- 26 - BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ ÔN THI ĐẠI HỌC MÔN TOÁN – ĐỀ 26 (ĐỀ THAM KHẢO) Thời gian làm bài: 180 phút . I. PHẦN BẮT BUỘC DÀNH CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2 điểm) Cho hàm số: 42 yx (2m1)x 2m (m là tham biến). 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số khi m = 2. 2. Tìm tất cả các giá trị của m để đồ thị hàm số cắt trục Ox tại 4 điểm phân biệt cách đều nhau. Câu II (2 điểm) 1. Giải phương trình : 2 2 18 211 2cos x cos x 3 sin 2(x ) 3cos(x ) sin x 33 23 . 2. Giải hệ phương trình : 222 22 )yx(7yxyx )yx(3yxyx Câu III (1 điểm) Tính diện tích hình phẳng giới hạn bởi các đường sau : x 2 xe y0,y ,x1 x1 . Câu IV (1 điểm) Cho hình chóp S.ABCD có đáy ABCD là hình thang AB = a, BC = a , 0 90BAD , cạnh 2SA a và SA vuông góc với đáy, tam giác SCD vuông tại C. Gọi H là hình chiếu của A trên SB, tính thể tích của tứ diện SBCD và khoảng cách từ điểm H đến mặt phẳng (SCD). Câu V (1 điểm) Với mọi số thực ; ; x yz lớn hơn 1 và thỏa điều kiện 111 2 xyz . Tìm GTlN của biểu thức A = (x – 1) (y – 1) (z – 1) II. PHẦN TỰ CHỌN (3,0 điểm). Tất cả thí sinh chỉ được làm một trong hai phần: A hoặc B. A. Theo chương trình Chuẩn: Câu VIa (2 điểm): 1. Trong mặt phẳng với hệ tọa độ Oxy , cho ABC với A(–1; 1) ; B(–2; 0) ; C(2 ; 2) . Viết phương trình đường thẳng cách đều các đỉnh của ABC 2.Trong không gian với hệ tọa độ Oxyz, cho 2 điểm A(4;0;0), B(0;0;4) và mp (P): 2x y 2z 4 0 a). Chứng minh rằng đường thẳng AB song song với mặt phẳng (P), viết phương trình mặt phẳng trung trực của đoạn AB. b). Tìm điểm C trên mặt phẳng (P) sao cho tam giác ABC đều. Câu VIIa (1 điểm): Tìm phần thực của số phức: n z(1i) , trong đó nN và thỏa mãn: 45 log n 3 log n 6 4 . B. Theo chương trình Nâng cao: Câu VIb (2 điểm): 1. Trong mặt phẳng Oxy , cho (H) : 22 1 45 xy và đường thẳng (d) : x – y + m = 0 . CMR (d) luôn cắt (H) tại hai điểm M , N thuộc hai nhánh khác nhau của (H). 2. Trong không gian Oxyz , cho các điểm 1;3;5 , 4;3; 2 , 0;2;1ABC . Tìm tọa độ tâm đường tròn ngoại tiếp tam giác ABC. Câu VIIb (1 điểm): Cho số phức : z1 3.i . Hãy viết số z n dạng lượng giác biết rằng nN và thỏa mãn: 2 33 log (n 2n 6) log 5 22 n 2n64 (n 2n6) . Hết 63 Đề thi thử Đại học 2011 -26- http://www.VNMATH.com - 27 - BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ ÔN THI ĐẠI HỌC MÔN TOÁN – ĐỀ 27 (ĐỀ THAM KHẢO) Thời gian làm bài: 180 phút . I. PHẦN BẮT BUỘC DÀNH CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2,0 điểm) Cho hàm số 21 1 x y x (C) 1.Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho 2.Tìm trên đồ thị (C) những điểm có tổng khoảng cách đến hai tiệm cận của (C) nhỏ nhất. Câu II (2,0 điểm) 1. Giải hệ phương trình: 22 33 21 22 yx x yyx . 2.Giải phương trình sau: 66 8 sin cos 3 3sin 4 3 3 cos 2 9sin 2 11xx x x x . Câu III (1,0 điểm) Tính tích phân: I = 1 2 1 2 1 (1 ) x x x edx x . Câu IV(1,0 điểm) Cho tứ diện ABCD có AC = AD = a 2 , BC = BD = a, khoảng cách từ B đến mặt phẳng (ACD) bằng 3 a .Tính góc giữa hai mặt phẳng (ACD) và (BCD). Biết thể của khối tứ diện ABCD bằng 3 15 27 a . Câu V (1,0 điểm) Với mọi số thực x, y thỏa điều kiện 22 21 x yxy . Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức 44 21 x y P xy . II. PHẦN TỰ CHỌN (3,0 điểm). Tất cả thí sinh chỉ được làm một trong hai phần: A hoặc B. A.Theo chương trình Chuẩn Câu VIa ( 2,0 điểm) 1. Trong mp với hệ tọa độ Oxy cho đường tròn : x 2 + y 2 – 2x + 6y –15 = 0 (C ). Viết phương trình đường thẳng (Δ) vuông góc với đường thẳng: 4x – 3y + 2 = 0 và cắt đường tròn (C) tại A;B sao cho AB = 6. 2. Trong không gian với hệ tọa độ Oxyz cho hai đường thẳng: d 1 : 21 468 xyz và d 2 : 72 6912 xy z . Xét vị trí tương đối của d 1 và d 2 . Cho hai điểm A(1;-1;2) và B(3 ;- 4;-2), Tìm tọa độ điểm I trên đường thẳng d 1 sao cho IA + IB đạt giá trị nhỏ nhất. Câu VIIa (1,0 điểm) Giải phương trình trên tập hợp C : (z 2 + i)(z 2 – z ) = 0 B. Theo chương trình Nâng cao. Câu VIb (2,0 điểm) 1. Trong mặt phẳng Oxy cho elip (E): 22 1 43 xy và đường thẳng :3x + 4y =12. Từ điểm M bất kì trên kẻ tới (E) các tiếp tuyến MA, MB. Chứng minh rằng đường thẳng AB luôn đi qua một điểm cố định. 2. Trong không gian với hệ tọa độ Oxyz , cho (d) : 321 21 1 x yz và mặt phẳng (P) : x + y + z + 2 = 0 . Lập phương trình đường thẳng (D) nằm trong (P) sao cho (D) (d) và khoảng cách từ giao điểm của (d) và (P) đến đường thẳng (D) là 42 . Câu VIIb (1,0 điểm) Giải hệ phương trình: yyxx xyyx 222 222 log2log72log log3loglog Hết 63 Đề thi thử Đại học 2011 -27- http://www.VNMATH.com - 28 - BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ ÔN THI ĐẠI HỌC MÔN TOÁN – ĐỀ 28 (ĐỀ THAM KHẢO) Thời gian làm bài: 180 phút . I. PHẦN BẮT BUỘC DÀNH CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I ( 2 điểm) Cho hàm số 2)2()21( 23 mxmxmxy (1) m là tham số. 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1) với m=2. 2. Tìm tham số m để đồ thị của hàm số (1) có tiếp tuyến tạo với đường thẳng d: 07 yx góc , biết 26 1 cos . Câu II (2 điểm) 1. Giải bất phương trình: 54 4 2 log 2 2 1 x x . 2. Giải phương trình: .cos32cos3cos21cos2.2sin3 xxxxx Câu III (1 điểm) Tính tích phân: I 4 0 2 211 1 dx x x . Câu IV (1 điểm) Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân đỉnh A, AB 2a . Gọi I là trung điểm của BC, hình chiếu vuông góc H của S lên mặt đáy (ABC) thỏa mãn: IH I A 2 , góc giữa SC và mặt đáy (ABC) bằng 0 60 .Hãy tính thể tích khối chóp S.ABC và khoảng cách từ trung điểm K của SB tới (SAH). Câu V (1 điểm) Cho x, y, z là ba số thực dương thay đổi và thỏa mãn: xyzzyx 222 . Hãy tìm giá trị lớn nhất của biểu thức: xyz z zxy y yzx x P 222 . II. PHẦN TỰ CHỌN (3,0 điểm). Tất cả thí sinh chỉ được làm một trong hai phần: A hoặc B. A. Theo chương trình Chuẩn: Câu VIa (2 điểm) 1. Trong mặt phẳng Oxy, cho tam giác ABC biết A(3;0), đường cao từ đỉnh B có phương trình 01 yx , trung tuyến từ đỉnh C có phương trình: 2x-y-2=0. Viết phương trình đường tròn ngoại tiếp tam giác ABC. 2. Trong không gian với hệ trục tọa độ Oxyz, cho các điểm A(-1;1;0), B(0;0;-2) và C(1;1;1). Hãy viết phương trình mặt phẳng (P) qua hai điểm A và B, đồng thời khoảng cách từ C tới mặt phẳng (P) bằng 3. Câu VIIa (1 điểm) Cho khai triển: 14 14 2 210 2 2 10 121 xaxaxaaxxx . Hãy tìm giá trị của 6 a . B. Theo chương trình Nâng cao: Câu VIb (2 điểm) 1. Trong mặt phẳng tọa độ Oxy, cho tam giác ABC biết A(1;-1), B(2;1), diện tích bằng 5,5 và trọng tâm G thuộc đường thẳng d: 043 yx . Tìm tọa độ đỉnh C. 2. Trong không gian với hệ trục Oxyz, cho mặt phẳng (P) 01 zyx ,đường thẳng d: 3 1 1 1 1 2 zyx Gọi I là giao điểm của d và (P). Viết phương trình của đường thẳng nằm trong (P), vuông góc với d và cách I một khoảng bằng 23 . Câu VIIb (1 điểm) Giải phương trình trên tập hợp C : 3 1 zi iz Hết 63 Đề thi thử Đại học 2011 -28- http://www.VNMATH.com - 29 - BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ ÔN THI ĐẠI HỌC MÔN TOÁN – ĐỀ 29 (ĐỀ THAM KHẢO) Thời gian làm bài: 180 phút . I. PHẦN BẮT BUỘC DÀNH CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2 điểm) Cho hàm số y = 2x 3 – 3(2m + 1)x 2 + 6m(m + 1)x +1 có đồ thị (C m ). 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi m = 0. 2. Tìm m để hàm số đồng biến trên khoảng ;2 Câu II (2 điểm) 1. Giải phương trình: 1)12cos2(3cos2 xx 2. Giải phương trình : 3 2 3 512)13( 22 xxxx Câu III (1 điểm) Tính tích phân 2ln3 0 23 )2( x e dx I Câu IV (1 điểm) Cho hình lăng trụ ABC.A’B’C’ có đáy là tam giác đều cạnh a, hình chiếu vuông góc của A’ lên măt phẳng ( ABC) trùng với tâm O của tam giác ABC. Tính thể tích khối lăng trụ ABC.A’B’C’ biết khoảng cách giữa AA’ và BC là a3 4 Câu V (1 điểm) Cho x,y,z thoả mãn là các số thực: 1 22 yxyx .Tìm giá trị lớn nhất ,nhỏ nhất của biểu thức 1 1 22 44 yx yx P II. PHẦN TỰ CHỌN (3,0 điểm) Tất cả thí sinh chỉ được làm một trong hai phần: A hoặc B. A. Theo chương trình Chuẩn Câu VIa : (2 điểm) 1. Cho hình tam giác ABC có diện tích bằng 2. Biết A(1;0), B(0;2) và trung điểm I của AC nằm trên đường thẳng y = x. Tìm toạ độ đỉnh C. 2. Trong không gian Oxyz, cho các điểm A(1;0;0); B(0;2;0); C(0;0;-2) tìm tọa độ điểm O’ đối xứng với O qua (ABC). Câu VIIa (1 điểm) Giải phương trình: 10)2)(3)(( 2 zzzz , z C. B. Theo chương trình Nâng cao Câu VIb (2 điểm) 1. Trong mp(Oxy) ,cho điểm A(-1 ;0), B(1 ;2) và đường thẳng (d): x - y - 1 = 0. Lập phương trình đường tròn đi qua 2 điểm A, B và tiếp xúc với đường thẳng (d). 2. Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng: 2 5 1 1 3 4 : 1 zyx d 13 3 1 2 : 2 zyx d Viết phương trình mặt cầu có bán kính nhỏ nhất tiếp xúc với cả hai đường thẳng d 1 và d 2 Câu VIIb (1 điểm) Giải bất phương trình: 2log9)2log3( 22 xxx Hết 63 Đề thi thử Đại học 2011 -29- http://www.VNMATH.com - 30 - BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ ÔN THI ĐẠI HỌC MÔN TOÁN – ĐỀ 30 (ĐỀ THAM KHẢO) Thời gian làm bài: 180 phút I. PHẦN BẮT BUỘC DÀNH CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I: (2,0 điểm) 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số 32 1 23. 3 yxxx 2.Viết phương trình tiếp tuyến của đồ thị (C), biết tiếp tuyến này đi qua gốc tọa độ O. Câu II: (2,0 điểm) 1.Giải phương trình 2sin 2 3sin cos 2 4 xxx . 2.Giải hệ phương trình 22 2 3 44( ) 7 () 1 23 xy x y xy x xy . Câu III: (1,0 điểm) Tìm các giá trị của tham số m để phương trình 2 22 2mx x x có 2 nghiệm phân biệt. Câu IV: (1,0 điểm) Cho hình chóp tứ giác đều .S ABCD có tất cả các cạnh đều bằng a. Tính theo a thể tích khối chóp .SABCD và tính bán kính mặt cầu tiếp xúc với tất cả các mặt của hình chóp đó. Câu V: (1,0 điểm) Với mọi số thực dương a; b; c thỏa mãn điều kiện a + b + c = 1. Tìm giá trị nhỏ nhất của biểu thức: 333 222 abc P 1a 1b 1c II. PHẦN TỰ CHỌN (3,0 điểm). Tất cả thí sinh chỉ được làm một trong hai phần: A hoặc B. A. Theo chương trình Chuẩn Câu VIa : (2,0 điểm) 1. Trong mặt phẳng tọa độ Oxy, cho đường tròn 22 :( 1) ( 1) 25Cx y và M(7 ; 3) .Lập phương trình đường thẳng (d) đi qua M và cắt (C) tại hai điểm A,B sao cho MA = 3MB. 2.Trong không gian với hệ tọa độ Oxyz, cho điểm 1; 2; 3I .Viết phương trình mặt cầu tâm I và tiếp xúc với trục Oy. Câu VII.a: (1,0 điểm) 1. Giải phương trình 2.27 18 4.12 3.8 x xxx . 2 . Tìm nguyên hàm của hàm số 2 tan 1cos x fx x . B. Theo chương trình Nâng cao Câu VIb: (2,0 điểm) 1. Trong mặt phẳng tọa độ Oxy, cho đường tròn 22 :20Cx y x . Viết phương trình tiếp tuyến của C , biết góc giữa tiếp tuyến này và trục tung bằng 30 . 2. Cho hình hộp chữ nhật ABCD.A 1 B 1 C 1 D 1 có các cạnh AA 1 = a , AB = AD = 2a . Gọi M,N,K lần lượt là trung điểm các cạnh AB,AD, AA 1 . a) Tính theo a khoảng cách từ C 1 đến mặt phẳng (MNK) . b) Tính theo a thể tích của tứ diện C 1 MNK Câu VII.b: (1,0 điểm) 1 . Giải bất phương trình 4log 3 243 x x . 2 . Tìm m để hàm số 2 1mx y x có 2 điểm cực trị A, B và đoạn AB ngắn nhất Hết 63 Đề thi thử Đại học 2011 -30- http://www.VNMATH.com . yyxx xyyx 222 222 log2log72log log3loglog Hết 63 Đề thi thử Đại học 2011 -2 7- http://www.VNMATH.com - 28 - BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ ÔN THI ĐẠI HỌC MÔN TOÁN – ĐỀ 28 (ĐỀ THAM KHẢO) Thời gian làm bài: 180. 3 1 zi iz Hết 63 Đề thi thử Đại học 2011 -2 8- http://www.VNMATH.com - 29 - BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ ÔN THI ĐẠI HỌC MÔN TOÁN – ĐỀ 29 (ĐỀ THAM KHẢO) Thời gian làm bài: 180. 2log9)2log3( 22 xxx Hết 63 Đề thi thử Đại học 2011 -2 9- http://www.VNMATH.com - 30 - BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ ÔN THI ĐẠI HỌC MÔN TOÁN – ĐỀ 30 (ĐỀ THAM KHẢO) Thời gian làm bài: 180