1. Trang chủ
  2. » Khoa Học Tự Nhiên

Chương 5: DETECTER GHI NHẬN BỨC XẠ docx

45 1.3K 18

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

MỤC LỤC MỤC LỤC 1 CHƯƠNG 5: DETECTOR GHI NHẬN BỨC XẠ 2 TÀI LIỆU THAM KHẢO 45 Trang 2 CHƯƠNG 5: DETECTOR GHI NHẬN BỨC XẠ Hạt nhân phóng xạ được xác định về mặt định tính và định lượng bằng cách dựa trên sự tương tác bức xạ phát ra với vật chất dùng bởi detector bức xạ. Một hệ thống đo hoạt độ phóng xạ thông thường bao gồm 2 phần: detector bức xạ và thiết bị xử lý tín hiệu và chỉ thị kết quả đo. Một số cơ chế tương tác bức xạ được mô tả trong phần (4.3). Trong phần này chỉ có 2 loại đó là kích thích và ion hóa nó được sử dụng rộng rãi như thành phần cơ bản của detector. Hai quá trình này là phương pháp sơ cấp nhờ những hạt tích điện mất năng lượng trong vật chất. Những hạt không tích điện, như tia gamma được phát hiện nhờ sự tương tác ion của các hạt tích điện thứ cấp, những thông tin đó đã được mô tả trong phần 4.3.3. Quá trình thứ ba, sự phân ly phân tử liên quan trong hóa học và phương pháp chụp ảnh của sự phát bức xạ. Quá trình này, thông thường không được dùng cho việc đo số lượng của hạt nhân phóng xạ, mặc dầu quan trọng trong nhiều khía cạnh của việc sử dụng và duy trì bức xạ. Phần hai của bất cứ hệ thống đo bức xạ nào đều là thiết bị điện biến đổi tín hiệu từ detector sang một dạng dữ liệu phù hợp. Đối với detector dựa vào sự ion hóa của chất khí hoăc chất bán dẫn, tín hiệu gồm một điện tích. Đối với các detector nhấp nháy, tín hiệu là một lượng tử phát sáng (cái có thể được biến đổi thành điện tích). Các thiết bị điện liên kết khuếch đại điện tích vào trong dòng hoặc điện thế ngoài được đo một cách dễ dàng. Điện thế ngoài có thể được dùng để đếm số xung trong một thời gian cho trước của hệ thống đếm, để chọn lọc biên độ xung trong phổ năng lượng bức xạ hoặc để cung cấp như một tín hiệu hồi tiếp trong quá trình hệ thống điều khiển. Chương này trình bày sai số ngẫu nhiên trong sự đo lường bức xạ, mà cũng liên quan đến quá trình thống kê trong sự chuyển giao và khuếch đại năng lượng Trang 3 bức xạ trong bất kỳ hệ thống ghi nhận nào và liên quan đến quá trình thống kê phân rã hoạt độ phóng xạ. 5.1. CÁC NGUYÊN TẮC GHI NHẬN Hiện nay, có hai phương pháp ghi nhận bức xạ chính sử dụng các detector, đó là dựa vào sự ion hóa của chất khí (detector tỉ lệ và G-M), các tinh thể được kích thích do sự phát quang (detector nhấp nháy) hoặc sự ion hóa của vật rắn (detector bán dẫn). Nguyên tắc của sự ion hóa trong chất bán dẫn thì tương tự như trong chất khí, ngoại trừ, điện tích được di chuyển nhờ các electron và proton trong tinh thể thay vào đó là các electron và các ion dương trong nguyên tử khí. Các chất bán dẫn ngày càng được sử dụng rộng rãi nhất trong detector ghi nhận bức xạ khi công nghệ ngày càng phát triển. Các hệ thống đo hoạt độ phóng xạ dạng xung, mà đầu ra của detector được xem như một chuỗi tín hiệu điện độc lập trong thời gian ấn định. Mỗi tín hiệu đặc trưng cho sự tương tác của một đơn vị bức xạ với detector. Hệ thống không tín hiệu thì thông thường được sử dụng trong những thiết bị đo bức xạ loại khảo sát và không được sử dụng rộng rãi cho việc đo hạt nhân phóng xạ, được xem như một hệ thống phát hiện ở mức trung bình. Các phương pháp đo hoạt độ phóng xạ hiện đại không chỉ xác định số bức xạ ghi nhận được trên đơn vị thời gian (tốc độ đếm) nhưng ngoài ra chúng còn cho phép tách các bức xạ theo loại và năng lượng ở những mức độ khác nhau. Các hệ thống với sự phân giải năng lượng được gọi là phổ kế và có thể dùng đo bức xạ tia alpha, beta và gamma, phổ kế tia gamma thì sử dụng đặc biệt cho sự phân tích hạt nhân phóng xạ. Trong phổ kế tia gamma, sự khuếch đại của mỗi tín hiệu điện thì tương ứng với năng lượng tia gamma còn lại trong detector. Thiết bị phân loại (kỹ thuật phân tích biên độ xung) có thể tách các loại xung nhờ biên độ và tần số. Kỹ thuật phân tích biên độ xung đa kênh, hoạt động trong sự liên kết với thiết bị biến đổi số tương tự (ADC), một thiết bị lưu trữ phù hợp (bộ nhớ) và sự cung cấp thiết bị dữ liệu thông thường được sử dụng để phân tích hỗn hợp phức tạp của hạt Trang 4 nhân phóng xạ phát tia gamma mà không cần sự phân tích hóa học của hỗn hợp nguyên tố. Khi được yêu cầu phân tích nhiều loại nguyên tố cùng lúc, thông tin trong bộ nhớ được máy tính xử lý dữ liệu một cách hoàn chỉnh. Sự ghi nhận đặc tính điện của các bức xạ đặc biệt từ nhiều hạt nhân phóng xạ riêng biệt cũng có thể được thực hiện nhờ sử dụng phép đo trùng hợp ngẫu nhiên. Đối với một sự kiện được thu nhận khi một hạt nhân phóng xạ riêng biệt phân rã. Sự ảnh hưởng của hai bức xạ liên tiếp và đồng thời phải được khảo sát trong một thời gian xác định trước. Thông thường hai ghi nhận có thể là một tia beta và tia gamma theo sau như trong 2.3-m 28 Al, hai tia gamma liên tiếp như trong 60 Co hoặc hai photon phân rã xảy ra trong bất kỳ sự phát positron nào. Vì vậy, hạt nhân phóng xạ phù hợp nhất cho sự đo lường bằng phương pháp ngẫu nhiên thì thông thường cũng được sử dụng cho sự phân rã hóa học phức tạp hơn. Hệ thống này được bàn luận trong chương 6. 5.2. DETECTOR CHỨA KHÍ Detector ghi nhận bức xạ chứa khí là một trong những loại cũ nhất của detector ghi nhận bức xạ có thể sử dụng được và vẫn được sử dụng một cách rộng rãi. Các loại detector bao gồm buồng ion hóa, buồng tỉ lệ, ống G-M. Các loại detector này có đặc điểm chung là một buồng chứa khí với điện cực ở giữa, cách nhiệt với thành buồng. Một điện thế cung cấp cho điện cực ở giữa tạo ra một trường tĩnh điện ngang qua buồng. Do đó, các cặp ion là kết quả từ sự bức xạ ion hóa được gia tốc hướng về các điện cực. Sơ đồ hệ thống của cửa sổ cuối đặc trưng cho detector G-M và ống tỉ lệ được trình bày trong hình 5.1. Sự tập trung các ion đã gây ra sự ion hóa các nguyên tử khí trong buồng tạo ra một tín hiệu điện. Tín hiệu này có thể gồm các electron tự do hoặc các cặp ion, đó là các electron và các ion dương. Trạng thái của các electron tự do và các ion dương phụ thuộc vào tính chất của khí trong buồng và điện thế cung cấp. Vì thậm chí sự dịch chuyển ion trong chất khí tương đối chậm so với sự dịch chuyển các electron, các detector thu nhận tín hiệu ion để cho sự tập trung nhanh của các electron. Trang 5 Điều đó được ghi chú trong phần 4.3.2, rằng độ hụt trung bình theo năng lượng của một hạt tích điện trong sự ion hóa nguyên tử khí khoảng 34 eV/ip. Vì vậy, nếu tổng năng lượng của một hạt beta được dùng cho sự ion hóa kích thích trong detector chứa khí thì số hạt electron tạo ra sẽ là: Nếu tổng các hạt electron này được tích tụ tại điện cực ở giữa thì điện tích sẽ là: Q = en = 1.6. 10 -19 n (C) Nếu N(hạt/giây) được dừng lại hoàn toàn trong detector dẫn đến cường độ dòng sẽ là: I = QN = 1.6.10 -19 nN (A) Ví dụ, một nguồn beta có N=100 (hạt/giây) đi vào detecter với năng lượng trung bình là 1 MeV. Sẽ tạo ra một cường độ dòng là ( ) 34 E ev n β = Hình 5.1: Sơ đồ hệ thống của các Detector ion hóa khí: (a) Buồng tỉ lệ dòng khí. (b) …ng G-M cửa sổ cuối [From Bernard G. Harvey, Introduction to Nuclear Physic and Chemistry, 2 nd Ed (Prentice-Hall Inc, Englwood Cliffs, N. J, 1969) By permission of the publisher] Trang 6 I = 1,6.10 -19 .10 6 /34.10 2 = 4,7.10 -13 A. Như vậy, cường độ dòng dễ dàng được đo nhờ một thiết bị đo điện. Thiết bị đo điện gồm nhiều loại có thể đo cường độ dòng trong phạm vi từ 10 -8 đến 10 -14 (A) và là những thiết bị đọc thông thường cho buồng ion hóa loại dòng trung bình. Giả sử, số hạt electron đã tập trung trong buồng ion hóa thì tương ứng với số hạt như thế đã dừng trong buồng trên một đơn vị thời gian. Tuy nhiên, số hạt electron tồn tại đã tập trung nhiều với điện thế cung cấp cho buồng. Tại điện thế thấp sự tích điện tại điện cực đối lập với sự mất dần của các cặp ion bằng sự kết hợp, biến thành nguyên tử trung hòa. Tại điện thế cao, sự ion hóa sơ cấp các electron tự do là nguyên nhân để bức xạ đạt động năng đủ trong suốt quá trình gia tốc chúng hướng tới điện cực làm phát sinh những hạt electron thứ cấp (cái thêm vào để tích điện) quá trình này được gọi là khuếch đại khí. Mối quan hệ giữa số hạt electron đã tập trung trên sự kiện hoặc biên độ xung và điện thế cung cấp trong một buồng đặc trưng hình trụ được mô tả trong hình 5.2 cho hạt alpha và hạt beta. Giới hạn điện thế thích hợp được chia thành 5 miền. Hai miền đầu thiết lập phạm vi của sự ion hóa sơ cấp hoặc ion hóa đơn. Trái lại, miền cuối thứ 3 bao phủ vùng khuếch đại khí mà các electron thứ cấp thêm vào điện tích tập trung. Hình 5.2: Kích thước tương đối của biên độ xung trong buồng ion hóa như một hàm đặc trưng của điện áp cung cấp cho hạt alpha và beta Điện thế cung cấp Biên độ xung tương đối Trang 7 Trong miền tái hợp, vận tốc trung bình của các ion đã gia tốc hướng về điện cực tăng lên cùng với điện thế, thời gian sử dụng cho sự tái hợp giảm và hiệu suất của điện tích tăng. Do vậy, chiều cao tín hiệu đi ra tăng với điện thế cung cấp. Trong miền bão hòa, sự tái hợp yếu hơn trở nên không đáng kể vì thời gian cần thiết cho sự tập trung của tất cả các ion trong buồng trở nên rất ngắn. Điện tích tập trung được xác định bởi (2) và độ cao xung tỉ lệ với năng lượng bức xạ đã sử dụng trong buồng. Vì sự còn lại của năng lượng đàn hồi cùng số cặp ion được tích tụ. Do vậy, độ cao tín hiệu không phụ thuộc vào điện thế cung cấp. Ngoài ra, miền này được gọi là miền buồng ion hóa, do tại điện thế này, dòng bão hòa tương ứng với năng lượng trung bình còn lại trong buồng ion hóa. Buồng ion hóa hoạt động như một hệ thống detector ghi nhận bức xạ mức trung bình. Cũng thế, do quãng đường hạt alpha tương đối ngắn, thậm chí trong chất khí buồng ion hóa có thể được sử dụng kết hợp với một kỹ thuật phân tích độ cao xung như phổ kế hạt alpha. Điều đó cũng không liên quan đến sự đo lường của những hạt nhân phóng xạ vì thế buồng ion hóa thường không được sử dụng trong kỹ thuật phân tích kích hoạt. Hai miền đầu này được trình bày trong hình 5.2 là các miền ion hóa đơn giản. Khi điện thế cung cấp một trường vượt quá mức trong khoảng 200V/cm, điện tích tích tụ được tăng lên nhờ quá trình khuếch đại khí, trong đó, các electron gia tốc đạt động năng phù hợp để tạo ra sự ion hóa nhờ va chạm. Hệ số nhân trong miền tỉ lệ tăng nhanh với điện thế cung cấp tăng. Do đó, nó không phụ thuộc vào sự ion hóa ban đầu, kích thước xung vẫn tương ứng với cường độ còn lại ban đầu. Tuy nhiên, khi điện thế tiếp tục được tăng sang miền giới hạn tỉ lệ, mật độ của điện tích thứ cấp làm cản trở quá trình khuếch đại. Sự khác nhau trong độ cao tín hiệu ra không còn tỉ lệ với sự ion hóa ban đầu nữa. Mối quan hệ giữa độ cao xung và năng lượng bị khử chậm. Trong miền G-M, detector tạo ra một xung liên tục vì độ lớn của điện tích tích tụ trở nên độc lập với sự ion hóa sơ cấp. Một hạt anpha và một hạt beta phát ra cùng một kích thước xung cuối, bất chấp số ion hóa sơ cấp đã tạo ra trong ống G-M. Vì vậy, ống G-M không hiệu quả cho kỹ thuật phân tích biên độ xung nhưng bởi vì nó Trang 8 tương đối đơn giản và tín hiệu ra với biên độ lớn, nó vẫn là một detector có ích cho kỹ thuật phân tích hạt nhân phóng xạ của các nguyên tố hóa học riêng lẻ. Khi điện thế qua một detector chứa khí được tăng lên đều, buồng hoạt động như một ống tiếp tục phóng điện có thể sử dụng cho sự ghi nhận bức xạ. Sự hoạt động kéo dài của buồng chứa khí trong miền phóng điện có thể nguy hiểm, ảnh hưởng đến tính hiệu quả của buồng như một thiết bị ghi nhận bức xạ. 5.2.a. Buồng Tỉ Lệ: Buồng tỉ lệ đã trở thành loại thông dụng nhất của detector cho việc đo hoạt độ phóng xạ beta trong mẫu chất rắn hoặc khí. Buồng tỉ lệ kết hợp ưu thế của buồng ion hóa trong sự duy trì tỉ lệ giữa tín hiệu ra và sự ion hóa sơ cấp và ống G-M trong sự đạt được một xung đủ mạnh khuếch đại khi cho mỗi sự kiện đã tìm ra. Nhiều ống đếm tỉ lệ thương mại có thể dùng được. Chúng thông thường chứa một ống detector dạng hình chuông, đã mô tả trong hình 5.1a, thông qua một máy đếm dòng khí. Thông thường khí được coi là hỗn hợp của 10% methane và 90% Argon. Hỗn hợp khí đặc biệt này được xem như một sự trung hòa tốt giữa khí Argon tinh khiết và khí Mathane tinh khiết. Khí Argon tinh khiết không thích hợp với hệ đếm khí vì sự tồn tại của một trạng thái kích thích lâu dài của các ion mà nó gây ra xung sau và nồng độ cao hơn của Methane yêu cầu sự hoạt động ở điện thế lên tới 4000V. Tất cả những điều trên được trình bày trong hình 5.2. Những khí khác đều tốt nhưng đắt hơn. Các mẫu đếm thông thường được đặt trong một vài dạng hình đĩa hoặc mảnh kim loại tròn và được đặt dưới cửa mỏng của ống đếm. Các detector có thể dùng được với độ dày cửa phía cuối mỏng bằng 80 µg/cm 2 . Như thế những cửa siêu mỏng (theo hình 4.6) cho phép hạt beta năng lượng xấp xỉ 0.1 MeV đi vào với một sự giảm cường độ chỉ 50% vì sự phát hạt beta năng lượng rất thấp như 14 C (E β max = 0.156 MeV) và 3 H (E β max = 0.018MeV). Buồng tỉ lệ không cửa (ví dụ mẫu được đặt trực tiếp trong buồng đếm) có thể được sử dụng. Nhiều vấn đề liên quan tới cửa sổ cuối của các mẫu đếm chất rắn trong mảnh kim loại tròn được ôn lại trong phần 6.32. …ng đếm tỉ lệ được sử dụng cho việc đo hoạt độ phóng xạ của các mức rất Trang 9 thấp. Điều đó đã tìm trong các mẫu môi trường hoặc trong các mẫu hoạt độ phóng xạ gần giới hạn nhạy cảm. Thuật ngữ đếm “phông thấp” thường ám chỉ các hệ thống mà mức đếm phông bình thường được giảm đáng kể. Các nguồn đếm phông sơ khai phù hợp đến từ bức xạ vũ trụ bao gồm sự bức xạ hạt mang điện, tia gamma thứ cấp và neutron và đến từ các bức xạ gamma và beta từ những nguyên vật liệu có tính phóng xạ trưng bày trong phòng thí nghiệm và detector và các vật che chắn. Những nguồn này được giảm trong các hệ thống đếm tỉ lệ phông thấp nhờ vật liệu che chắn phóng xạ tự do dày bao quanh detector và quanh lớp bảo vệ bên trong của detector, mà hoạt động trong bộ phận đối trùng phùng của detector chuẩn, một tia vũ trụ năng lượng cao mà xuyên qua vật che chắn và gây ra sự ion hóa trong detector mẫu cũng sẽ gây ra sự ion hóa trong một detector chắn. Các xung được tạo ra nhờ hai detector, khử lẫn nhau và sự kiện trong detector chính thì không được ghi nhận. Chỉ các sự kiện đó mà xảy ra độc lập với detector chính được đếm. Hình 5.3:Đường cong plateau cho hạt alpha và hạt beta trong ống đếm tỉ lệ dòng khí Điện thế cung cấp(V) Tốc độ đếm Trang 10 Một ưu thế thêm của buồng tỉ lệ là nó có khả năng đo các bức xạ anpha và beta một cách độc lập, thậm chí, khi các bức xạ đến từ cùng mẫu. Khả năng này là kết quả từ sự khác nhau trong sự ion hóa đặc biệt của hạt anpha và beta, như trình bày trong hình 5.2. Trong miền tỉ lệ, kích thước xung phụ thuộc đáng kể vào điện thế cung cấp, nhờ sự phân biệt kích thước xung, tốc độ đếm của một loại bức xạ đã cho có thể được tạo ra không phụ thuộc điện thế cung cấp trên vùng điện thế nhỏ (∼200- 300V). Vùng điện thế này được gọi là vùng plateau của detector (xảy ra ở khoảng 1000V cho bức xạ anpha và khoảng 2000V cho bức xạ beta). Điện thế hoạt động của máy đếm được đặt tại một giá trị thích hợp trong vùng này. Với việc điều chỉnh điện thế, tốc độ đếm của một mẫu có tính phóng xạ được tạo ra không phụ thuộc sự thay đổi nhỏ trong đường hiệu điện thế. Một đường cong plateau đặc trưng cho một ống đếm tỉ lệ loại dòng được nhìn thấy trong hình 5.3. Để đếm bức xạ hạt anpha, máy đếm này sẽ được hoạt động tại một điện thế khoảng 1000V. Tổng số đếm tại 1600V gồm có sự đóng góp từ cả bức xạ anpha và beta. Để đạt được tốc độ đếm của hoạt độ riêng của beta, tốc độ đếm của bức xạ anpha (được xác định nhờ sự mở rộng miền plateau anpha tới 1600V với việc sử dụng sự phát hạt anpha) sẽ được trừ từ tổng số đếm. 5.2.b. Ống Đếm G-M …ng G-M được sử dụng nhiều nhờ sự đơn giản của detector ghi nhận bức xạ. Một số sự điều chỉnh hệ thống đếm cần thiết cho sự hoạt động ổn định của detector. Tuy nhiên, ống G-M đã dần dần được thay thế bởi các loại detector khác vì giới hạn bên trong của nó thường quá tải, lợi thế của sự đơn giản trong quá trình hoạt động, đặc biệt cho sự ứng dụng kỹ thuật phân tích hạt nhân phóng xạ. Ấy thế mà, các ống đếm G-M tiếp tục tồn tại trong nhiều phòng thí nghiệm và cho dù sự hiệu chỉnh máy đếm đã cần thiết đối với chúng, sẽ tiếp tục cung cấp những phép đo chính xác cho nhiều thiết bị đo hoạt độ phóng xạ, đặc biệt khi phân ly hóa học là một phần của quá trình. Lợi thế của ống G-M là nó có độ nhạy cao, nó có thể phản hồi với nhiều loại bức xạ, đa dạng cả về kích thước lẫn hình dạng, tín hiệu của đầu ra lớn, và chi phí [...]... Cd dư và ZnO với Zn dư Hầu hết tinh thể nhấp nháy được dùng cho việc dò tìm bức xạ được hoạt hóa và nói chung hợp chất halogen hoạt động bằng những kim loại nặng như thallium, europi, và chì Mặc dù việc ghi nhận bức xạ bằng tinh thể nhấp nháy đã trở thành phương pháp đo lường chủ yếu cho bức xạ gamma, phương pháp ghi nhận bức xạ bằng tinh thể nhấp nháy cũng hữu ích cho việc đếm hạt alpha (sử dụng các... cho quá trình hạt nhân phóng xạ trong những trường hợp đặc biệt 5.4 DETECTOR BÁN DẪN Sự khám phá ra máy thu thanh bán dẫn năm 1948 không chỉ dẫn đến sự phát triển nhanh thiết bị điện thuộc thể rắn đối với máy đếm xung điện từ máy ghi nhận bức xạ thường nhưng cũng phát triển một loại máy dò mới Detector ghi nhận bức xạ bán dẫn có điểm chung với detector khí hấp thụ bức xạ tới bằng việc ion hóa trực... detector ghi nhận bức xạ Số các cặp electron–lỗ trống được tạo ra trong vùng nghèo tỉ lệ với năng lượng của bức xạ tới trong vùng này Vì điện thế phân cực ngược có thể loại bỏ những electron và lỗ trống dư thừa nên tập hợp các electron-lỗ trống được tạo ra bởi bức xạ ion dẫn đến một xung ra hiệu dụng Xung này được đo bởi một mạch điện bên ngoài có thể có tác dụng như là cơ sở cho quang phổ kế ghi nhận. .. detector ghi nhận bức xạ là áp dụng một điện trường cao không có những dòng điện rò rỉ quá mức Một số phương pháp đã được sử dụng để đạt được trạng thái này cho tinh thể bán dẫn; ba loại detector quan trọng là detector chuyển tiếp n-p, detector có rào chắn bề mặt và detector trôi ion Lithium 5.4.c Detector Chuyển Tiếp N-P Trang 31 Một diode bán dẫn sử dụng như là một detector ghi nhận bức xạ được minh... nên quan trọng cho việc đo phổ tia gamma, đặc biệt trong phân tích kích hoạt phóng xạ, với việc phát hiện ra những tinh thể với mật độ cao đặc trưng nhạy với bức xạ Gamma và sự phát triển đồng thời các thiết bị đo điện tử, các thiết bị này nó có thể tách và chọn xung điện bằng biên độ (chiều cao xung) 5.3.a Nguyên Tắc Ghi Nhận Nhấp Nháy Detector nhấp nháy phụ thuộc vào đặc tính của những tinh thể rắn,... có vài thuộc tính cần chú ý Tinh thể có mật độ cao (3.67 g/cm 3) cho việc hấp thụ tốt bức xạ gamma Iot cung cấp số nguyên tử cao cho hiệu suất đầu ra của ánh sáng trên một đơn vị của hấp thụ bức xạ gamma Hệ số suy giảm gamma cho NaI được trình bày ở hình 5.7 Hệ số suy giảm do ảnh hưởng của hiệu ứng quang điện và tán xạ Compton trở nên cân bằng tại năng lượng 0.3 MeV và tạo ra hiệu ứng cặp không quan... của bộ nhân quang tại sự phát xạ nhiệt trong máy đếm nhấp nháy lỏng thường được bảo vệ trong một buồng lạnh, và với mục đích cải tiến thêm về hiệu suất 2 ống nhân quang trong mạch trùng hợp đôi khi được dùng cho hệ đếm một dung dịch hòa tan Cả hai pin quang điện phải nhận được ánh sáng từ sự phát huỳnh quang đồng thời (trong 10-6s) để được ghi nhận Khi các xung nhiễu xạ nhiệt là ngẫu nhiên trong cả... phép đo hoạt độ phóng xạ thường xảy ra là một sự định cỡ không chính xác về hiệu suất của máy đếm như hàm năng lượng bức xạ, độ dày mẫu, hoặc điều kiện đếm khác nhau Sự chính xác của một phép đo lường phóng xạ được xác định chủ yếu bởi sự giảm hoặc loại bỏ hoàn toàn những sai số hệ thống của phép đo đó 2 Những sai số thống kê được đưa vào bởi những thay đổi trong các điều kiện thí nghiệm khác nhau hoặc... ở hình 5.6 Xung này được ghép cặp thông qua sự cản trở của tụ điện C tới điện cực Trang 19 5.3.b Detector Nhấp Nháy NaI (Tl) Hầu hết các chất vô cơ được dùng làm chất nhấp nháy cho đo lường bức xạ tia x và bức xạ gamma có hợp chất halogen kiềm Hỗn hợp phổ biến nhất, có giá trị kinh tế cao với nhiều hình dạng và kích thước, đó là tinh thể NaI hoạt động với khoảng 0.1% thalium Thalium được thêm vào dưới... oK là 0.66 eV cho nguyên tố Germani (Ge), 1.08 cho silic (Si) và 1.50 eV cho Selen (Se) Tuy nhiên năng lượng tối thiểu cần cho những phân tử bức xạ dịch chuyển trong khoảng 3.6 eV cho Si và 2.8 eV cho Ge, chỉ có 2 chất bán dẫn thường được dùng làm detector đo bức xạ Những thuộc tính cơ bản của 2 chất thuộc nhóm IVb này được liệt kê trong bảng 5.2 Trang 26 Năng lượng electron (eV) Vùng dẫn (gần như trống) . MỤC LỤC MỤC LỤC 1 CHƯƠNG 5: DETECTOR GHI NHẬN BỨC XẠ 2 TÀI LIỆU THAM KHẢO 45 Trang 2 CHƯƠNG 5: DETECTOR GHI NHẬN BỨC XẠ Hạt nhân phóng xạ được xác định về mặt định tính và. lượng Trang 3 bức xạ trong bất kỳ hệ thống ghi nhận nào và liên quan đến quá trình thống kê phân rã hoạt độ phóng xạ. 5.1. CÁC NGUYÊN TẮC GHI NHẬN Hiện nay, có hai phương pháp ghi nhận bức xạ chính. bàn luận trong chương 6. 5.2. DETECTOR CHỨA KHÍ Detector ghi nhận bức xạ chứa khí là một trong những loại cũ nhất của detector ghi nhận bức xạ có thể sử dụng được và vẫn được sử dụng một cách rộng rãi.

Ngày đăng: 30/07/2014, 11:20

Xem thêm: Chương 5: DETECTER GHI NHẬN BỨC XẠ docx

TỪ KHÓA LIÊN QUAN

Mục lục

    CHƯƠNG 5: DETECTOR GHI NHẬN BỨC XẠ

    5.1. Các nguyên TẮC GHI NHẬN

    5.3.a. Nguyên Tắc Ghi Nhận Nhấp Nháy

    5.3.b. Detector Nhấp Nháy NaI (Tl)

    5.3.c Detector Nhấp Nháy Lỏng

    5.4.a. Nguyên Lý Của Chất Bán Dẫn

    5.4.c. Detector Chuyển Tiếp N-P

    5.4.d. Detector Trôi Lithium P-I-N

    5.5. NHỮNG THỐNG KÊ CỦA PHÉP ĐO HOẠT ĐỘ PHÓNG XẠ

    5.5.a. Các Sai Số Trong Phép Đo Hoạt Độ Phóng Xạ

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w