2 61 ()3ln30, 2 (21) Â =+>"ạ - Do ú f(x) ng bin trờn cỏc khong 1 ; 2 ổử -Ơ ỗữ ốứ v 1 ; 2 ổử +Ơ ỗữ ốứ ị Phng trỡnh f(x) = 0 cú nhiu nht 1 nghim trờn tng khong 11 ;,; 22 ổửổử -Ơ+Ơ ỗữỗữ ốứốứ . Ta thy xx1,1==- l cỏc nghim ca f(x) = 0. Vy PT cú 2 nghim xx1,1==- . Cõu III: Ta cú: xx x 2 1sin1 1tan 1cos22 ổử + =+ ỗữ +ốứ . Do ú: I = x x edx 2 2 0 1 1tan 22 p ổử + ỗữ ốứ ũ = x xx edx 2 2 0 1 1tantan 222 p ổử ++ ỗữ ốứ ũ = xx xx edxedx 22 2 00 1 1tantan. 222 pp ổử ++ ỗữ ốứ ũũ t x ue x dvdx 2 1 1tan 22 ỡ = ù ổử ớ =+ ỗữ ù ốứ ợ ị x duedx x v tan 2 ỡ = ù ớ = ù ợ ị I = xxx xxx eedxedx 22 2 0 00 tantantan 222 pp p -+ ũũ = e 2 p . Cõu IV: Trờn AC ly im D sao cho: DS ^ SC (D thuc on AC) ị ã ASD 0 30= . Ta cú: ASD CSD ASSD S ADa CDSc CSSD 0 1 sin30 2 1 2 . 2 === ị a DADC c2 =- uuuruuur ị cSAaSC SD ca 2 2 + = + uuruur uuur ị cSAaSCc SDSBSBSASB caca 22 . 22 ổử + == ỗữ ++ ốứ uuruur uuuruuruuruuruur = cabc ab caca 0 2 .cos60 22 = ++ Trn S Tựng v cSAaSCcaSASC SD ca 2222 2 2 44. (2) ++ = + uuruur = acacacac caca 22222222 22 423 (2)(2) +- = ++ ị SD = ac ca 3 2 + Mt khỏc, ã abc SDSB ca SDB SDSB ac b ca .3 2 cos .3 3 . 2 + === + uuuruur ị ã SDB 6 sin 3 = ã SDBCSDB VSCSSCSDSBSDB 11 sin 36 == = abc ca 2 2 . 62+ M ASDB CSDB V ADa VDCc2 == ị ASDBCSDB aabc VV cca 2 2 . 2122 == + Vy: SABCASDBCSDB abcabc VVVabc ca 22 222 12212 ổử + =+== ỗữ + ốứ . Cõu V: t axbycz 222 log,log,log=== ị abcxyz 22 log()log83++=== ị P = xyz 222 222 log1log1log1+++++ = abc 222 111+++++ t manbpc(;1),(;1),(;1)=== rrr . Khi ú: P = mnpmnp++++ rrrrrr = abc 22 ()(111)+++++ = 32 Du "=" xy ra abc1=== xyz2===. Vy MinP = 32 khi xyz2===. II. PHN T CHN 1. Theo chng trỡnh chun Cõu VI.a: 1) Gi s A(a; a 1) ẻ d 1 , B(b; 2b 1) ẻ d 2 . MAaaMBbb(1;2),(1;22)=---=-- uuuruuur MAMB20+= uuuruuur ab ab 2210 24220 ỡ -+-= ớ --+-= ợ a b 0 3 ỡ = ớ = ợ ị A(0; 1), B(3; 5) ị Phng trỡnh d: xy210--= . 2) PTTS ca AB: xt yt zt 43 25 ỡ =+ ù =- ớ ù = ợ ị Giao im ca AB vi (P) l: M(7; 3; 1) Gi I l hỡnh chiu ca B trờn (P). Tỡm c I(3; 0; 2). Hỡnh chiu d ca ng thng AB l ng thng MI. ị Phng trỡnh ng thng d l: xt yt zt 34 3 2 ỡ =- ù = ớ ù =+ ợ Cõu VII.a: PT cú cỏc nghim ii xx 12 11 ; 22 +- == ị ii xx 22 12 11 2;2=-=. 2. Theo chng trỡnh nõng cao Cõu VI.b: 1) (C) cú tõm I(1; 1) v bỏn kớnh R = 5 . IM = 25< ị M nm trong ng trũn (C). Gi s d l ng thng qua M v H l hỡnh chiu ca I trờn d. Ta cú: AB = 2AH = IAIHIHIM 2222 2252523-=--=. Du "=" xy ra H M hay d ^ IM. Vy d l ng thng qua M v cú VTPT MI (1;1)=- uuur ị Phng trỡnh d: xy20-+=. 2) Phng trỡnh mp(ABC): xyz 1 123 ++=. Gi H(x; y; z) l trc tõm ca DABC. Ta cú: AHBC BHAC HP() ỡ ^ ù ớ ^ ù ẻ ợ uuuruuur uuuruuur yz xz yz x 230 30 1 23 ỡ -+= ù ù -+= ớ ù ++= ù ợ x y z 36 49 18 49 12 49 ỡ = ù ù ù = ớ ù ù = ù ợ ị H 361812 ;; 494949 ổử ỗữ ốứ . Trần Sĩ Tùng Câu VII.b: Phương trình nnn CCC 132 2+= Û nnn 2 (914)0-+= Û n 7= Số hạng thứ 6 trong khai triển ( ) x x 7 5 lg(103)(2)lg3 22 -- + là ( ) ( ) x x C 2 5 5 5lg(103)(2)lg3 7 22 -- Ta có: x x C 5lg(103)(2)lg3 7 .2.221 -- = Û x xlg(103)(2)lg3 21 -+- = Û x xlg(103)(2)lg30-+-= Û xx2 (103).31 - -= Û xx2 310.390-+= Û xx0;2== ===================== . tõm BDVH & LTH QUANG MINH s 7 THI TH I HC V CAO NG NM 2010 Mụn thi: TON Thi gian: 180 phỳt (khụng k thi gian phỏt ) I. PHN CHUNG (7 im). CHUNG (7 im) Cõu I (2 im): Cho hm s x y x 24 1 - = + . 1) Kho sỏt s bin thi n v v th (C) ca hm s. 2) Tỡm trờn th (C), hai im i xng nhau qua ng thng